CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Explore our detailed website traffic dataset featuring key metrics like page views, session duration, bounce rate, traffic source, and conversion rates.
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The global market for visitor tracking software tools is experiencing robust growth, driven by the increasing need for businesses to understand online customer behavior and optimize their digital strategies. The market, estimated at $5 billion in 2025, is projected to maintain a healthy Compound Annual Growth Rate (CAGR) of 15% from 2025 to 2033, reaching an estimated market value of $12 billion by 2033. This growth is fueled by several key factors: the rising adoption of e-commerce, the increasing complexity of online marketing campaigns, the demand for personalized user experiences, and the growing availability of sophisticated analytics tools capable of providing actionable insights from website traffic data. Major trends shaping the market include the integration of AI and machine learning for predictive analytics, the increasing use of heatmaps and session recordings for detailed user behavior analysis, and a growing focus on privacy-compliant data collection methods. However, market growth faces certain restraints. Concerns around data privacy and compliance with regulations like GDPR are impacting adoption rates. Furthermore, the competitive landscape is crowded, with both established players like Google and specialized providers like Crazy Egg vying for market share. The market is segmented by solution type (e.g., website analytics, heatmap tools, session recording), deployment model (cloud-based, on-premise), enterprise size (small, medium, large), and industry vertical. Leading companies such as Crazy Egg, Mixpanel, and FullStory are constantly innovating to improve the accuracy and depth of their offerings, while smaller companies are focusing on niche functionalities to differentiate themselves. The future success of these tools depends heavily on continuing innovation in the areas of data security, user experience, and integration with other marketing platforms.
Unlock the Potential of Your Web Traffic with Advanced Data Resolution
In the digital age, understanding and leveraging web traffic data is crucial for businesses aiming to thrive online. Our pioneering solution transforms anonymous website visits into valuable B2B and B2C contact data, offering unprecedented insights into your digital audience. By integrating our unique tag into your website, you unlock the capability to convert 25-50% of your anonymous traffic into actionable contact rows, directly deposited into an S3 bucket for your convenience. This process, known as "Web Traffic Data Resolution," is at the forefront of digital marketing and sales strategies, providing a competitive edge in understanding and engaging with your online visitors.
Comprehensive Web Traffic Data Resolution Our product stands out by offering a robust solution for "Web Traffic Data Resolution," a process that demystifies the identities behind your website traffic. By deploying a simple tag on your site, our technology goes to work, analyzing visitor behavior and leveraging proprietary data matching techniques to reveal the individuals and businesses behind the clicks. This innovative approach not only enhances your data collection but does so with respect for privacy and compliance standards, ensuring that your business gains insights ethically and responsibly.
Deep Dive into Web Traffic Data At the core of our solution is the sophisticated analysis of "Web Traffic Data." Our system meticulously collects and processes every interaction on your site, from page views to time spent on each section. This data, once anonymous and perhaps seen as abstract numbers, is transformed into a detailed ledger of potential leads and customer insights. By understanding who visits your site, their interests, and their contact information, your business is equipped to tailor marketing efforts, personalize customer experiences, and streamline sales processes like never before.
Benefits of Our Web Traffic Data Resolution Service Enhanced Lead Generation: By converting anonymous visitors into identifiable contact data, our service significantly expands your pool of potential leads. This direct enhancement of your lead generation efforts can dramatically increase conversion rates and ROI on marketing campaigns.
Targeted Marketing Campaigns: Armed with detailed B2B and B2C contact data, your marketing team can create highly targeted and personalized campaigns. This precision in marketing not only improves engagement rates but also ensures that your messaging resonates with the intended audience.
Improved Customer Insights: Gaining a deeper understanding of your web traffic enables your business to refine customer personas and tailor offerings to meet market demands. These insights are invaluable for product development, customer service improvement, and strategic planning.
Competitive Advantage: In a digital landscape where understanding your audience can make or break your business, our Web Traffic Data Resolution service provides a significant competitive edge. By accessing detailed contact data that others in your industry may overlook, you position your business as a leader in customer engagement and data-driven strategies.
