100+ datasets found
  1. n

    Coronavirus (Covid-19) Data in the United States

    • nytimes.com
    • openicpsr.org
    • +2more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York Times, Coronavirus (Covid-19) Data in the United States [Dataset]. https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html
    Explore at:
    Dataset provided by
    New York Times
    Description

    The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

    Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

    We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.

    The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

  2. COVID-19 cases worldwide as of May 2, 2023, by country or territory

    • statista.com
    • ai-chatbox.pro
    Updated Aug 29, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). COVID-19 cases worldwide as of May 2, 2023, by country or territory [Dataset]. https://www.statista.com/statistics/1043366/novel-coronavirus-2019ncov-cases-worldwide-by-country/
    Explore at:
    Dataset updated
    Aug 29, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    As of May 2, 2023, the outbreak of the coronavirus disease (COVID-19) had been confirmed in almost every country in the world. The virus had infected over 687 million people worldwide, and the number of deaths had reached almost 6.87 million. The most severely affected countries include the U.S., India, and Brazil.

    COVID-19: background information COVID-19 is a novel coronavirus that had not previously been identified in humans. The first case was detected in the Hubei province of China at the end of December 2019. The virus is highly transmissible and coughing and sneezing are the most common forms of transmission, which is similar to the outbreak of the SARS coronavirus that began in 2002 and was thought to have spread via cough and sneeze droplets expelled into the air by infected persons.

    Naming the coronavirus disease Coronaviruses are a group of viruses that can be transmitted between animals and people, causing illnesses that may range from the common cold to more severe respiratory syndromes. In February 2020, the International Committee on Taxonomy of Viruses and the World Health Organization announced official names for both the virus and the disease it causes: SARS-CoV-2 and COVID-19, respectively. The name of the disease is derived from the words corona, virus, and disease, while the number 19 represents the year that it emerged.

  3. d

    Johns Hopkins COVID-19 Case Tracker

    • data.world
    csv, zip
    Updated Aug 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2025). Johns Hopkins COVID-19 Case Tracker [Dataset]. https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Aug 9, 2025
    Authors
    The Associated Press
    Time period covered
    Jan 22, 2020 - Mar 9, 2023
    Area covered
    Description

    Updates

    • Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.

    • April 9, 2020

      • The population estimate data for New York County, NY has been updated to include all five New York City counties (Kings County, Queens County, Bronx County, Richmond County and New York County). This has been done to match the Johns Hopkins COVID-19 data, which aggregates counts for the five New York City counties to New York County.
    • April 20, 2020

      • Johns Hopkins death totals in the US now include confirmed and probable deaths in accordance with CDC guidelines as of April 14. One significant result of this change was an increase of more than 3,700 deaths in the New York City count. This change will likely result in increases for death counts elsewhere as well. The AP does not alter the Johns Hopkins source data, so probable deaths are included in this dataset as well.
    • April 29, 2020

      • The AP is now providing timeseries data for counts of COVID-19 cases and deaths. The raw counts are provided here unaltered, along with a population column with Census ACS-5 estimates and calculated daily case and death rates per 100,000 people. Please read the updated caveats section for more information.
    • September 1st, 2020

      • Johns Hopkins is now providing counts for the five New York City counties individually.
    • February 12, 2021

      • The Ohio Department of Health recently announced that as many as 4,000 COVID-19 deaths may have been underreported through the state’s reporting system, and that the "daily reported death counts will be high for a two to three-day period."
      • Because deaths data will be anomalous for consecutive days, we have chosen to freeze Ohio's rolling average for daily deaths at the last valid measure until Johns Hopkins is able to back-distribute the data. The raw daily death counts, as reported by Johns Hopkins and including the backlogged death data, will still be present in the new_deaths column.
    • February 16, 2021

      - Johns Hopkins has reconciled Ohio's historical deaths data with the state.

      Overview

    The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.

    The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.

    This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.

    The AP is updating this dataset hourly at 45 minutes past the hour.

    To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.

    Queries

    Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic

    Interactive

    The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.

    @(https://datawrapper.dwcdn.net/nRyaf/15/)

    Interactive Embed Code

    <iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
    

    Caveats

    • This data represents the number of cases and deaths reported by each state and has been collected by Johns Hopkins from a number of sources cited on their website.
    • In some cases, deaths or cases of people who've crossed state lines -- either to receive treatment or because they became sick and couldn't return home while traveling -- are reported in a state they aren't currently in, because of state reporting rules.
    • In some states, there are a number of cases not assigned to a specific county -- for those cases, the county name is "unassigned to a single county"
    • This data should be credited to Johns Hopkins University's COVID-19 tracking project. The AP is simply making it available here for ease of use for reporters and members.
    • Caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
    • Population estimates at the county level are drawn from 2014-18 5-year estimates from the American Community Survey.
    • The Urban/Rural classification scheme is from the Center for Disease Control and Preventions's National Center for Health Statistics. It puts each county into one of six categories -- from Large Central Metro to Non-Core -- according to population and other characteristics. More details about the classifications can be found here.

    Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here

    Attribution

    This data should be credited to Johns Hopkins University COVID-19 tracking project

  4. Weekly United States COVID-19 Cases and Deaths by State - ARCHIVED

    • data.cdc.gov
    • data.virginia.gov
    • +1more
    application/rdfxml +5
    Updated Jun 1, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC COVID-19 Response (2023). Weekly United States COVID-19 Cases and Deaths by State - ARCHIVED [Dataset]. https://data.cdc.gov/Case-Surveillance/Weekly-United-States-COVID-19-Cases-and-Deaths-by-/pwn4-m3yp
    Explore at:
    csv, application/rdfxml, xml, tsv, json, application/rssxmlAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC COVID-19 Response
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Description

    Reporting of new Aggregate Case and Death Count data was discontinued May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. This dataset will receive a final update on June 1, 2023, to reconcile historical data through May 10, 2023, and will remain publicly available.

    Aggregate Data Collection Process Since the start of the COVID-19 pandemic, data have been gathered through a robust process with the following steps:

    • A CDC data team reviews and validates the information obtained from jurisdictions’ state and local websites via an overnight data review process.
    • If more than one official county data source exists, CDC uses a comprehensive data selection process comparing each official county data source, and takes the highest case and death counts respectively, unless otherwise specified by the state.
    • CDC compiles these data and posts the finalized information on COVID Data Tracker.
    • County level data is aggregated to obtain state and territory specific totals.
    This process is collaborative, with CDC and jurisdictions working together to ensure the accuracy of COVID-19 case and death numbers. County counts provide the most up-to-date numbers on cases and deaths by report date. CDC may retrospectively update counts to correct data quality issues.

