The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
Note: Reporting of new COVID-19 Case Surveillance data will be discontinued July 1, 2024, to align with the process of removing SARS-CoV-2 infections (COVID-19 cases) from the list of nationally notifiable diseases. Although these data will continue to be publicly available, the dataset will no longer be updated.
Authorizations to collect certain public health data expired at the end of the U.S. public health emergency declaration on May 11, 2023. The following jurisdictions discontinued COVID-19 case notifications to CDC: Iowa (11/8/21), Kansas (5/12/23), Kentucky (1/1/24), Louisiana (10/31/23), New Hampshire (5/23/23), and Oklahoma (5/2/23). Please note that these jurisdictions will not routinely send new case data after the dates indicated. As of 7/13/23, case notifications from Oregon will only include pediatric cases resulting in death.
This case surveillance public use dataset has 12 elements for all COVID-19 cases shared with CDC and includes demographics, any exposure history, disease severity indicators and outcomes, presence of any underlying medical conditions and risk behaviors, and no geographic data.
The COVID-19 case surveillance database includes individual-level data reported to U.S. states and autonomous reporting entities, including New York City and the District of Columbia (D.C.), as well as U.S. territories and affiliates. On April 5, 2020, COVID-19 was added to the Nationally Notifiable Condition List and classified as “immediately notifiable, urgent (within 24 hours)” by a Council of State and Territorial Epidemiologists (CSTE) Interim Position Statement (Interim-20-ID-01). CSTE updated the position statement on August 5, 2020, to clarify the interpretation of antigen detection tests and serologic test results within the case classification (Interim-20-ID-02). The statement also recommended that all states and territories enact laws to make COVID-19 reportable in their jurisdiction, and that jurisdictions conducting surveillance should submit case notifications to CDC. COVID-19 case surveillance data are collected by jurisdictions and reported voluntarily to CDC.
For more information:
NNDSS Supports the COVID-19 Response | CDC.
The deidentified data in the “COVID-19 Case Surveillance Public Use Data” include demographic characteristics, any exposure history, disease severity indicators and outcomes, clinical data, laboratory diagnostic test results, and presence of any underlying medical conditions and risk behaviors. All data elements can be found on the COVID-19 case report form located at www.cdc.gov/coronavirus/2019-ncov/downloads/pui-form.pdf.
COVID-19 case reports have been routinely submitted using nationally standardized case reporting forms. On April 5, 2020, CSTE released an Interim Position Statement with national surveillance case definitions for COVID-19 included. Current versions of these case definitions are available here: https://ndc.services.cdc.gov/case-definitions/coronavirus-disease-2019-2021/.
All cases reported on or after were requested to be shared by public health departments to CDC using the standardized case definitions for laboratory-confirmed or probable cases. On May 5, 2020, the standardized case reporting form was revised. Case reporting using this new form is ongoing among U.S. states and territories.
To learn more about the limitations in using case surveillance data, visit FAQ: COVID-19 Data and Surveillance.
CDC’s Case Surveillance Section routinely performs data quality assurance procedures (i.e., ongoing corrections and logic checks to address data errors). To date, the following data cleaning steps have been implemented:
To prevent release of data that could be used to identify people, data cells are suppressed for low frequency (<5) records and indirect identifiers (e.g., date of first positive specimen). Suppression includes rare combinations of demographic characteristics (sex, age group, race/ethnicity). Suppressed values are re-coded to the NA answer option; records with data suppression are never removed.
For questions, please contact Ask SRRG (eocevent394@cdc.gov).
COVID-19 data are available to the public as summary or aggregate count files, including total counts of cases and deaths by state and by county. These
As of May 2, 2023, the outbreak of the coronavirus disease (COVID-19) had been confirmed in almost every country in the world. The virus had infected over 687 million people worldwide, and the number of deaths had reached almost 6.87 million. The most severely affected countries include the U.S., India, and Brazil.
COVID-19: background information COVID-19 is a novel coronavirus that had not previously been identified in humans. The first case was detected in the Hubei province of China at the end of December 2019. The virus is highly transmissible and coughing and sneezing are the most common forms of transmission, which is similar to the outbreak of the SARS coronavirus that began in 2002 and was thought to have spread via cough and sneeze droplets expelled into the air by infected persons.