Seamless Integration and Accessibility: Our solution is designed for ease of use, requiring only the placement of a tag on your website to start gathering data. The contact rows generated are easily accessible in an S3 bucket, ensuring that you can integrate this data with your existing CRM systems and marketing tools without hassle.
How It Works: A Closer Look at the Process Our Web Traffic Data Resolution process is streamlined and user-friendly, designed to integrate seamlessly with your existing website infrastructure:
Tag Deployment: Implement our unique tag on your website with simple instructions. This tag is lightweight and does not impact your site's loading speed or user experience.
Data Collection and Analysis: As visitors navigate your site, our system collects web traffic data in real-time, analyzing behavior patterns, engagement metrics, and more.
Resolution and Transformation: Using advanced data matching algorithms, we resolve the collected web traffic data into identifiable B2B and B2C contact information.
Data Delivery: The resolved contact data is then securely transferred to an S3 bucket, where it is organized and ready for your access. This process occurs daily, ensuring you have the most up-to-date information at your fingertips.
Integration and Action: With the resolved data now in your possession, your business can take immediate action. From refining marketing strategies to enhancing customer experiences, the possibilities are endless.
Security and Privacy: Our Commitment Understanding the sensitivity of web traffic data and contact information, our solution is built with security and privacy at its core. We adhere to strict data protection regulat...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Code:
Packet_Features_Generator.py & Features.py
To run this code:
pkt_features.py [-h] -i TXTFILE [-x X] [-y Y] [-z Z] [-ml] [-s S] -j
-h, --help show this help message and exit -i TXTFILE input text file -x X Add first X number of total packets as features. -y Y Add first Y number of negative packets as features. -z Z Add first Z number of positive packets as features. -ml Output to text file all websites in the format of websiteNumber1,feature1,feature2,... -s S Generate samples using size s. -j
Purpose:
Turns a text file containing lists of incomeing and outgoing network packet sizes into separate website objects with associative features.
Uses Features.py to calcualte the features.
startMachineLearning.sh & machineLearning.py
To run this code:
bash startMachineLearning.sh
This code then runs machineLearning.py in a tmux session with the nessisary file paths and flags
Options (to be edited within this file):
--evaluate-only to test 5 fold cross validation accuracy
--test-scaling-normalization to test 6 different combinations of scalers and normalizers
Note: once the best combination is determined, it should be added to the data_preprocessing function in machineLearning.py for future use
--grid-search to test the best grid search hyperparameters - note: the possible hyperparameters must be added to train_model under 'if not evaluateOnly:' - once best hyperparameters are determined, add them to train_model under 'if evaluateOnly:'
Purpose:
Using the .ml file generated by Packet_Features_Generator.py & Features.py, this program trains a RandomForest Classifier on the provided data and provides results using cross validation. These results include the best scaling and normailzation options for each data set as well as the best grid search hyperparameters based on the provided ranges.
Data
Encrypted network traffic was collected on an isolated computer visiting different Wikipedia and New York Times articles, different Google search queres (collected in the form of their autocomplete results and their results page), and different actions taken on a Virtual Reality head set.
Data for this experiment was stored and analyzed in the form of a txt file for each experiment which contains:
First number is a classification number to denote what website, query, or vr action is taking place.
The remaining numbers in each line denote:
The size of a packet,
and the direction it is traveling.
negative numbers denote incoming packets
positive numbers denote outgoing packets
Figure 4 Data
This data uses specific lines from the Virtual Reality.txt file.
The action 'LongText Search' refers to a user searching for "Saint Basils Cathedral" with text in the Wander app.
The action 'ShortText Search' refers to a user searching for "Mexico" with text in the Wander app.
The .xlsx and .csv file are identical
Each file includes (from right to left):
The origional packet data,
each line of data organized from smallest to largest packet size in order to calculate the mean and standard deviation of each packet capture,
and the final Cumulative Distrubution Function (CDF) caluclation that generated the Figure 4 Graph.
Daily utilization metrics for data.lacity.org and geohub.lacity.org. Updated monthly
This file contains 5 years of daily time series data for several measures of traffic on a statistical forecasting teaching notes website whose alias is statforecasting.com. The variables have complex seasonality that is keyed to the day of the week and to the academic calendar. The patterns you you see here are similar in principle to what you would see in other daily data with day-of-week and time-of-year effects. Some good exercises are to develop a 1-day-ahead forecasting model, a 7-day ahead forecasting model, and an entire-next-week forecasting model (i.e., next 7 days) for unique visitors.
