CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Key Table Information.Table Title.Vintage 2023 Annual Resident Population Estimates by Age, Sex, Race, and Hispanic Origin: April 1, 2020 to July 1, 2023.Table ID.PEPCHARV2023.PEP_ALLDATA.Survey/Program.Population Estimates.Year.2023.Dataset.PEP Demographic Characteristics.Source.U.S. Census Bureau, 2023 Population Estimates.Release Date.June 2024.Methodology.Geography Coverage.All geographic boundaries for the 2023 population estimates series are as of January 1, 2023. Substantial geographic changes to counties can be found on the Census Bureau website at https://www.census.gov/programs-surveys/geography/technical-documentation/county-changes.html.Confidentiality.Vintage 2023 data products are associated with Data Management System projects P6000042, P-7501659, and P-7527355. The U.S. Census Bureau reviewed these data products for unauthorized disclosure of confidential information and approved the disclosure avoidance practices applied to this release (CBDRB-FY24-0085)..Technical Documentation/Methodology.The estimates are developed from a base that integrates the 2020 Census, Vintage 2020 estimates, and 2020 Demographic Analysis estimates. The estimates add births to, subtract deaths from, and add net migration to the April 1, 2020 estimates base. Race data in the Vintage 2023 estimates do not currently reflect the results of the 2020 Census. For population estimates methodology statements, see https://www.census.gov/programs-surveys/popest/technical-documentation/methodology.html.'In combination' means in combination with one or more other races. The sum of the five race groups adds to more than the total population because individuals may report more than one race. Hispanic origin is considered an ethnicity, not a race. Hispanics may be of any race. Responses of Some Other Race from the decennial census are modified to be consistent with the race categories that appear in our input data. This contributes to differences between the population for specific race categories shown and those published from the 2020 Census. To learn more about the Modified Race process, go to http://www.census.gov/programs-surveys/popest/technical-documentation/research/modified-race-data.html..Weights.Data is not weighted.Table Information.FTP Download.https://www2.census.gov/programs-surveys/popest/.Additional Information.Contact Information.pop.cdob@census.gov.Suggested Citation.U.S. Census Bureau. "Vintage 2023 Annual Resident Population Estimates by Age, Sex, Race, and Hispanic Origin: April 1, 2020 to July 1, 2023" Population Estimates, PEP Demographic Characteristics, Table PEP_ALLDATA, -1, https://data.census.gov/table/PEPCHARV2023.PEP_ALLDATA?q=PEP_ALLDATA: Accessed on June 06, 2025..
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the data for the Old Tappan, NJ population pyramid, which represents the Old Tappan population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Old Tappan Population by Age. You can refer the same here
Projections estimate that the population in Italy will decrease in the following years. In January 2025, the Italian population added up to 59 million people, but in 2030 Italians will be 58 million individuals. Twenty years later, the population will be around 52 million people. Low birth rate and old population The birth rate in Italy has constantly dropped in the last years. In 2023, 6.4 children were born per 1,000 inhabitants, three babies less than in 2002. Nationwide, the highest number of births was registered in the southern regions, whereas central Italy had the lowest number of children born every 1,000 people. More specifically, the birth rate in the south stood at 7 infants, while in the center it was equal to 5.9 births. Consequently, the population in Italy has aged over the last decade. Between 2002 and 2024, the age distribution of the Italian population showed a growing share of people aged 65 years and older. As a result, the share of young people decreased. The European exception Similarly, the population in Europe is estimated to decrease in the coming years. In 2024, there were 740 million people living in Europe. In 2100, the figure is expected to drop to 586 million inhabitants. However, projections of the world population suggest that Europe might be the only continent experiencing a population decrease. For instance, the population in Africa could grow from 1.41 billion people in 2022 to 3.92 billion individuals in 2100, the fastest population growth worldwide.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the data for the Old Town, ME population pyramid, which represents the Old Town population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Old Town Population by Age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Age, Sex, Race, Ethnicity, Total Housing Units, and Voting Age Population. This service is updated annually with American Community Survey (ACS) 5-year data. Contact: District of Columbia, Office of Planning. Email: planning@dc.gov. Geography: Census Tracts. Current Vintage: 2019-2023. ACS Table(s): DP05. Data downloaded from: Census Bureau's API for American Community Survey. Date of API call: January 2, 2025. National Figures: data.census.gov. Please cite the Census and ACS when using this data. Data Note from the Census: Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables. Data Processing Notes: This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2020 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page. Data processed using R statistical package and ArcGIS Desktop. Margin of Error was not included in this layer but is available from the Census Bureau. Contact the Office of Planning for more information about obtaining Margin of Error values.