Naming the coronavirus disease Coronaviruses are a group of viruses that can be transmitted between animals and people, causing illnesses that may range from the common cold to more severe respiratory syndromes. In February 2020, the International Committee on Taxonomy of Viruses and the World Health Organization announced official names for both the virus and the disease it causes: SARS-CoV-2 and COVID-19, respectively. The name of the disease is derived from the words corona, virus, and disease, while the number 19 represents the year that it emerged.
2019 Novel Coronavirus COVID-19 (2019-nCoV) Visual Dashboard and Map:
https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6
Downloadable data:
https://github.com/CSSEGISandData/COVID-19
Additional Information about the Visual Dashboard:
https://systems.jhu.edu/research/public-health/ncov
On January 21, 2020, the U.S. Centers for Disease Control and Prevention (CDC) and Washington State Department of Health (DOH) announced the first case of 2019 Novel Coronavirus (COVID-19) in the United States, in Washington state. The link below provides access to DOH daily updates of confirmed Washington State COVID-19 cases and deaths, along with essential information about the virus and guidance on prevention and risk management. The link includes Frequently Asked Questions, as well as resources for specific groups such as parents, caregivers, employers, schools and health care providers.
As of June 13, 2023, there have been almost 768 million cases of coronavirus (COVID-19) worldwide. The disease has impacted almost every country and territory in the world, with the United States confirming around 16 percent of all global cases.
COVID-19: An unprecedented crisis Health systems around the world were initially overwhelmed by the number of coronavirus cases, and even the richest and most prepared countries struggled. In the most vulnerable countries, millions of people lacked access to critical life-saving supplies, such as test kits, face masks, and respirators. However, several vaccines have been approved for use, and more than 13 billion vaccine doses had already been administered worldwide as of March 2023.
The coronavirus in the United Kingdom Over 202 thousand people have died from COVID-19 in the UK, which is the highest number in Europe. The tireless work of the National Health Service (NHS) has been applauded, but the country’s response to the crisis has drawn criticism. The UK was slow to start widespread testing, and the launch of a COVID-19 contact tracing app was delayed by months. However, the UK’s rapid vaccine rollout has been a success story, and around 53.7 million people had received at least one vaccine dose as of July 13, 2022.
Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.
April 9, 2020
April 20, 2020
April 29, 2020
September 1st, 2020
February 12, 2021
new_deaths
column.February 16, 2021
The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.
The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.
The AP is updating this dataset hourly at 45 minutes past the hour.
To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.
Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic
Filter cases by state here
Rank states by their status as current hotspots. Calculates the 7-day rolling average of new cases per capita in each state: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=481e82a4-1b2f-41c2-9ea1-d91aa4b3b1ac
Find recent hotspots within your state by running a query to calculate the 7-day rolling average of new cases by capita in each county: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=b566f1db-3231-40fe-8099-311909b7b687&showTemplatePreview=true
Join county-level case data to an earlier dataset released by AP on local hospital capacity here. To find out more about the hospital capacity dataset, see the full details.
Pull the 100 counties with the highest per-capita confirmed cases here
Rank all the counties by the highest per-capita rate of new cases in the past 7 days here. Be aware that because this ranks per-capita caseloads, very small counties may rise to the very top, so take into account raw caseload figures as well.
The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.
@(https://datawrapper.dwcdn.net/nRyaf/15/)
<iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here
This data should be credited to Johns Hopkins University COVID-19 tracking project
This dataset contains positive cases of West Nile virus found in humans by county of residence, 2006-present. Humans usually become infected with West Nile virus by being bitten by an infected mosquito. Viruses carried in the mosquito’s saliva enter the blood stream and local tissues where they infect immune cells. Most of the people who do become sick during a WNV infection develop what is referred to as “West Nile fever.” A small percentage of people will develop a much more serious illness called West Nile neuroinvasive disease (WNND). Positive cases in this dataset include both West Nile fever and West Nile neuroinvasive disease.