    Methodology Changes Several differences exist between the current, weekly-updated dataset and the archived version:

    • Source: The current Weekly-Updated Version is based on county-level aggregate count data, while the Archived Version is based on State-level aggregate count data.
    • Confirmed/Probable Cases/Death breakdown:  While the probable cases and deaths are included in the total case and total death counts in both versions (if applicable), they were reported separately from the confirmed cases and deaths by jurisdiction in the Archived Version.  In the current Weekly-Updated Version, the counts by jurisdiction are not reported by confirmed or probable status (See Confirmed and Probable Counts section for more detail).
    • Time Series Frequency: The current Weekly-Updated Version contains weekly time series data (i.e., one record per week per jurisdiction), while the Archived Version contains daily time series data (i.e., one record per day per jurisdiction).
    • Update Frequency: The current Weekly-Updated Version is updated weekly, while the Archived Version was updated twice daily up to October 20, 2022.
    Important note: The counts reflected during a given time period in this dataset may not match the counts reflected for the same time period in the archived dataset noted above. Discrepancies may exist due to differences between county and state COVID-19 case surveillance and reconciliation efforts.

    Confirmed and Probable Counts In this dataset, counts by jurisdiction are not displayed by confirmed or probable status. Instead, confirmed and probable cases and deaths are included in the Total Cases and Total Deaths columns, when available. Not all jurisdictions report probable cases and deaths to CDC.* Confirmed and probable case definition criteria are described here:

    Council of State and Territorial Epidemiologists (ymaws.com).

    Deaths CDC reports death data on other sections of the website: CDC COVID Data Tracker: Home, CDC COVID Data Tracker: Cases, Deaths, and Testing, and NCHS Provisional Death Counts. Information presented on the COVID Data Tracker pages is based on the same source (total case counts) as the present dataset; however, NCHS Death Counts are based on death certificates that use information reported by physicians, medical examiners, or coroners in the cause-of-death section of each certificate. Data from each of these pages are considered provisional (not complete and pending verification) and are therefore subject to change. Counts from previous weeks are continually revised as more records are received and processed.

    Number of Jurisdictions Reporting There are currently 60 public health jurisdictions reporting cases of COVID-19. This includes the 50 states, the District of Columbia, New York City, the U.S. territories of American Samoa, Guam, the Commonwealth of the Northern Mariana Islands, Puerto Rico, and the U.S Virgin Islands as well as three independent countries in compacts of free association with the United States, Federated States of Micronesia, Republic of the Marshall Islands, and Republic of Palau. New York State’s reported case and death counts do not include New York City’s counts as they separately report nationally notifiable conditions to CDC.

    CDC COVID-19 data are available to the public as summary or aggregate count files, including total counts of cases and deaths, available by state and by county. These and other data on COVID-19 are available from multiple public locations, such as:

    https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/cases-in-us.html

    https://www.cdc.gov/covid-data-tracker/index.html

    https://www.cdc.gov/coronavirus/2019-ncov/covid-data/covidview/index.html

    https://www.cdc.gov/coronavirus/2019-ncov/php/open-america/surveillance-data-analytics.html

    Additional COVID-19 public use datasets, include line-level (patient-level) data, are available at: https://data.cdc.gov/browse?tags=covid-19.

    Archived Data Notes:

    November 3, 2022: Due to a reporting cadence issue, case rates for Missouri counties are calculated based on 11 days’ worth of case count data in the Weekly United States COVID-19 Cases and Deaths by State data released on November 3, 2022, instead of the customary 7 days’ worth of data.

    November 10, 2022: Due to a reporting cadence change, case rates for Alabama counties are calculated based on 13 days’ worth of case count data in the Weekly United States COVID-19 Cases and Deaths by State data released on November 10, 2022, instead of the customary 7 days’ worth of data.

    November 10, 2022: Per the request of the jurisdiction, cases and deaths among non-residents have been removed from all Hawaii county totals throughout the entire time series. Cumulative case and death counts reported by CDC will no longer match Hawaii’s COVID-19 Dashboard, which still includes non-resident cases and deaths. 

    November 17, 2022: Two new columns, weekly historic cases and weekly historic deaths, were added to this dataset on November 17, 2022. These columns reflect case and death counts that were reported that week but were historical in nature and not reflective of the current burden within the jurisdiction. These historical cases and deaths are not included in the new weekly case and new weekly death columns; however, they are reflected in the cumulative totals provided for each jurisdiction. These data are used to account for artificial increases in case and death totals due to batched reporting of historical data.

    December 1, 2022: Due to cadence changes over the Thanksgiving holiday, case rates for all Ohio counties are reported as 0 in the data released on December 1, 2022.

    January 5, 2023: Due to North Carolina’s holiday reporting cadence, aggregate case and death data will contain 14 days’ worth of data instead of the customary 7 days. As a result, case and death metrics will appear higher than expected in the January 5, 2023, weekly release.

    January 12, 2023: Due to data processing delays, Mississippi’s aggregate case and death data will be reported as 0. As a result, case and death metrics will appear lower than expected in the January 12, 2023, weekly release.

    January 19, 2023: Due to a reporting cadence issue, Mississippi’s aggregate case and death data will be calculated based on 14 days’ worth of data instead of the customary 7 days in the January 19, 2023, weekly release.

    January 26, 2023: Due to a reporting backlog of historic COVID-19 cases, case rates for two Michigan counties (Livingston and Washtenaw) were higher than expected in the January 19, 2023 weekly release.

    January 26, 2023: Due to a backlog of historic COVID-19 cases being reported this week, aggregate case and death counts in Charlotte County and Sarasota County, Florida, will appear higher than expected in the January 26, 2023 weekly release.

    January 26, 2023: Due to data processing delays, Mississippi’s aggregate case and death data will be reported as 0 in the weekly release posted on January 26, 2023.

    February 2, 2023: As of the data collection deadline, CDC observed an abnormally large increase in aggregate COVID-19 cases and deaths reported for Washington State. In response, totals for new cases and new deaths released on February 2, 2023, have been displayed as zero at the state level until the issue is addressed with state officials. CDC is working with state officials to address the issue.