The variables are daily counts of page loads, unique visitors, first-time visitors, and returning visitors to an academic teaching notes website. There are 2167 rows of data spanning the date range from September 14, 2014, to August 19, 2020. A visit is defined as a stream of hits on one or more pages on the site on a given day by the same user, as identified by IP address. Multiple individuals with a shared IP address (e.g., in a computer lab) are considered as a single user, so real users may be undercounted to some extent. A visit is classified as "unique" if a hit from the same IP address has not come within the last 6 hours. Returning visitors are identified by cookies if those are accepted. All others are classified as first-time visitors, so the count of unique visitors is the sum of the counts of returning and first-time visitors by definition. The data was collected through a traffic monitoring service known as StatCounter.
This file and a number of other sample datasets can also be found on the website of RegressIt, a free Excel add-in for linear and logistic regression which I originally developed for use in the course whose website generated the traffic data given here. If you use Excel to some extent as well as Python or R, you might want to try it out on this dataset.
https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy
The website traffic analysis tool market is experiencing robust growth, driven by the increasing reliance of businesses, both large and small, on digital marketing strategies. The demand for data-driven decision-making and performance optimization across various online channels is fueling the adoption of these tools. The market, estimated at $15 billion in 2025, is projected to grow at a compound annual growth rate (CAGR) of 15% through 2033, reaching approximately $45 billion. This growth is fueled by several key trends: the rise of cloud-based solutions offering greater scalability and accessibility, increasing sophistication of analytics capabilities (including AI-powered insights), and a growing need for comprehensive website performance monitoring. While the market exhibits strong growth potential, businesses face challenges including the increasing complexity of website analytics, the need for skilled personnel to interpret data effectively, and the rising costs associated with premium features and advanced analytics platforms. The segmentation reveals a significant presence of both SMEs and large enterprises leveraging the technology, with a clear preference toward cloud-based solutions due to their flexibility and cost-effectiveness. Key players such as Semrush, Ahrefs, Google Analytics, and others are actively shaping the market through continuous innovation and expansion into new markets. The geographical distribution of the market reflects a strong presence in North America and Europe, driven by higher digital maturity and adoption rates within these regions. However, significant growth opportunities exist in Asia Pacific and other emerging markets, as digital infrastructure expands and businesses increasingly prioritize online presence. The competitive landscape is characterized by a mix of established players and emerging startups, leading to continuous innovation and price competition, benefiting end users. This intense competition drives the development of advanced features such as real-time analytics, predictive modeling, and integration with other marketing tools. The ongoing evolution of digital marketing itself is a major driver, requiring the constant refinement and improvement of these analytics tools to keep pace with changes in SEO, social media, and online advertising practices. This creates a dynamic environment conducive to further market expansion.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Context
The data presented here was obtained in a Kali Machine from University of Cincinnati,Cincinnati,OHIO by carrying out packet captures for 1 hour during the evening on Oct 9th,2023 using Wireshark.This dataset consists of 394137 instances were obtained and stored in a CSV (Comma Separated Values) file.This large dataset could be used utilised for different machine learning applications for instance classification of Network traffic,Network performance monitoring,Network Security Management , Network Traffic Management ,network intrusion detection and anomaly detection.
The dataset can be used for a variety of machine learning tasks, such as network intrusion detection, traffic classification, and anomaly detection.
Content :
This network traffic dataset consists of 7 features.Each instance contains the information of source and destination IP addresses, The majority of the properties are numeric in nature, however there are also nominal and date kinds due to the Timestamp.
The network traffic flow statistics (No. Time Source Destination Protocol Length Info) were obtained using Wireshark (https://www.wireshark.org/).
Dataset Columns:
No : Number of Instance. Timestamp : Timestamp of instance of network traffic Source IP: IP address of Source Destination IP: IP address of Destination Portocol: Protocol used by the instance Length: Length of Instance Info: Information of Traffic Instance
Acknowledgements :
I would like thank University of Cincinnati for giving the infrastructure for generation of network traffic data set.
