Facebook
TwitterSubscribers can find out export and import data of 23 countries by HS code or product’s name. This demo is helpful for market analysis.
Facebook
TwitterGlobal View Sas Export Import Data. Follow the Eximpedia platform for HS code, importer-exporter records, and customs shipment details.
Facebook
TwitterBeautiful View Wood Sas Export Import Data. Follow the Eximpedia platform for HS code, importer-exporter records, and customs shipment details.
Facebook
TwitterView Sas mori distribution import data USA including customs records, shipments, HS codes, suppliers, buyer details & company profile at Seair Exim.
Facebook
TwitterThis package contains two files designed to help read individual level DHS data into Stata. The first file addresses the problem that versions of Stata before Version 7/SE will read in only up to 2047 variables and most of the individual files have more variables than that. The file will read in the .do, .dct and .dat file and output new .do and .dct files with only a subset of the variables specified by the user. The second file deals with earlier DHS surveys in which .do and .dct file do not exist and only .sps and .sas files are provided. The file will read in the .sas and .sps files and output a .dct and .do file. If necessary the first file can then be run again to select a subset of variables.
Facebook
TwitterThe simulated synthetic aperture sonar (SAS) data presented here was generated using PoSSM [Johnson and Brown 2018]. The data is suitable for bistatic, coherent signal processing and will form acoustic seafloor imagery. Included in this data package is simulated sonar data in Generic Data Format (GDF) files, a description of the GDF file contents, example SAS imagery, and supporting information about the simulated scenes. In total, there are eleven 60 m x 90 m scenes, labeled scene00 through scene10, with scene00 provided with the scatterers in isolation, i.e. no seafloor texture. This is provided for beamformer testing purposes and should result in an image similar to the one labeled "PoSSM-scene00-scene00-starboard-0.tif" in the Related Data Sets tab. The ten other scenes have varying degrees of model variation as described in "Description_of_Simulated_SAS_Data_Package.pdf". A description of the data and the model is found in the associated document called "Description_of_Simulated_SAS_Data_Package.pdf" and a description of the format in which the raw binary data is stored is found in the related document "PSU_GDF_Format_20240612.pdf". The format description also includes MATLAB code that will effectively parse the data to aid in signal processing and image reconstruction. It is left to the researcher to develop a beamforming algorithm suitable for coherent signal and image processing. Each 60 m x 90 m scene is represented by 4 raw (not beamformed) GDF files, labeled sceneXX-STARBOARD-000000 through 000003. It is possible to beamform smaller scenes from any one of these 4 files, i.e. the four files are combined sequentially to form a 60 m x 90 m image. Also included are comma separated value spreadsheets describing the locations of scatterers and objects of interest within each scene. In addition to the binary GDF data, a beamformed GeoTIFF image and a single-look complex (SLC, science file) data of each scene is provided. The SLC data (science) is stored in the Hierarchical Data Format 5 (https://www.hdfgroup.org/), and appended with ".hdf5" to indicate the HDF5 format. The data are stored as 32-bit real and 32-bit complex values. A viewer is available that provides basic graphing, image display, and directory navigation functions (https://www.hdfgroup.org/downloads/hdfview/). The HDF file contains all the information necessary to reconstruct a synthetic aperture sonar image. All major and contemporary programming languages have library support for encoding/decoding the HDF5 format. Supporting documentation that outlines positions of the seafloor scatterers is included in "Scatterer_Locations_Scene00.csv", while the locations of the objects of interest for scene01-scene10 are included in "Object_Locations_All_Scenes.csv". Portable Network Graphic (PNG) images that plot the location of objects of all the objects of interest in each scene in Along-Track and Cross-Track notation are provided.
Facebook
TwitterGenerally speaking, the stakes are people, property, activities, cultural or environmental heritage elements, threatened by a hazard and likely to be affected or damaged by it. The sensitivity of an issue to a hazard is called “vulnerability”. This object class brings together all the issues that have been addressed in the RPP study. An issue is a dated object whose consideration depends on the purpose of the RPP and its vulnerability to the hazards studied. A PPR issue can therefore be considered (or not) depending on the type or types of hazard being addressed. These elements form the basis of knowledge of the land cover necessary for the development of the RPP, in or near the study area, at the time of the analysis of the issues. The data on issues represent a (figible and non-exhaustive) photograph of assets and individuals exposed to hazards at the time of the development of the risk prevention plan. This data is not updated after approval of the RPP. In practice they are no longer used: the issues are recalculated as necessary with up-to-date data sources.