In 2023, about 17.7 percent of the American population was 65 years old or over; an increase from the last few years and a figure which is expected to reach 22.8 percent by 2050. This is a significant increase from 1950, when only eight percent of the population was 65 or over. A rapidly aging population In recent years, the aging population of the United States has come into focus as a cause for concern, as the nature of work and retirement is expected to change to keep up. If a population is expected to live longer than the generations before, the economy will have to change as well to fulfill the needs of the citizens. In addition, the birth rate in the U.S. has been falling over the last 20 years, meaning that there are not as many young people to replace the individuals leaving the workforce. The future population It’s not only the American population that is aging -- the global population is, too. By 2025, the median age of the global workforce is expected to be 39.6 years, up from 33.8 years in 1990. Additionally, it is projected that there will be over three million people worldwide aged 100 years and over by 2050.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Age dependency ratio, old (% of working-age population) in Japan was reported at 50.28 % in 2023, according to the World Bank collection of development indicators, compiled from officially recognized sources. Japan - Age dependency ratio, old (% of working-age population) - actual values, historical data, forecasts and projections were sourced from the World Bank on June of 2025.
Age, Sex, Race, Ethnicity, Total Housing Units, and Voting Age Population. This service is updated annually with American Community Survey (ACS) 1-year data. Contact: District of Columbia, Office of Planning. Email: planning@dc.gov. Geography: District-wide. Current Vintage: 2023. ACS Table(s): DP05. Data downloaded from: Census Bureau's API for American Community Survey. Date of API call: January 3, 2025. National Figures: data.census.gov. Please cite the Census and ACS when using this data. Data Note from the Census: Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables. Data Processing Notes: This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2020 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page. Data processed using R statistical package and ArcGIS Desktop. Margin of Error was not included in this layer but is available from the Census Bureau. Contact the Office of Planning for more information about obtaining Margin of Error values.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Age dependency ratio, old (% of working-age population) in United States was reported at 26.83 % in 2023, according to the World Bank collection of development indicators, compiled from officially recognized sources. United States - Age dependency ratio, old (% of working-age population) - actual values, historical data, forecasts and projections were sourced from the World Bank on July of 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Age dependency ratio, old (% of working-age population) in World was reported at 15.36 % in 2023, according to the World Bank collection of development indicators, compiled from officially recognized sources. World - Age dependency ratio, old (% of working-age population) - actual values, historical data, forecasts and projections were sourced from the World Bank on July of 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Old Washington by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Old Washington across both sexes and to determine which sex constitutes the majority.
Key observations
There is a majority of female population, with 56.55% of total population being female. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Old Washington Population by Race & Ethnicity. You can refer the same here
In the past years, the share of people aged over 65 years grew constantly in Italy. Estimates for 2025 report that **** percent of the Italian inhabitants are aged 65 years and older. Moreover, **** percent of the residents are aged between 15 and 64 years and only **** percent are 14 years old and younger. In 2025, the Italian region with the highest share of kids up to 14 years old was Trentino-South Tyrol, with **** percent. On the other hand, **** percent of the people in Liguria were over 65 years, making it the region with the highest share of elderly among its residents. Causes of an aging population The growing share of old people in Italy is due to two main factors. First, the birth rate in the country decreased over the last years. In 2024, less than ***** children were born per 1,000 inhabitants, 2 fewer infants than in 2002. Second, life expectancy increased over the same period. A 65-year-old Italian woman could expect to have almost ** more years of life ahead in 2002, while by 2024 this number reached ****. The increase for men was even greater, with male life expectancy at 65 growing from around ** years in 2002 to **** years in 2024. Future demographic trends The aging trend in the Italian population is not expected to change in the upcoming years. Projections suggest that the country's population is going to sensibly decrease in numbers. Population forecasts for 2050 account for slightly less than ** million citizens, around * million fewer compared to 2020.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Age dependency ratio, old (% of working-age population) in Costa Rica was reported at 17 % in 2023, according to the World Bank collection of development indicators, compiled from officially recognized sources. Costa Rica - Age dependency ratio, old (% of working-age population) - actual values, historical data, forecasts and projections were sourced from the World Bank on July of 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Age dependency ratio, old (% of working-age population) in Indonesia was reported at 10.36 % in 2023, according to the World Bank collection of development indicators, compiled from officially recognized sources. Indonesia - Age dependency ratio, old (% of working-age population) - actual values, historical data, forecasts and projections were sourced from the World Bank on July of 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Age dependency ratio, old (% of working-age population) in Luxembourg