NNDSS - Table II. West Nile virus disease - 2015.In this Table, provisional cases of selected notifiable diseases (≥1,000 cases reported during the preceding year), and selected low frequency diseases are displayed.The Table includes total number of cases reported in the United States, by region and by states, in accordance with the current method of displaying MMWR data. Data on United States exclude counts from US territories. Note:These are provisional cases of selected national notifiable diseases, from the National Notifiable Diseases Surveillance System (NNDSS). NNDSS data reported by the 50 states, New York City, the District of Columbia, and the U.S. territories are collated and published weekly as numbered tables printed in the back of the Morbidity and Mortality Weekly Report (MMWR). Cases reported by state health departments to CDC for weekly publication are provisional because of ongoing revision of information and delayed reporting. Case counts in this table are presented as they were published in the MMWR issues. Therefore, numbers listed in later MMWR weeks may reflect changes made to these counts as additional information becomes available. Footnotes:C.N.M.I.: Commonwealth of Northern Mariana Islands. U: Unavailable. -: No reported cases. N: Not reportable. NN: Not Nationally Notifiable. NP: Nationally notifiable but not published. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum. * Three low incidence conditions, rubella, rubella congenital, and tetanus, have been moved to Table 2 to facilitate case count verification with reporting jurisdictions. ��� Case counts for reporting year 2015 are provisional and subject to change. For further information on interpretation of these data, see http://wwwn.cdc.gov/nndss/document/ProvisionalNationaNotifiableDiseasesSurveillanceData20100927.pdf. Data for TB are displayed in Table IV, which appears quarterly. �� Updated weekly from reports to the Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases (ArboNET Surveillance). Data for California serogroup, Chikungunya virus, eastern equine, Powassan, St. Louis, and western equine diseases are available in Table I. �� Not reportable in all states. Data from states where the condition is not reportable are excluded from this table, except starting in 2007 for the domestic arboviral diseases, influenza-associated pediatric mortality, and in 2003 for SARS-CoV. Reporting exceptions are available at http://wwwn.cdc.gov/nndss/downloads.html.
Originally sourced from https://ourworldindata.org/coronavirus-source-data
Synced daily
The data sources have been updated to use JHU data:
From OWID:
> On 30 November 2020, we changed our source for confirmed cases and deaths to the COVID-19 Data Repository by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University. Our previous source for confirmed cases and deaths, the European Centre for Disease Prevention and Control (ECDC), had announced in November 2020 that it would switch from a daily to a weekly reporting schedule from December. Our World in Data therefore had to transition away from the ECDC as a source to continue to provide daily updates of confirmed cases and deaths. The data last sourced from the ECDC remains available as an archive in the ecdc folder. The format (variable names and types) of our complete COVID-19 dataset remains the same.
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
Reporting of new Aggregate Case and Death Count data was discontinued May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. This dataset will receive a final update on June 1, 2023, to reconcile historical data through May 10, 2023, and will remain publicly available.
Aggregate Data Collection Process Since the start of the COVID-19 pandemic, data have been gathered through a robust process with the following steps:
Methodology Changes Several differences exist between the current, weekly-updated dataset and the archived version:
Confirmed and Probable Counts In this dataset, counts by jurisdiction are not displayed by confirmed or probable status. Instead, confirmed and probable cases and deaths are included in the Total Cases and Total Deaths columns, when available. Not all jurisdictions report probable cases and deaths to CDC.* Confirmed and probable case definition criteria are described here:
Council of State and Territorial Epidemiologists (ymaws.com).
Deaths CDC reports death data on other sections of the website: CDC COVID Data Tracker: Home, CDC COVID Data Tracker: Cases, Deaths, and Testing, and NCHS Provisional Death Counts. Information presented on the COVID Data Tracker pages is based on the same source (total case counts) as the present dataset; however, NCHS Death Counts are based on death certificates that use information reported by physicians, medical examiners, or coroners in the cause-of-death section of each certificate. Data from each of these pages are considered provisional (not complete and pending verification) and are therefore subject to change. Counts from previous weeks are continually revised as more records are received and processed.
Number of Jurisdictions Reporting There are currently 60 public health jurisdictions reporting cases of COVID-19. This includes the 50 states, the District of Columbia, New York City, the U.S. territories of American Samoa, Guam, the Commonwealth of the Northern Mariana Islands, Puerto Rico, and the U.S Virgin Islands as well as three independent countries in compacts of free association with the United States, Federated States of Micronesia, Republic of the Marshall Islands, and Republic of Palau. New York State’s reported case and death counts do not include New York City’s counts as they separately report nationally notifiable conditions to CDC.