    February 2, 2023: Due to a decrease reported in cumulative case counts by Wyoming, case rates will be reported as 0 in the February 2, 2023, weekly release. CDC is working with state officials to verify the data submitted.

    February 16, 2023: Due to data processing delays, Utah’s aggregate case and death data will be reported as 0 in the weekly release posted on February 16, 2023. As a result, case and death metrics will appear lower than expected and should be interpreted with caution.

    February 16, 2023: Due to a reporting cadence change, Maine’s

  5. Coronavirus (COVID-19) new cases in Italy as of January 2025, by date of...

    • statista.com
    Updated Jan 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Coronavirus (COVID-19) new cases in Italy as of January 2025, by date of report [Dataset]. https://www.statista.com/statistics/1101690/coronavirus-new-cases-development-italy/
    Explore at:
    Dataset updated
    Jan 30, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Feb 22, 2020 - Jan 8, 2025
    Area covered
    Italy
    Description

    The first two cases of the new coronavirus (COVID-19) in Italy were recorded between the end of January and the beginning of February 2020. Since then, the number of cases in Italy increased steadily, reaching over 26.9 million as of January 8, 2025. The region mostly hit by the virus in the country was Lombardy, counting almost 4.4 million cases. On January 11, 2022, 220,532 new cases were registered, which represented the biggest daily increase in cases in Italy since the start of the pandemic. The virus originated in Wuhan, a Chinese city populated by millions and located in the province of Hubei. More statistics and facts about the virus in Italy are available here.For a global overview, visit Statista's webpage exclusively dedicated to coronavirus, its development, and its impact.

  6. Coronavirus (COVID-19) cases in Italy as of January 2025, by region

    • statista.com
    Updated Nov 15, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). Coronavirus (COVID-19) cases in Italy as of January 2025, by region [Dataset]. https://www.statista.com/statistics/1099375/coronavirus-cases-by-region-in-italy/
    Explore at:
    Dataset updated
    Nov 15, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 1, 2025
    Area covered
    Italy
    Description

    After entering Italy, the coronavirus (COVID-19) spread fast. The strict lockdown implemented by the government during the Spring 2020 helped to slow down the outbreak. However, the country had to face four new harsh waves of contagion. As of January 1, 2025, the total number of cases reported by the authorities reached over 26.9 million. The north of the country was mostly hit, and the region with the highest number of cases was Lombardy, which registered almost 4.4 million of them. The north-eastern region of Veneto and the southern region of Campania followed in the list. When adjusting these figures for the population size of each region, however, the picture changed, with the region of Veneto being the area where the virus had the highest relative incidence. Coronavirus in Italy Italy has been among the countries most impacted by the coronavirus outbreak. Moreover, the number of deaths due to coronavirus recorded in Italy is significantly high, making it one of the countries with the highest fatality rates worldwide, especially in the first stages of the pandemic. In particular, a very high mortality rate was recorded among patients aged 80 years or older. Impact on the economy The lockdown imposed during the Spring 2020, and other measures taken in the following months to contain the pandemic, forced many businesses to shut their doors and caused industrial production to slow down significantly. As a result, consumption fell, with the sectors most severely hit being hospitality and tourism, air transport, and automotive. Several predictions about the evolution of the global economy were published at the beginning of the pandemic, based on different scenarios about the development of the pandemic. According to the official results, it appeared that the coronavirus outbreak had caused Italy’s GDP to shrink by approximately nine percent in 2020.

  7. Number of active coronavirus cases in Italy as of January 2025, by status

    • statista.com
    Updated Jan 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Number of active coronavirus cases in Italy as of January 2025, by status [Dataset]. https://www.statista.com/statistics/1104084/current-coronavirus-infections-in-italy-by-status/
    Explore at:
    Dataset updated
    Jan 9, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 1, 2025
    Area covered
    Italy
    Description

    As of January 1, 2025, the number of active coronavirus (COVID-19) infections in Italy was approximately 218,000. Among these, 42 infected individuals were being treated in intensive care units. Another 1,332 individuals infected with the coronavirus were hospitalized with symptoms, while approximately 217,000 thousand were in isolation at home. The total number of coronavirus cases in Italy reached over 26.9 million (including active cases, individuals who recovered, and individuals who died) as of the same date. The region mostly hit by the spread of the virus was Lombardy, which counted almost 4.4 million cases.For a global overview, visit Statista's webpage exclusively dedicated to coronavirus, its development, and its impact.

  8. o

    Confirmed positive cases of COVID-19 in Ontario

    • data.ontario.ca
    • catalogue.arctic-sdi.org
    • +2more
    csv, xlsx
    Updated Oct 8, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Health (2024). Confirmed positive cases of COVID-19 in Ontario [Dataset]. https://data.ontario.ca/dataset/confirmed-positive-cases-of-covid-19-in-ontario
    Explore at:
    csv(125055371), csv(377618479), xlsx(16239), csv(38884536), csv(5644648), csv(29090754), csv(155539080)Available download formats
    Dataset updated
    Oct 8, 2024
    Dataset authored and provided by
    Health
    License

    https://www.ontario.ca/page/open-government-licence-ontariohttps://www.ontario.ca/page/open-government-licence-ontario

    Time period covered
    Jun 6, 2024
    Area covered
    Ontario
    Description

    This dataset compiles daily snapshots of publicly reported data on 2019 Novel Coronavirus (COVID-19) testing in Ontario.

    Learn how the Government of Ontario is helping to keep Ontarians safe during the 2019 Novel Coronavirus outbreak.

    Data includes:

    • approximation of onset date
    • age group
    • patient gender
    • case acquisition information
    • patient outcome
    • reporting Public Health Unit (PHU)
    • postal code, website, longitude, and latitude of PHU

    This dataset is subject to change. Please review the daily epidemiologic summaries for information on variables, methodology, and technical considerations.

    Additional information

    This data is no longer available on this page. Information about COVID-19, and other respiratory viruses, is available through Public Health Ontario’s “Ontario Respiratory Virus Tool".

    On November 30, 2023 the count of COVID-19 deaths was updated to include missing historical deaths from January 15, 2020 to March 31, 2023. This impacts data captured in the column ‘Outcome1’.