Facebook
Twitteranalyze the health and retirement study (hrs) with r the hrs is the one and only longitudinal survey of american seniors. with a panel starting its third decade, the current pool of respondents includes older folks who have been interviewed every two years as far back as 1992. unlike cross-sectional or shorter panel surveys, respondents keep responding until, well, death d o us part. paid for by the national institute on aging and administered by the university of michigan's institute for social research, if you apply for an interviewer job with them, i hope you like werther's original. figuring out how to analyze this data set might trigger your fight-or-flight synapses if you just start clicking arou nd on michigan's website. instead, read pages numbered 10-17 (pdf pages 12-19) of this introduction pdf and don't touch the data until you understand figure a-3 on that last page. if you start enjoying yourself, here's the whole book. after that, it's time to register for access to the (free) data. keep your username and password handy, you'll need it for the top of the download automation r script. next, look at this data flowchart to get an idea of why the data download page is such a righteous jungle. but wait, good news: umich recently farmed out its data management to the rand corporation, who promptly constructed a giant consolidated file with one record per respondent across the whole panel. oh so beautiful. the rand hrs files make much of the older data and syntax examples obsolete, so when you come across stuff like instructions on how to merge years, you can happily ignore them - rand has done it for you. the health and retirement study only includes noninstitutionalized adults when new respondents get added to the panel (as they were in 1992, 1993, 1998, 2004, and 2010) but once they're in, they're in - respondents have a weight of zero for interview waves when they were nursing home residents; but they're still responding and will continue to contribute to your statistics so long as you're generalizing about a population from a previous wave (for example: it's possible to compute "among all americans who were 50+ years old in 1998, x% lived in nursing homes by 2010"). my source for that 411? page 13 of the design doc. wicked. this new github repository contains five scripts: 1992 - 2010 download HRS microdata.R loop through every year and every file, download, then unzip everything in one big party impor t longitudinal RAND contributed files.R create a SQLite database (.db) on the local disk load the rand, rand-cams, and both rand-family files into the database (.db) in chunks (to prevent overloading ram) longitudinal RAND - analysis examples.R connect to the sql database created by the 'import longitudinal RAND contributed files' program create tw o database-backed complex sample survey object, using a taylor-series linearization design perform a mountain of analysis examples with wave weights from two different points in the panel import example HRS file.R load a fixed-width file using only the sas importation script directly into ram with < a href="http://blog.revolutionanalytics.com/2012/07/importing-public-data-with-sas-instructions-into-r.html">SAScii parse through the IF block at the bottom of the sas importation script, blank out a number of variables save the file as an R data file (.rda) for fast loading later replicate 2002 regression.R connect to the sql database created by the 'import longitudinal RAND contributed files' program create a database-backed complex sample survey object, using a taylor-series linearization design exactly match the final regression shown in this document provided by analysts at RAND as an update of the regression on pdf page B76 of this document . click here to view these five scripts for more detail about the health and retirement study (hrs), visit: michigan's hrs homepage rand's hrs homepage the hrs wikipedia page a running list of publications using hrs notes: exemplary work making it this far. as a reward, here's the detailed codebook for the main rand hrs file. note that rand also creates 'flat files' for every survey wave, but really, most every analysis you c an think of is possible using just the four files imported with the rand importation script above. if you must work with the non-rand files, there's an example of how to import a single hrs (umich-created) file, but if you wish to import more than one, you'll have to write some for loops yourself. confidential to sas, spss, stata, and sudaan users: a tidal wave is coming. you can get water up your nose and be dragged out to sea, or you can grab a surf board. time to transition to r. :D
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
File List ECO101_sample_data.xls ECO101_sample_data.txt SAS_Code.rtf
Please note that ESA cannot guarantee the availability of Excel files in perpetuity as it is proprietary software. Thus, the data file here is also supplied as a tab-delimited ASCII file, and the other Excel workbook sheets are provided below in the description section. Description -- TABLE: Please see in attached file. --
Facebook
TwitterSubscribers can find out export and import data of 23 countries by HS code or product’s name. This demo is helpful for market analysis.
Facebook
TwitterView Sas gifi diffusion import data USA including customs records, shipments, HS codes, suppliers, buyer details & company profile at Seair Exim.