CDC COVID-19 data are available to the public as summary or aggregate count files, including total counts of cases and deaths, available by state and by county. These and other data on COVID-19 are available from multiple public locations, such as:
https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/cases-in-us.html
https://www.cdc.gov/covid-data-tracker/index.html
https://www.cdc.gov/coronavirus/2019-ncov/covid-data/covidview/index.html
https://www.cdc.gov/coronavirus/2019-ncov/php/open-america/surveillance-data-analytics.html
Additional COVID-19 public use datasets, include line-level (patient-level) data, are available at: https://data.cdc.gov/browse?tags=covid-19.
Archived Data Notes:
November 3, 2022: Due to a reporting cadence issue, case rates for Missouri counties are calculated based on 11 days’ worth of case count data in the Weekly United States COVID-19 Cases and Deaths by State data released on November 3, 2022, instead of the customary 7 days’ worth of data.
November 10, 2022: Due to a reporting cadence change, case rates for Alabama counties are calculated based on 13 days’ worth of case count data in the Weekly United States COVID-19 Cases and Deaths by State data released on November 10, 2022, instead of the customary 7 days’ worth of data.
November 10, 2022: Per the request of the jurisdiction, cases and deaths among non-residents have been removed from all Hawaii county totals throughout the entire time series. Cumulative case and death counts reported by CDC will no longer match Hawaii’s COVID-19 Dashboard, which still includes non-resident cases and deaths.
November 17, 2022: Two new columns, weekly historic cases and weekly historic deaths, were added to this dataset on November 17, 2022. These columns reflect case and death counts that were reported that week but were historical in nature and not reflective of the current burden within the jurisdiction. These historical cases and deaths are not included in the new weekly case and new weekly death columns; however, they are reflected in the cumulative totals provided for each jurisdiction. These data are used to account for artificial increases in case and death totals due to batched reporting of historical data.
December 1, 2022: Due to cadence changes over the Thanksgiving holiday, case rates for all Ohio counties are reported as 0 in the data released on December 1, 2022.
January 5, 2023: Due to North Carolina’s holiday reporting cadence, aggregate case and death data will contain 14 days’ worth of data instead of the customary 7 days. As a result, case and death metrics will appear higher than expected in the January 5, 2023, weekly release.
January 12, 2023: Due to data processing delays, Mississippi’s aggregate case and death data will be reported as 0. As a result, case and death metrics will appear lower than expected in the January 12, 2023, weekly release.
January 19, 2023: Due to a reporting cadence issue, Mississippi’s aggregate case and death data will be calculated based on 14 days’ worth of data instead of the customary 7 days in the January 19, 2023, weekly release.
January 26, 2023: Due to a reporting backlog of historic COVID-19 cases, case rates for two Michigan counties (Livingston and Washtenaw) were higher than expected in the January 19, 2023 weekly release.
January 26, 2023: Due to a backlog of historic COVID-19 cases being reported this week, aggregate case and death counts in Charlotte County and Sarasota County, Florida, will appear higher than expected in the January 26, 2023 weekly release.
January 26, 2023: Due to data processing delays, Mississippi’s aggregate case and death data will be reported as 0 in the weekly release posted on January 26, 2023.
February 2, 2023: As of the data collection deadline, CDC observed an abnormally large increase in aggregate COVID-19 cases and deaths reported for Washington State. In response, totals for new cases and new deaths released on February 2, 2023, have been displayed as zero at the state level until the issue is addressed with state officials. CDC is working with state officials to address the issue.
February 2, 2023: Due to a decrease reported in cumulative case counts by Wyoming, case rates will be reported as 0 in the February 2, 2023, weekly release. CDC is working with state officials to verify the data submitted.
February 16, 2023: Due to data processing delays, Utah’s aggregate case and death data will be reported as 0 in the weekly release posted on February 16, 2023. As a result, case and death metrics will appear lower than expected and should be interpreted with caution.
February 16, 2023: Due to a reporting cadence change, Maine’s
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Iran recorded 7610676 Coronavirus Cases since the epidemic began, according to the World Health Organization (WHO). In addition, Iran reported 146204 Coronavirus Deaths. This dataset includes a chart with historical data for Iran Coronavirus Cases.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The World Health Organization reported 766440796 Coronavirus Cases since the epidemic began. In addition, countries reported 6932591 Coronavirus Deaths. This dataset provides - World Coronavirus Cases- actual values, historical data, forecast, chart, statistics, economic calendar and news.