    Due to changes in data availability, the following variables will be removed from this file, effective Thursday April 13, 2023: ‘Case_AcquisitionInfo’, ‘Outbreak_Related’. Also due to changes in data availability, the variable ‘Outcome1’ will be equal to ‘Fatal’ (deaths due to COVID-19) or blank (all other cases)

    The methodology used to count COVID-19 deaths has changed to exclude deaths not caused by COVID. This impacts data captured in the column ‘‘Outcome1’ starting with data posted to the catalogue on March 11, 2022.

    CCM is a dynamic disease reporting system which allows ongoing update to data previously entered. As a result, data extracted from CCM represents a snapshot at the time of extraction and may differ from previous or subsequent results. Public Health Units continually clean up COVID-19 data, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes and current totals being different from previously reported cases and deaths. Observed trends over time should be interpreted with caution for the most recent period due to reporting and/or data entry lags.

    Related dataset(s)

  9. m

    Viral respiratory illness reporting

    • mass.gov
    Updated Oct 5, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Executive Office of Health and Human Services (2023). Viral respiratory illness reporting [Dataset]. https://www.mass.gov/info-details/viral-respiratory-illness-reporting
    Explore at:
    Dataset updated
    Oct 5, 2023
    Dataset provided by
    Executive Office of Health and Human Services
    Department of Public Health
    Area covered
    Massachusetts
    Description

    The following dashboards provide data on contagious respiratory viruses, including acute respiratory diseases, COVID-19, influenza (flu), and respiratory syncytial virus (RSV) in Massachusetts. The data presented here can help track trends in respiratory disease and vaccination activity across Massachusetts.

  10. COVID-19 Dataset for Michigan Counties

    • kaggle.com
    Updated Apr 5, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AdityaVipradas (2020). COVID-19 Dataset for Michigan Counties [Dataset]. https://www.kaggle.com/adityavipradas/covid19-dataset-for-michigan-counties/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 5, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    AdityaVipradas
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Area covered
    Michigan
    Description

    Context

    COVID-19 is on a rise worldwide. It was first identified in the city of Wuhan in China in 2019 and has now spread into a global pandemic. Michigan is currently the third largest affected state in USA. The state's confirmed cases have been on a rise since early March 2020. In this dire time, it is extremely important to understand the factors affecting the spread of the virus in Michigan, identify susceptible population and predict the trajectory of the infected and dead cases on a daily basis.

    Content

    Update: April 4, 2020 2:00 PM Eastern Standard Time (EST)

    This data currently contains information about COVID-19 confirmed cases (14225) and deaths (540) in Michigan counties. The dataset also includes percentage of COVID-19 confirmed and dead cases by age, gender, race and ethnicity. The information is published by www.michigan.gov on a daily basis at 2:00 PM EST. The results are included as of 10:00 AM every day.

    Acknowledgements

    Michigan.gov - Coronavirus

    Inspiration

    1. This dataset will be useful in understanding and predicting the trajectory of the infected and dead cases in Michigan in the coming days.
    2. The dataset can also give insight about the most vulnerable age groups in Michigan.

    Please consider upvoting if the data is found useful in any way. If there are any improvement suggestions, do let me know.

  11. Total number of U.S. COVID-19 cases as of March 10, 2023, by state

    • statista.com
    Updated May 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Total number of U.S. COVID-19 cases as of March 10, 2023, by state [Dataset]. https://www.statista.com/statistics/1102807/coronavirus-covid19-cases-number-us-americans-by-state/
    Explore at:
    Dataset updated
    May 15, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    As of March 10, 2023, the state with the highest number of COVID-19 cases was California. Almost 104 million cases have been reported across the United States, with the states of California, Texas, and Florida reporting the highest numbers.

    From an epidemic to a pandemic The World Health Organization declared the COVID-19 outbreak a pandemic on March 11, 2020. The term pandemic refers to multiple outbreaks of an infectious illness threatening multiple parts of the world at the same time. When the transmission is this widespread, it can no longer be traced back to the country where it originated. The number of COVID-19 cases worldwide has now reached over 669 million.

    The symptoms and those who are most at risk Most people who contract the virus will suffer only mild symptoms, such as a cough, a cold, or a high temperature. However, in more severe cases, the infection can cause breathing difficulties and even pneumonia. Those at higher risk include older persons and people with pre-existing medical conditions, including diabetes, heart disease, and lung disease. People aged 85 years and older have accounted for around 27 percent of all COVID-19 deaths in the United States, although this age group makes up just two percent of the U.S. population

  12. o

    Status of COVID-19 cases in Ontario

    • data.ontario.ca
    • ouvert.canada.ca
    • +1more
    csv, xlsx
    Updated Dec 13, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Health (2024). Status of COVID-19 cases in Ontario [Dataset]. https://data.ontario.ca/en/dataset/status-of-covid-19-cases-in-ontario
    Explore at:
    csv(33820), csv(133498), xlsx(19387), csv(162260)Available download formats
    Dataset updated
    Dec 13, 2024
    Dataset authored and provided by
    Health
    License

    https://www.ontario.ca/page/open-government-licence-ontariohttps://www.ontario.ca/page/open-government-licence-ontario

    Time period covered
    Nov 14, 2024
    Area covered
    Ontario
    Description

    Status of COVID-19 cases in Ontario

    This dataset compiles daily snapshots of publicly reported data on 2019 Novel Coronavirus (COVID-19) testing in Ontario.

    Learn how the Government of Ontario is helping to keep Ontarians safe during the 2019 Novel Coronavirus outbreak.

    Effective April 13, 2023, this dataset will be discontinued. The public can continue to access the data within this dataset in the following locations updated weekly on the Ontario Data Catalogue:

    For information on Long-Term Care Home COVID-19 Data, please visit: Long-Term Care Home COVID-19 Data.

    Data includes:

    • reporting date
    • daily tests completed
    • total tests completed
    • test outcomes
    • total case outcomes (resolutions and deaths)
    • current tests under investigation
    • current hospitalizations
      • current patients in Intensive Care Units (ICUs) due to COVID-related critical Illness
      • current patients in Intensive Care Units (ICUs) testing positive for COVID-19
      • current patients in Intensive Care Units (ICUs) no longer testing positive for COVID-19
      • current patients in Intensive Care Units (ICUs) on ventilators due to COVID-related critical illness
      • current patients in Intensive Care Units (ICUs) on ventilators testing positive for COVID-19
      • current patients in Intensive Care Units (ICUs) on ventilators no longer testing positive for COVID-19
    • Long-Term Care (LTC) resident and worker COVID-19 case and death totals
    • Variants of Concern case totals
    • number of new deaths reported (occurred in the last month)
    • number of historical deaths reported (occurred more than one month ago)
    • change in number of cases from previous day by Public Health Unit (PHU).