Facebook
TwitterThis dataset contains the boundaries at the different stages of the development of the PPRT. The characteristic of these perimeters is to be the consequence of an official act and to produce their effects from a specified date. This is the following: — prescribed scope contained in the prescription order of a PPR (natural or technological); — scope of risk exposure that corresponds to the scope regulated by the approved RPP. This approved perimeter is a utility easement (PM3 for PPRTs); — scope of study which corresponds to the envelope in which the hazards were studied.
Facebook
TwitterView Sas intl beers beverages import data USA including customs records, shipments, HS codes, suppliers, buyer details & company profile at Seair Exim.
Facebook
TwitterSubscribers can find out export and import data of 23 countries by HS code or product’s name. This demo is helpful for market analysis.
Facebook
TwitterThis SAS program calculates CFI for each patient from analytic data files containing information on patient identifiers, ICD-9-CM diagnosis codes (version 32), ICD-10-CM Diagnosis Codes (version 2020), CPT codes, and HCPCS codes. NOTE: When downloading, store "CFI_ICD9CM_V32.tab", "CFI_ICD10CM_V2020.tab", and "PX_CODES.tab" as csv files (these files are originally stored as csv files, but Dataverse automatically converts them to tab files). Please read "Frailty-Index-SAS-code-Guide" before proceeding. Interpretation, validation data, and annotated references are provided in "Research Background - Claims-Based Frailty Index".
Facebook
TwitterOutput from programming code written to summarize 2018 monarch butterfly abundance from monitoring data acquired using a modified Pollard walk at custom 2017 GRTS draw sites within select monitoring areas (see SOP 2 in ServCat reference 103367 for methods) of FWS Legacy Regions 2 and 3. Areas monitored included Balcones Canyonlands (TX), Hagerman (TX), Washita (OK), Neal Smith (IA) NWRs and several locations near the town of Lamoni, Iowa and northern Missouri. Input data file is named 'FWS_2018_MM_SOP2_for_SAS.csv' and is stored in ServCat reference 136485. See SM 5 (ServCat reference 103388) for dictionary of data fields in the input data file.
Facebook
TwitterAddon Watch Sas Export Import Data. Follow the Eximpedia platform for HS code, importer-exporter records, and customs shipment details.
Facebook
TwitterOutput from programming code written to summarize immature monarch butterfly, milkweed and nectar plant abundance from monitoring data acquired using a grid of 1 square-meter quadrats at custom 2017 GRTS draw sites within select monitoring areas (see SOP 3 in ServCat reference 103368 for methods) of FWS Legacy Regions 2 and 3. Areas monitored included Balcones Canyonlands (TX), Hagerman (TX), Washita (OK), Neal Smith (IA) NWRs and several locations near the town of Lamoni, Iowa and northern Missouri. Input data file is named 'FWS_2018_MonMonSOP3DS1_forSAS.csv' and is stored in ServCat reference 137698. See SM 5 (ServCat reference 103388) for dictionary of data fields in the input data file.
Facebook
TwitterThis workshop takes you on a quick tour of Stata, SPSS, and SAS. It examines a data file using each package. Is one more user friendly than the others? Are there significant differences in the codebooks created? This workshop also looks at creating a frequency and cross-tabulation table in each. Which output screen is easiest to read and interpret? The goal of this workshop is to give you an overview of these products and provide you with the information you need to determine whick package fits the requirements of you and your user.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Generally speaking, the stakes are people, property, activities, cultural or environmental heritage elements, threatened by a hazard and likely to be affected or damaged by it. The sensitivity of an issue to a hazard is called “vulnerability”. This object class brings together all the issues that have been addressed in the RPP study. An issue is a dated object whose consideration depends on the purpose of the RPP and its vulnerability to the hazards studied. A PPR issue can therefore be considered (or not) depending on the type or types of hazard being addressed. These elements form the basis of knowledge of the land cover necessary for the development of the RPP, in or near the study area, at the time of the analysis of the issues. The data on issues represent a (figible and non-exhaustive) photograph of assets and individuals exposed to hazards at the time of the development of the risk prevention plan. This data is not updated after approval of the RPP. In practice they are no longer used: the issues are recalculated as necessary with up-to-date data sources.
Facebook
TwitterSubscribers can find out export and import data of 23 countries by HS code or product’s name. This demo is helpful for market analysis.