was reported at 21.87 % in 2023, according to the World Bank collection of development indicators, compiled from officially recognized sources. Luxembourg - Age dependency ratio, old (% of working-age population) - actual values, historical data, forecasts and projections were sourced from the World Bank on June of 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Age dependency ratio, old (% of working-age population) in Antigua and Barbuda was reported at 15.93 % in 2023, according to the World Bank collection of development indicators, compiled from officially recognized sources. Antigua and Barbuda - Age dependency ratio, old (% of working-age population) - actual values, historical data, forecasts and projections were sourced from the World Bank on July of 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the data for the Old River-Winfree, TX population pyramid, which represents the Old River-Winfree population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Old River-Winfree Population by Age. You can refer the same here
Age, Sex, Race, Ethnicity, Total Housing Units, and Voting Age Population. This service is updated annually with American Community Survey (ACS) 5-year data. Contact: District of Columbia, Office of Planning. Email: planning@dc.gov. Geography: 2022 Wards (State Legislative Districts [Upper Chamber]). Current Vintage: 2019-2023. ACS Table(s): DP05. Data downloaded from: Census Bureau's API for American Community Survey. Date of API call: January 2, 2025. National Figures: data.census.gov. Please cite the Census and ACS when using this data. Data Note from the Census: Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables. Data Processing Notes: This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2020 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page. Data processed using R statistical package and ArcGIS Desktop. Margin of Error was not included in this layer but is available from the Census Bureau. Contact the Office of Planning for more information about obtaining Margin of Error values.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Age, Sex, Race, Ethnicity, Total Housing Units, and Voting Age Population. This service is updated annually with American Community Survey (ACS) 5-year data. Contact: District of Columbia, Office of Planning. Email: planning@dc.gov. Geography: 2022 Wards (State Legislative Districts [Upper Chamber]). Current Vintage: 2019-2023. ACS Table(s): DP05. Data downloaded from: Census Bureau's API for American Community Survey. Date of API call: January 2, 2025. National Figures: data.census.gov. Please cite the Census and ACS when using this data. Data Note from the Census: Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables. Data Processing Notes: This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2020 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page. Data processed using R statistical package and ArcGIS Desktop. Margin of Error was not included in this layer but is available from the Census Bureau. Contact the Office of Planning for more information about obtaining Margin of Error values.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Age dependency ratio, old (% of working-age population) in Vietnam was reported at 12.72 % in 2023, according to the World Bank collection of development indicators, compiled from officially recognized sources. Vietnam - Age dependency ratio, old (% of working-age population) - actual values, historical data, forecasts and projections were sourced from the World Bank on July of 2025.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Key Table Information.Table Title.Vintage 2023 Annual Resident Population Estimates by Age, Sex, Race, and Hispanic Origin: April 1, 2020 to July 1, 2023.Table ID.PEPCHARV2023.PEP_ALLDATA.Survey/Program.Population Estimates.Year.2023.Dataset.PEP Demographic Characteristics.Source.U.S. Census Bureau, 2023 Population Estimates.Release Date.June 2024.Methodology.Geography Coverage.All geographic boundaries for the 2023 population estimates series are as of January 1, 2023. Substantial geographic changes to counties can be found on the Census Bureau website at https://www.census.gov/programs-surveys/geography/technical-documentation/county-changes.html.Confidentiality.Vintage 2023 data products are associated with Data Management System projects P6000042, P-7501659, and P-7527355. The U.S. Census Bureau reviewed these data products for unauthorized disclosure of confidential information and approved the disclosure avoidance practices applied to this release (CBDRB-FY24-0085)..Technical Documentation/Methodology.The estimates are developed from a base that integrates the 2020 Census, Vintage 2020 estimates, and 2020 Demographic Analysis estimates. The estimates add births to, subtract deaths from, and add net migration to the April 1, 2020 estimates base. Race data in the Vintage 2023 estimates do not currently reflect the results of the 2020 Census. For population estimates methodology statements, see https://www.census.gov/programs-surveys/popest/technical-documentation/methodology.html.'In combination' means in combination with one or more other races. The sum of the five race groups adds to more than the total population because individuals may report more than one race. Hispanic origin is considered an ethnicity, not a race. Hispanics may be of any race. Responses of Some Other Race from the decennial census are modified to be consistent with the race categories that appear in our input data. This contributes to differences between the population for specific race categories shown and those published from the 2020 Census. To learn more about the Modified Race process, go to http://www.census.gov/programs-surveys/popest/technical-documentation/research/modified-race-data.html..Weights.Data is not weighted.Table Information.FTP Download.https://www2.census.gov/programs-surveys/popest/.Additional Information.Contact Information.pop.cdob@census.gov.Suggested Citation.U.S. Census Bureau. "Vintage 2023 Annual Resident Population Estimates by Age, Sex, Race, and Hispanic Origin: April 1, 2020 to July 1, 2023" Population Estimates, PEP Demographic Characteristics, Table PEP_ALLDATA, -1, https://data.census.gov/table/PEPCHARV2023.PEP_ALLDATA?q=PEP_ALLDATA: Accessed on June 06, 2025..