    This dataset is subject to change. Please review the daily epidemiologic summaries for information on variables, methodology, and technical considerations.

    Cumulative Deaths

    **Effective November 14, 2024 this page will no longer be updated. Information about COVID-19 and other respiratory viruses is available on Public Health Ontario’s interactive respiratory virus tool: https://www.publichealthontario.ca/en/Data-and-Analysis/Infectious-Disease/Respiratory-Virus-Tool **

    The methodology used to count COVID-19 deaths has changed to exclude deaths not caused by COVID. This impacts data captured in the columns “Deaths”, “Deaths_Data_Cleaning” and “newly_reported_deaths” starting with data for March 11, 2022. A new column has been added to the file “Deaths_New_Methodology” which represents the methodological change.

    The method used to count COVID-19 deaths has changed, effective December 1, 2022. Prior to December 1, 2022, deaths were counted based on the date the death was updated in the public health unit’s system. Going forward, deaths are counted on the date they occurred.

    On November 30, 2023 the count of COVID-19 deaths was updated to include missing historical deaths from January 15, 2020 to March 31, 2023. A small number of COVID deaths (less than 20) do not have recorded death date and will be excluded from this file.

    CCM is a dynamic disease reporting system which allows ongoing update to data previously entered. As a result, data extracted from CCM represents a snapshot at the time of extraction and may differ from previous or subsequent results. Public Health Units continually clean up COVID-19 data, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes and current totals being different from previously reported cases and deaths. Observed trends over time should be interpreted with caution for the most recent period due to reporting and/or data entry lags.

    Related dataset(s)

    • Confirmed positive cases of COVID-19 in Ontario
  13. CDC COVID-19 Community Levels by County

    • opendata.ramseycounty.us
    application/rdfxml +5
    Updated Aug 12, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Center for Disease Control and Prevention (2025). CDC COVID-19 Community Levels by County [Dataset]. https://opendata.ramseycounty.us/Public-Health/CDC-COVID-19-Community-Levels-by-County/uazb-iwdp
    Explore at:
    application/rdfxml, json, xml, csv, tsv, application/rssxmlAvailable download formats
    Dataset updated
    Aug 12, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    Center for Disease Control and Prevention
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Description

    This public use dataset has 11 data elements reflecting United States COVID-19 community levels for all available counties. This dataset contains the same values used to display information available on the COVID Data Tracker at: https://covid.cdc.gov/covid-data-tracker/#county-view?list_select_state=all_states&list_select_county=all_counties&data-type=CommunityLevels The data are updated weekly.

    CDC looks at the combination of three metrics — new COVID-19 admissions per 100,000 population in the past 7 days, the percent of staffed inpatient beds occupied by COVID-19 patients, and total new COVID-19 cases per 100,000 population in the past 7 days — to determine the COVID-19 community level. The COVID-19 community level is determined by the higher of the new admissions and inpatient beds metrics, based on the current level of new cases per 100,000 population in the past 7 days. New COVID-19 admissions and the percent of staffed inpatient beds occupied represent the current potential for strain on the health system. Data on new cases acts as an early warning indicator of potential increases in health system strain in the event of a COVID-19 surge. Using these data, the COVID-19 community level is classified as low, medium, or high. COVID-19 Community Levels can help communities and individuals make decisions based on their local context and their unique needs. Community vaccination coverage and other local information, like early alerts from surveillance, such as through wastewater or the number of emergency department visits for COVID-19, when available, can also inform decision making for health officials and individuals.

    See https://www.cdc.gov/coronavirus/2019-ncov/science/community-levels.html for more information.

    For the most accurate and up-to-date data for any county or state, visit the relevant health department website. COVID Data Tracker may display data that differ from state and local websites. This can be due to differences in how data were collected, how metrics were calculated, or the timing of web updates.

    For more details on the Minnesota Department of Health COVID-19 thresholds, see COVID-19 Public Health Risk Measures: Data Notes (Updated 4/13/22). https://mn.gov/covid19/assets/phri_tcm1148-434773.pdf

    Note: This dataset was renamed from "United States COVID-19 Community Levels by County as Originally Posted" to "United States COVID-19 Community Levels by County" on March 31, 2022. March 31, 2022: Column name for county population was changed to “county_population”. No change was made to the data points previous released. March 31, 2022: New column, “health_service_area_population”, was added to the dataset to denote the total population in the designated Health Service Area based on 2019 Census estimate. March 31, 2022: FIPS codes for territories American Samoa, Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands were re-formatted to 5-digit numeric for records released on 3/3/2022 to be consistent with other records in the dataset. March 31, 2022: Changes were made to the text fields in variables “county”, “state”, and “health_service_area” so the formats are consistent across releases. March 31, 2022: The “%” sign was removed from the text field in column “covid_inpatient_bed_utilization”. No change was made to the data. As indicated in the column description, values in this column represent the percentage of staffed inpatient beds occupied by COVID-19 patients (7-day average). March 31, 2022: Data values for columns, “county_population”, “health_service_area_number”, and “health_service_area” were backfilled for records released on 2/24/2022. These columns were added since the week of 3/3/2022, thus the values were previously missing for records released the week prior. April 7, 2022: Updates made to data released on 3/24/2022 for Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands to correct a data mapping error.

  14. Cumulative number of coronavirus cases in Finland since January 2020

    • statista.com
    Updated Dec 15, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2022). Cumulative number of coronavirus cases in Finland since January 2020 [Dataset]. https://www.statista.com/statistics/1102255/cumulative-coronavirus-cases-in-finland/
    Explore at:
    Dataset updated
    Dec 15, 2022
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Finland
    Description

    By December 8, 2022, the number of confirmed coronavirus (COVID-19) cases in Finland had reached a total of 1,417,909.

    The first case of COVID-19 in Finland was confirmed on January 29, 2020. The number of new coronavirus cases stayed at one until they started to increase at the end of February 2020, developing into a first wave that lasted until the end of spring. From September, new cases began to rise again and only decreasing significantly between April and June 2021. Since July 2021, the third wave reached Finland. There were over 50 thousand new cases confirmed on April 21, 2022, which was the highest number of cases recorded in a single day.