Ravikumar Gattu , Susmitha Choppadandi
Inspiration : This dataset goes beyond the majority of network traffic classification datasets, which only identify the type of application (WWW, DNS, ICMP,ARP,RARP) that an IP flow contains. Instead, it generates machine learning models that can identify specific applications (like Tiktok,Wikipedia,Instagram,Youtube,Websites,Blogs etc.) from IP flow statistics (there are currently 25 applications in total).
**Dataset License: ** CC0: Public Domain
Dataset Usages : This dataset can be used for different machine learning applications in the field of cybersecurity such as classification of Network traffic,Network performance monitoring,Network Security Management , Network Traffic Management ,network intrusion detection and anomaly detection.
ML techniques benefits from this Dataset :
This dataset is highly useful because it consists of 394137 instances of network traffic data obtained by using the 25 applications on a public,private and Enterprise networks.Also,the dataset consists of very important features that can be used for most of the applications of Machine learning in cybersecurity.Here are few of the potential machine learning applications that could be benefited from this dataset are :
Network Performance Monitoring : This large network traffic data set can be utilised for analysing the network traffic to identifying the network patterns in the network .This help in designing the network security algorithms for minimise the network probelms.
Anamoly Detection : Large network traffic dataset can be utilised training the machine learning models for finding the irregularitues in the traffic which could help identify the cyber attacks.
3.Network Intrusion Detection : This large dataset could be utilised for machine algorithms training and designing the models for detection of the traffic issues,Malicious traffic network attacks and DOS attacks as well.
Unlock insights with Echo's Activity data, offering views of locations based on visitor behavior. Enhance site selection, urban planning, and real estate with metrics like unique visitors and visits. Our high-quality, global data reveals movement patterns, updated daily and normalized monthly.
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The global shopping mall visitor counting system market is experiencing robust growth, projected to reach $247 million in 2025 and maintain a Compound Annual Growth Rate (CAGR) of 9.8% from 2025 to 2033. This expansion is fueled by several key factors. Firstly, the increasing need for retailers and mall operators to understand shopper behavior and optimize store layouts and marketing strategies is driving demand for accurate and real-time visitor data. Secondly, technological advancements, particularly in cloud-based systems and the integration of AI and analytics, are enhancing the capabilities of these systems, providing more granular insights than ever before. The shift towards data-driven decision-making across the retail sector further strengthens market growth. Finally, the rising adoption of omnichannel strategies, requiring seamless integration of online and offline data, is creating a strong need for comprehensive visitor analytics. Segmentation reveals a strong preference for cloud-based solutions due to their scalability, cost-effectiveness, and ease of deployment. The marketing analysis application segment is leading in market share, reflecting the crucial role of visitor data in targeted advertising and campaign optimization. Despite the positive growth trajectory, the market faces some challenges. High initial investment costs for sophisticated systems can deter smaller businesses. Data security and privacy concerns related to the collection and use of shopper data also present a restraint. However, ongoing innovation in affordable and secure technologies, along with increasing awareness of data protection regulations, are mitigating these limitations. The competitive landscape is marked by both established players like ShopperTrak and RetailNext, and emerging technology providers offering innovative solutions. The market's future hinges on continuing technological innovation, the development of robust data analytics capabilities, and the successful addressing of privacy concerns. Geographical distribution shows North America and Europe as dominant regions, but growth potential lies significantly in Asia-Pacific markets due to rapid retail expansion and increasing technological adoption.
Web traffic statistics for the several City-Parish websites, brla.gov, city.brla.gov, Red Stick Ready, GIS, Open Data etc. Information provided by Google Analytics.
Click Web Traffic Combined with Transaction Data: A New Dimension of Shopper Insights
Consumer Edge is a leader in alternative consumer data for public and private investors and corporate clients. Click enhances the unparalleled accuracy of CE Transact by allowing investors to delve deeper and browse further into global online web traffic for CE Transact companies and more. Leverage the unique fusion of web traffic and transaction datasets to understand the addressable market and understand spending behavior on consumer and B2B websites. See the impact of changes in marketing spend, search engine algorithms, and social media awareness on visits to a merchant’s website, and discover the extent to which product mix and pricing drive or hinder visits and dwell time. Plus, Click uncovers a more global view of traffic trends in geographies not covered by Transact. Doubleclick into better forecasting, with Click.