This dataset contains positive cases of West Nile Virus found in humans by county of residence, 2006 to present. Positive cases in this dataset include both West Nile fever and West Nile neuroinvasive disease.
http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
Amidst the COVID-19 outbreak, the world is facing great crisis in every way. The value and things we built as a human race are going through tremendous challenges. It is a very small effort to bring curated data set on Novel Corona Virus to accelerate the forecasting and analytical experiments to cope up with this critical situation. It will help to visualize the country level out break and to keep track on regularly added new incidents.
This Dataset contains country wise public domain time series information on COVID-19 outbreak. The Data is sorted alphabetically on Country name and Date of Observation.
The data set contains the following columns:
ObservationDate: The date on which the incidents are observed
country: Country of the Outbreak
Confirmed: Number of confirmed cases till observation date
Deaths: Number of death cases till observation date
Recovered: Number of recovered cases till observation date
New Confirmed: Number of new confirmed cases on observation date
New Deaths: Number of New death cases on observation date
New Recovered: Number of New recovered cases on observation date
latitude: Latitude of the affected country
longitude: Longitude of the affected country
This data set is a cleaner version of the https://www.kaggle.com/sudalairajkumar/novel-corona-virus-2019-dataset data set with added geo location information and regularly added incident counts. I would like to thank this great effort by SRK.
Johns Hopkins University MoBS lab - https://www.mobs-lab.org/2019ncov.html World Health Organization (WHO): https://www.who.int/ DXY.cn. Pneumonia. 2020. http://3g.dxy.cn/newh5/view/pneumonia. BNO News: https://bnonews.com/index.php/2020/02/the-latest-coronavirus-cases/ National Health Commission of the People’s Republic of China (NHC): http://www.nhc.gov.cn/xcs/yqtb/list_gzbd.shtml China CDC (CCDC): http://weekly.chinacdc.cn/news/TrackingtheEpidemic.htm Hong Kong Department of Health: https://www.chp.gov.hk/en/features/102465.html Macau Government: https://www.ssm.gov.mo/portal/ Taiwan CDC: https://sites.google.com/cdc.gov.tw/2019ncov/taiwan?authuser=0 US CDC: https://www.cdc.gov/coronavirus/2019-ncov/index.html Government of Canada: https://www.canada.ca/en/public-health/services/diseases/coronavirus.html Australia Government Department of Health: https://www.health.gov.au/news/coronavirus-update-at-a-glance European Centre for Disease Prevention and Control (ECDC): https://www.ecdc.europa.eu/en/geographical-distribution-2019-ncov-cases Ministry of Health Singapore (MOH): https://www.moh.gov.sg/covid-19 Italy Ministry of Health: http://www.salute.gov.it/nuovocoronavirus
In 2023, there were just seven confirmed cases of Zika virus in the United States, all of which were travel-associated. This is a huge decrease from 2016 when an outbreak of Zika resulted in over 5,000 cases in the United States and thousands more in South America, especially in Brazil. Zika virus can be transmitted through mosquito bites, from a pregnant woman to her fetus, through sex, and likely through blood transfusion. The Zika virus in the United States At the height of the latest Zika outbreak in the United States in 2016, almost every U.S. state reported cases of Zika virus infection, with the states of Florida and New York reporting the highest numbers with each over 1,000 cases. However, the vast majority of those cases were travel associated. Although most people with Zika virus only have mild symptoms, if at all, Zika infection during pregnancy can cause severe birth defects, including microcephaly. From January 2016 to June 2017, it was estimated that around 2,667 live births in the United States had brain abnormalities and/or microcephaly potentially related to Zika virus. The Zika virus in Brazil The latest Zika virus outbreak began in Brazil in 2015 with cases peaking in the country in 2016. In 2016, there were almost 274 thousand cases of Zika virus in Brazil. However, cases decreased significantly in 2017. In 2023, Brazil reported around 35 thousand Zika virus cases. Although the entire country has been impacted by the virus, certain areas have been affected more than others. In 2017, the Central-West of the country reported the most cases, but from 2019 to 2022 the Northeast saw the highest number of cases. Reported cases of microcephaly also peaked in 2016 with 2,276 such cases. By 2023, this number had dropped to just 318.