    Most COVID-19 cases were reported among 30 to 39 year-olds

    Since the total number of coronavirus (COVID-19) cases is on a steady rise, all age groups are affected by the virus. Most of the reported cases since the outbreak were found among 20 to 49 year-olds, with the highest proportion of cases in the 30 to 39 year-olds age group.

    The total cumulative number of deaths since the outbreak is increasing along with the total cumulative number of cases. The first death caused by the COVID-19 in Finland was reported on March 20, 2020.

    Over 4.4 million first doses of the COVID-19 vaccine have already been administered

    In late December 2020, the coronavirus vaccination rollout started in Finland. Till December 2021, more than 4.4 million first doses of coronavirus (COVID-19) vaccine were administered, most of them in the Helsinki and Uusimaa region. The vaccination is offered to everyone aged five or older who is willing to take the vaccine. So far, the highest number of vaccine doses were recorded in the age group of 60 to 69 years, closely followed by 50 to 59 year-olds.

    For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Facts and Figures page.

  15. Z

    INTRODUCTION OF COVID-NEWS-US-NNK AND COVID-NEWS-BD-NNK DATASET

    • data.niaid.nih.gov
    Updated Jul 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nafiz Sadman (2024). INTRODUCTION OF COVID-NEWS-US-NNK AND COVID-NEWS-BD-NNK DATASET [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_4047647
    Explore at:
    Dataset updated
    Jul 19, 2024
    Dataset provided by
    Kishor Datta Gupta
    Nishat Anjum
    Nafiz Sadman
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Bangladesh, United States
    Description

    Introduction

    There are several works based on Natural Language Processing on newspaper reports. Mining opinions from headlines [ 1 ] using Standford NLP and SVM by Rameshbhaiet. Al.compared several algorithms on a small and large dataset. Rubinet. al., in their paper [ 2 ], created a mechanism to differentiate fake news from real ones by building a set of characteristics of news according to their types. The purpose was to contribute to the low resource data available for training machine learning algorithms. Doumitet. al.in [ 3 ] have implemented LDA, a topic modeling approach to study bias present in online news media.

    However, there are not many NLP research invested in studying COVID-19. Most applications include classification of chest X-rays and CT-scans to detect presence of pneumonia in lungs [ 4 ], a consequence of the virus. Other research areas include studying the genome sequence of the virus[ 5 ][ 6 ][ 7 ] and replicating its structure to fight and find a vaccine. This research is crucial in battling the pandemic. The few NLP based research publications are sentiment classification of online tweets by Samuel et el [ 8 ] to understand fear persisting in people due to the virus. Similar work has been done using the LSTM network to classify sentiments from online discussion forums by Jelodaret. al.[ 9 ]. NKK dataset is the first study on a comparatively larger dataset of a newspaper report on COVID-19, which contributed to the virus’s awareness to the best of our knowledge.

    2 Data-set Introduction

    2.1 Data Collection

    We accumulated 1000 online newspaper report from United States of America (USA) on COVID-19. The newspaper includes The Washington Post (USA) and StarTribune (USA). We have named it as “Covid-News-USA-NNK”. We also accumulated 50 online newspaper report from Bangladesh on the issue and named it “Covid-News-BD-NNK”. The newspaper includes The Daily Star (BD) and Prothom Alo (BD). All these newspapers are from the top provider and top read in the respective countries. The collection was done manually by 10 human data-collectors of age group 23- with university degrees. This approach was suitable compared to automation to ensure the news were highly relevant to the subject. The newspaper online sites had dynamic content with advertisements in no particular order. Therefore there were high chances of online scrappers to collect inaccurate news reports. One of the challenges while collecting the data is the requirement of subscription. Each newspaper required $1 per subscriptions. Some criteria in collecting the news reports provided as guideline to the human data-collectors were as follows:

    The headline must have one or more words directly or indirectly related to COVID-19.

    The content of each news must have 5 or more keywords directly or indirectly related to COVID-19.

    The genre of the news can be anything as long as it is relevant to the topic. Political, social, economical genres are to be more prioritized.

    Avoid taking duplicate reports.

    Maintain a time frame for the above mentioned newspapers.

    To collect these data we used a google form for USA and BD. We have two human editor to go through each entry to check any spam or troll entry.

    2.2 Data Pre-processing and Statistics

    Some pre-processing steps performed on the newspaper report dataset are as follows:

    Remove hyperlinks.

    Remove non-English alphanumeric characters.

    Remove stop words.

    Lemmatize text.

    While more pre-processing could have been applied, we tried to keep the data as much unchanged as possible since changing sentence structures could result us in valuable information loss. While this was done with help of a script, we also assigned same human collectors to cross check for any presence of the above mentioned criteria.

    The primary data statistics of the two dataset are shown in Table 1 and 2.

    Table 1: Covid-News-USA-NNK data statistics

    No of words per headline

    7 to 20

    No of words per body content

    150 to 2100

    Table 2: Covid-News-BD-NNK data statistics No of words per headline

    10 to 20

    No of words per body content

    100 to 1500

    2.3 Dataset Repository

    We used GitHub as our primary data repository in account name NKK^1. Here, we created two repositories USA-NKK^2 and BD-NNK^3. The dataset is available in both CSV and JSON format. We are regularly updating the CSV files and regenerating JSON using a py script. We provided a python script file for essential operation. We welcome all outside collaboration to enrich the dataset.

    3 Literature Review

    Natural Language Processing (NLP) deals with text (also known as categorical) data in computer science, utilizing numerous diverse methods like one-hot encoding, word embedding, etc., that transform text to machine language, which can be fed to multiple machine learning and deep learning algorithms.