Consumer Edge’s Click is available in machine-readable file delivery and enables: • Comprehensive Global Coverage: Insights across 620+ brands and 59 countries, including key markets in the US, Europe, Asia, and Latin America. • Integrated Data Ecosystem: Click seamlessly maps web traffic data to CE entities and stock tickers, enabling a unified view across various business intelligence tools. • Near Real-Time Insights: Daily data delivery with a 5-day lag ensures timely, actionable insights for agile decision-making. • Enhanced Forecasting Capabilities: Combining web traffic indicators with transaction data helps identify patterns and predict revenue performance.
Use Case: Analyze Year Over Year Growth Rate by Region
Problem A public investor wants to understand how a company’s year-over-year growth differs by region.
Solution The firm leveraged Consumer Edge Click data to: • Gain visibility into key metrics like views, bounce rate, visits, and addressable spend • Analyze year-over-year growth rates for a time period • Breakout data by geographic region to see growth trends
Metrics Include: • Spend • Items • Volume • Transactions • Price Per Volume
Inquire about a Click subscription to perform more complex, near real-time analyses on public tickers and private brands as well as for industries beyond CPG like: • Monitor web traffic as a leading indicator of stock performance and consumer demand • Analyze customer interest and sentiment at the brand and sub-brand levels
Consumer Edge offers a variety of datasets covering the US, Europe (UK, Austria, France, Germany, Italy, Spain), and across the globe, with subscription options serving a wide range of business needs.
Consumer Edge is the Leader in Data-Driven Insights Focused on the Global Consumer
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Here are a few use cases for this project:
Traffic Flow Analysis: The dataset can be used in machine learning models to analyze traffic flow in cities. It can identify the type of vehicles on the city roads at different times of the day, helping in planning and traffic management.
Vehicle Class Based Toll Collection: Toll booths can use this model to automatically classify and charge vehicles based on their type, enabling a more efficient and automated system.
Parking Management System: Parking lot owners can use this model to easily classify vehicles as they enter for better space management. Knowing the vehicle type can help assign it to the most suitable parking spot.
Traffic Rule Enforcement: The dataset can be used to create a computer vision model to automatically detect any traffic violations like wrong lane driving by different vehicle types, and notify law enforcement agencies.
Smart Ambulance Tracking: The system can help in identifying and tracking ambulances and other emergency vehicles, enabling traffic management systems to provide priority routing during emergencies.
https://data.gov.tw/licensehttps://data.gov.tw/license
Supplemental Note:(1) Due to construction in the entire area, visitor counts at Qingcaohu from June 2020 to July 2021 were not recorded.(2) Starting from August 2021, big data collection and analysis methods such as mobile device location signals were used to estimate the number of visitors within the scenic area. (Previously, estimation was based on photographs taken at the entrance on the 2nd of each month.)(3) After a review in September 2022, a reassessment was conducted, and visitor numbers from August 2021 were recalculated to account for the possibility of not estimating non-mobile users such as children.
This data set contains internet traffic data captured by an Internet Service Provider (ISP) using Mikrotik SDN Controller and packet sniffer tools. The data set includes traffic from over 2000 customers who use Fibre to the Home (FTTH) and Gpon internet connections. The data was collected over a period of several months and contains all traffic in its original format with headers and packets.
The data set contains information on inbound and outbound traffic, including web browsing, email, file transfers, and more. The data set can be used for research in areas such as network security, traffic analysis, and machine learning.
**Data Collection Method: ** The data was captured using Mikrotik SDN Controller and packet sniffer tools. These tools capture traffic data by monitoring network traffic in real-time. The data set contains all traffic data in its original format, including headers and packets.