This feature layer contains the most up-to-date COVID-19 cases for the US, Canada. Data sources: WHO, CDC, ECDC, NHC, DXY, 1point3acres, Worldometers.info, BNO, state and national government health departments, and local media reports. The China data is automatically updating at least once per hour, and non China data is updating manually. This layer is created and maintained by the Center for Systems Science and Engineering (CSSE) at the Johns Hopkins University. This feature layer is supported by Esri Living Atlas team and JHU Data Services. This layer is opened to the public and free to share. Contact Johns Hopkins.IMPORTANT NOTICE: 1. Fields for Active Cases and Recovered Cases are set to 0 in all locations. John Hopkins has not found a reliable source for this information at the county level but will continue to look and carry the fields.2. Fields for Incident Rate and People Tested are placeholders for when this becomes available at the county level.3. In some instances, cases have not been assigned a location at the county scale. those are still assigned a state but are listed as unassigned and given a Lat Long of 0,0.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States recorded 103436829 Coronavirus Cases since the epidemic began, according to the World Health Organization (WHO). In addition, United States reported 1127152 Coronavirus Deaths. This dataset includes a chart with historical data for the United States Coronavirus Cases.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In an article by WHO | World Health Organization (first link below) published on February 24, they present a very interesting plot (page 7) comparing symptom onset vs diagnosed cases for China. Since there is a lag time between the start of illness and diagnosis, the plot can give an idea of the true daily coronavirus cases.
Knowing such information could, maybe, help to manage the emergency.
https://i.imgur.com/3Bm20Rd.png" alt="Symptom onset (blue) vs Diagnosed (orange)">
CN_Diag_WOM
= Chinese daily diagnosed cases (Jan 23 - Mar 15) provided by worldometers.info
CN_Diag_CSSE
= Chinese daily diagnosed cases (Jan 23 - Mar 15) provided by Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE)
CN_Onset_WHO
= Chinese daily onset symptom cases (Jan 1 - Feb 21) estimated from the plot appearing in the WHO article
CN_Diag_WHO
= Chinese daily diagnosed cases (Jan 21 - Feb 21) estimated from the plot appearing in the WHO article
IT_Diag
= Italian daily diagnosed cases (Jan 31 - Mar 15)
https://jamanetwork.com/journals/jama/fullarticle/2762130
How to find a model which can explain data of the article? Given a time series of daily diagnosed cases from another country, how to use the model to estimate onset symptom cases and to forecast daily diagnosed cases for that country?
NNDSS - Table 1D. Arboviral diseases, neuroinvasive and non-neuroinvasive, West Nile virus disease to Babesiosis - 2019.In this Table, provisional cases* of notifiable diseases are displayed for United States, U.S. territories, and Non-U.S. residents.
Note: This table contains provisional cases of national notifiable diseases from the National Notifiable Diseases Surveillance System (NNDSS). NNDSS data from the 50 states, New York City, the District of Columbia and the U.S. territories are collated and published weekly on the NNDSS Data and Statistics web page (https://wwwn.cdc.gov/nndss/data-and-statistics.html). Cases reported by state health departments to CDC for weekly publication are provisional because of the time needed to complete case follow-up. Therefore, numbers presented in later weeks may reflect changes made to these counts as additional information becomes available. The national surveillance case definitions used to define a case are available on the NNDSS web site at https://wwwn.cdc.gov/nndss/. Information about the weekly provisional data and guides to interpreting data are available at: https://wwwn.cdc.gov/nndss/infectious-tables.html.
Footnotes: U: Unavailable — The reporting jurisdiction was unable to send the data to CDC or CDC was unable to process the data. -: No reported cases — The reporting jurisdiction did not submit any cases to CDC. N: Not reportable — The disease or condition was not reportable by law, statute, or regulation in the reporting jurisdiction. NN: Not nationally notifiable — This condition was not designated as being nationally notifiable. NP: Nationally notifiable but not published — CDC does not have data because of changes in how conditions are categorized. Cum: Cumulative year-to-date counts. Max: Maximum — Maximum case count during the previous 52 weeks. * Case counts for reporting years 2018 and 2019 are provisional and subject to change. Cases are assigned to the reporting jurisdiction submitting the case to NNDSS, if the case's country of usual residence is the US, a US territory, unknown, or null (i.e. country not reported); otherwise, the case is assigned to the 'Non-US Residents' category. For further information on interpretation of these data, see https://wwwn.cdc.gov/nndss/document/Users_guide_WONDER_tables_cleared_final.pdf. † Previous 52 week maximum and cumulative YTD are determined from periods of time when the condition was reportable in the jurisdiction (i.e., may be less than 52 weeks of data or incomplete YTD data).
The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.