    Some well-known applications of NLP includes fraud detection on online media sites[ 10 ], using authorship attribution in fallback authentication systems[ 11 ], intelligent conversational agents or chatbots[ 12 ] and machine translations used by Google Translate[ 13 ]. While these are all downstream tasks, several exciting developments have been made in the algorithm solely for Natural Language Processing tasks. The two most trending ones are BERT[ 14 ], which uses bidirectional encoder-decoder architecture to create the transformer model, that can do near-perfect classification tasks and next-word predictions for next generations, and GPT-3 models released by OpenAI[ 15 ] that can generate texts almost human-like. However, these are all pre-trained models since they carry huge computation cost. Information Extraction is a generalized concept of retrieving information from a dataset. Information extraction from an image could be retrieving vital feature spaces or targeted portions of an image; information extraction from speech could be retrieving information about names, places, etc[ 16 ]. Information extraction in texts could be identifying named entities and locations or essential data. Topic modeling is a sub-task of NLP and also a process of information extraction. It clusters words and phrases of the same context together into groups. Topic modeling is an unsupervised learning method that gives us a brief idea about a set of text. One commonly used topic modeling is Latent Dirichlet Allocation or LDA[17].

    Keyword extraction is a process of information extraction and sub-task of NLP to extract essential words and phrases from a text. TextRank [ 18 ] is an efficient keyword extraction technique that uses graphs to calculate the weight of each word and pick the words with more weight to it.

    Word clouds are a great visualization technique to understand the overall ’talk of the topic’. The clustered words give us a quick understanding of the content.

    4 Our experiments and Result analysis

    We used the wordcloud library^4 to create the word clouds. Figure 1 and 3 presents the word cloud of Covid-News-USA- NNK dataset by month from February to May. From the figures 1,2,3, we can point few information:

    In February, both the news paper have talked about China and source of the outbreak.

    StarTribune emphasized on Minnesota as the most concerned state. In April, it seemed to have been concerned more.

    Both the newspaper talked about the virus impacting the economy, i.e, bank, elections, administrations, markets.

    Washington Post discussed global issues more than StarTribune.

    StarTribune in February mentioned the first precautionary measurement: wearing masks, and the uncontrollable spread of the virus throughout the nation.

    While both the newspaper mentioned the outbreak in China in February, the weight of the spread in the United States are more highlighted through out March till May, displaying the critical impact caused by the virus.

    We used a script to extract all numbers related to certain keywords like ’Deaths’, ’Infected’, ’Died’ , ’Infections’, ’Quarantined’, Lock-down’, ’Diagnosed’ etc from the news reports and created a number of cases for both the newspaper. Figure 4 shows the statistics of this series. From this extraction technique, we can observe that April was the peak month for the covid cases as it gradually rose from February. Both the newspaper clearly shows us that the rise in covid cases from February to March was slower than the rise from March to April. This is an important indicator of possible recklessness in preparations to battle the virus. However, the steep fall from April to May also shows the positive response against the attack. We used Vader Sentiment Analysis to extract sentiment of the headlines and the body. On average, the sentiments were from -0.5 to -0.9. Vader Sentiment scale ranges from -1(highly negative to 1(highly positive). There were some cases

    where the sentiment scores of the headline and body contradicted each other,i.e., the sentiment of the headline was negative but the sentiment of the body was slightly positive. Overall, sentiment analysis can assist us sort the most concerning (most negative) news from the positive ones, from which we can learn more about the indicators related to COVID-19 and the serious impact caused by it. Moreover, sentiment analysis can also provide us information about how a state or country is reacting to the pandemic. We used PageRank algorithm to extract keywords from headlines as well as the body content. PageRank efficiently highlights important relevant keywords in the text. Some frequently occurring important keywords extracted from both the datasets are: ’China’, Government’, ’Masks’, ’Economy’, ’Crisis’, ’Theft’ , ’Stock market’ , ’Jobs’ , ’Election’, ’Missteps’, ’Health’, ’Response’. Keywords extraction acts as a filter allowing quick searches for indicators in case of locating situations of the economy,

  16. c

    The COVID Tracking Project

    • covidtracking.com
    google sheets
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The COVID Tracking Project [Dataset]. https://covidtracking.com/
    Explore at:
    google sheetsAvailable download formats
    Description

    The COVID Tracking Project collects information from 50 US states, the District of Columbia, and 5 other US territories to provide the most comprehensive testing data we can collect for the novel coronavirus, SARS-CoV-2. We attempt to include positive and negative results, pending tests, and total people tested for each state or district currently reporting that data.

    Testing is a crucial part of any public health response, and sharing test data is essential to understanding this outbreak. The CDC is currently not publishing complete testing data, so we’re doing our best to collect it from each state and provide it to the public. The information is patchy and inconsistent, so we’re being transparent about what we find and how we handle it—the spreadsheet includes our live comments about changing data and how we’re working with incomplete information.

    From here, you can also learn about our methodology, see who makes this, and find out what information states provide and how we handle it.

  17. COVID-19 Trends in Each Country

    • data.amerigeoss.org
    esri rest, html
    Updated Jul 29, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ESRI (2020). COVID-19 Trends in Each Country [Dataset]. https://data.amerigeoss.org/dataset/covid-19-trends-in-each-country
    Explore at:
    html, esri restAvailable download formats
    Dataset updated
    Jul 29, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Description

    COVID-19 Trends Methodology
    Our goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.


    6/24/2020 - Expanded Case Rates discussion to include fix on 6/23 for calculating active cases.
    6/22/2020 - Added Executive Summary and Subsequent Outbreaks sections
    Revisions on 6/10/2020 based on updated CDC reporting. This affects the estimate of active cases by revising the average duration of cases with hospital stays downward from 30 days to 25 days. The result shifted 76 U.S. counties out of Epidemic to Spreading trend and no change for national level trends.
    Methodology update on 6/2/2020: This sets the length of the tail of new cases to 6 to a maximum of 14 days, rather than 21 days as determined by the last 1/3 of cases. This was done to align trends and criteria for them with U.S. CDC guidance. The impact is areas transition into Controlled trend sooner for not bearing the burden of new case 15-21 days earlier.
    Correction on 6/1/2020
    Discussion of our assertion of an abundance of caution in assigning trends in rural counties added 5/7/2020.
    Revisions added on 4/30/2020 are highlighted.
    Revisions added on 4/23/2020 are highlighted.

    Executive Summary
    COVID-19 Trends is a methodology for characterizing the current trend for places during the COVID-19 global pandemic. Each day we assign one of five trends: Emergent, Spreading, Epidemic, Controlled, or End Stage to geographic areas to geographic areas based on the number of new cases, the number of active cases, the total population, and an algorithm (described below) that contextualize the most recent fourteen days with the overall COVID-19 case history. Currently we analyze the countries of the world and the U.S. Counties.
    The purpose is to give policymakers, citizens, and analysts a fact-based data driven sense for the direction each place is currently going. When a place has the initial cases, they are assigned Emergent, and if that place controls the rate of new cases, they can move directly to Controlled, and even to End Stage in a short time. However, if the reporting or measures to curtail spread are not adequate and significant numbers of new cases continue, they are assigned to Spreading, and in cases where the spread is clearly uncontrolled, Epidemic trend.

    We analyze the data reported by Johns Hopkins University to produce the trends, and we report the rates of cases, spikes of new cases, the number of days since the last reported case, and number of deaths. We also make adjustments to the assignments based on population so rural areas are not assigned trends based solely on case rates, which can be quite high relative to local populations.

    Two key factors are not consistently known or available and should be taken into consideration with the assigned trend. First is the amount of resources, e.g., hospital beds, physicians, etc.that are currently available in each area. Second is the number of recoveries, which are often not tested or reported. On the latter, we provide a probable number of active cases based on CDC guidance for the typical duration of mild to severe cases.

    Reasons for undertaking this work in March of 2020:
    1. The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.
    2. The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.
    3. The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:
    • U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online.
    • Initial older guidance was also obtained online.
    Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws.
    Thus, the formula used to compute an estimate of active cases is:

    Active Cases = 100% of new cases in past 14 days + 19% from past 15-25 days + 5% from past 26-49 days - total deaths.
    <br

  18. f

    Data_Sheet_1_Identifying Markers of Emerging SARS-CoV-2 Variants in Patients...

    • frontiersin.figshare.com
    • figshare.com
    xlsx
    Updated Jun 14, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nathan M. Markarian; Gaël Galli; Dhanesh Patel; Mark Hemmings; Priya Nagpal; Albert M. Berghuis; Levon Abrahamyan; Silvia M. Vidal (2023). Data_Sheet_1_Identifying Markers of Emerging SARS-CoV-2 Variants in Patients With Secondary Immunodeficiency.xlsx [Dataset]. http://doi.org/10.3389/fmicb.2022.933983.s001
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 14, 2023
    Dataset provided by
    Frontiers
    Authors
    Nathan M. Markarian; Gaël Galli; Dhanesh Patel; Mark Hemmings; Priya Nagpal; Albert M. Berghuis; Levon Abrahamyan; Silvia M. Vidal
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Since the end of 2019, the world has been challenged by the coronavirus disease 2019 (COVID-19) pandemic. With COVID-19 cases rising globally, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve, resulting in the emergence of variants of interest (VOI) and of concern (VOC). Of the hundreds of millions infected, immunodeficient patients are one of the vulnerable cohorts that are most susceptible to this virus. These individuals include those with preexisting health conditions and/or those undergoing immunosuppressive treatment (secondary immunodeficiency). In these cases, several researchers have reported chronic infections in the presence of anti-COVID-19 treatments that may potentially lead to the evolution of the virus within the host. Such variations occurred in a variety of viral proteins, including key structural ones involved in pathogenesis such as spike proteins. Tracking and comparing such mutations with those arisen in the general population may provide information about functional sites within the SARS-CoV-2 genome. In this study, we reviewed the current literature regarding the specific features of SARS-CoV-2 evolution in immunocompromised patients and identified recurrent de novo amino acid changes in virus isolates of these patients that can potentially play an important role in SARS-CoV-2 pathogenesis and evolution.

  19. Growth of COVID-19 cases in select countries after reaching 100 cases Mar....

    • statista.com
    Updated Jul 27, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2022). Growth of COVID-19 cases in select countries after reaching 100 cases Mar. 11, 2020 [Dataset]. https://www.statista.com/statistics/1083557/coronavirus-growth-after-100-cases-select-countries-worldwide/
    Explore at:
    Dataset updated
    Jul 27, 2022
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    Italy experienced a sharp rise in the number of positive infections shortly after confirming its 100th coronavirus case. In the space of just 17 days, the number of cases in Italy had soared to more than 12,000. In comparison, the spread of the virus was much slower in Japan.

    The COVID-19 outbreak in Italy Italy was the first European nation to be severely impacted by COVID-19. There had been approximately 35,400 coronavirus-related deaths recorded in the country as of August 17, 2020. Following a two-month lockdown period, restrictions in Italy were eased in early May, and citizens are now permitted to travel between regions and abroad. However, the risk of a resurgence remains, and the country’s state of emergency has been extended until October 15, 2020. It is looking increasingly likely that restrictions will not be completely lifted until a vaccine for the disease is discovered.

    Pfizer confident of vaccine success Pfizer and BioNTech are jointly developing one candidate vaccine that is under clinical evaluation. In July 2020, the two companies announced an agreement with the U.S. government that will bring millions of doses to the American people. The BNT162 mRNA-based vaccine is currently being produced even though it has not received regulatory approval from the FDA. This is a risky approach and is one that could cost the companies millions of dollars should the vaccine be rejected. However, if regulatory approval is received, the safe and effective vaccine can be shipped quickly.

  20. Cumulative number of coronavirus cases in Sweden since February 2020

    • statista.com
    Updated Jan 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). Cumulative number of coronavirus cases in Sweden since February 2020 [Dataset]. https://www.statista.com/statistics/1102203/cumulative-coronavirus-cases-in-sweden/
    Explore at:
    Dataset updated
    Jan 15, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Sweden
    Description

    As of January 13, 2023, Sweden had reported 2,687,840 confirmed coronavirus cases. Cases first started to rise sharply in spring 2020, when the number of new confirmed cases per day started to increase, however the peak was much higher in winter 2021/22.

    The novel coronavirus (COVID-19)

    The coronavirus was officially declared as a worldwide pandemic by the World Health Organization on March 11, 2020. The novel coronavirus was first detected at a fish and seafood market in the Chinese city of Wuhan, in the Hubei province, in late December 2019. Since then, the virus reached over 668 million cases worldwide as of January 9, 2023.

    Coronavirus-related deaths in Sweden

    The first coronavirus related death in Sweden was reported on March 11, 2020 and as of January 13, 2023, the number of deaths reached a total of 22,645. The highest number of deaths occurred among the age group from 80 to 90 years old.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
New York Times, Coronavirus (Covid-19) Data in the United States [Dataset]. https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html

Coronavirus (Covid-19) Data in the United States

Explore at:
Dataset provided by
New York Times
Description

The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.

The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

Search
Clear search
Close search
Google apps
Main menu