**Data Set Content: ** The data set is provided in a CSV format and includes the following fields:
MAC Protocol Examples 802.2 - 802.2 Frames (0x0004) arp - Address Resolution Protocol (0x0806) homeplug-av - HomePlug AV MME (0x88E1) ip - Internet Protocol version 4 (0x0800) ipv6 - Internet Protocol Version 6 (0x86DD) ipx - Internetwork Packet Exchange (0x8137) lldp - Link Layer Discovery Protocol (0x88CC) loop-protect - Loop Protect Protocol (0x9003) mpls-multicast - MPLS multicast (0x8848) mpls-unicast - MPLS unicast (0x8847) packing-compr - Encapsulated packets with compressed IP packing (0x9001) packing-simple - Encapsulated packets with simple IP packing (0x9000) pppoe - PPPoE Session Stage (0x8864) pppoe-discovery - PPPoE Discovery Stage (0x8863) rarp - Reverse Address Resolution Protocol (0x8035) service-vlan - Provider Bridging (IEEE 802.1ad) & Shortest Path Bridging IEEE 802.1aq (0x88A8) vlan - VLAN-tagged frame (IEEE 802.1Q) and Shortest Path Bridging IEEE 802.1aq with NNI compatibility (0x8100)
**Data Usage: ** The data set can be used for research in areas such as network security, traffic analysis, and machine learning. Researchers can use the data to develop new algorithms for detecting and preventing cyber attacks, analyzing internet traffic patterns, and more.
**Data Availability: ** If you are interested in using this data set for research purposes, please contact us at asfandyar250@gmail.com for more information and references. The data set is available for download on Kaggle and can be accessed by researchers who have obtained permission from the ISP.
We hope this data set will be useful for researchers in the field of network security and traffic analysis. If you have any questions or need further information, please do not hesitate to contact us.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F5985737%2F61c81ce9eb393f8fc7c15540c9819b95%2FData.PNG?generation=1683750473536727&alt=media" alt="">
You can use Wireshark or other software's to view files
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is a dataset of Tor cell file extracted from browsing simulation using Tor Browser. The simulations cover both desktop and mobile webpages. The data collection process was using WFP-Collector tool (https://github.com/irsyadpage/WFP-Collector). All the neccessary configuration to perform the simulation as detailed in the tool repository.The webpage URL is selected by using the first 100 website based on: https://dataforseo.com/free-seo-stats/top-1000-websites.Each webpage URL is visited 90 times for each deskop and mobile browsing mode.
https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy
The Website Traffic Generator market is projected to reach USD 2,844.3 million by 2033, expanding at a CAGR of 12.1% from 2023 to 2033. Rising demand for online traffic, increasing digital marketing investments, and the advent of new technologies are major factors driving market growth. The increasing adoption of social media platforms and the growing popularity of mobile internet usage further contribute to the demand for website traffic generators. The market is segmented by type into Referral Traffic Generators, Social Media Traffic Generators, Direct Traffic Generators, and Others. Referral Traffic Generators currently dominate the market, accounting for a significant share of the total revenue. However, Social Media Traffic Generators are expected to witness the fastest growth over the forecast period due to the growing popularity of social media platforms as a source of website traffic. The market is also segmented by application into Individual and Enterprise, with the Enterprise segment holding a larger market share. Key players in the market include Babylon Traffic, SparkTraffic, Getthit, TrafficApe, Somiibo, Serp Empire, EasyHits4U, Growtraffic, 10KHits, Traffup, Torpedo Traffic, YOOtraffic, SigmaTraffic, TheTraffic, WebTrafficly, Traffic Creator, and Apex Traffic.
Area Visitors data enables users to compare foot traffic trends for different areas of interest globally over time. Companies use Area Visitors for foot traffic and footfall analysis, competitive insights, real estate site selection, investment analysis or property valuation, attribution and brand lift measurement, operational and staffing strategy, anomaly detections and supply chain risk management, and predictive analysis for brand performance in different financial markets. Enter polygonal geofence coordinates (geoJSON format) for locations anywhere in the world, select a time range, and add the Forensic Flags you’d like to quickly receive a list and a count of the mobile devices observed at that location during that time frame.
Area Visitors data is available on demand via API query. The data can be delivered right away by direct response or exported into an AWS S3.
In March 2025, ChatGPT.com received approximately *** billion visits from users worldwide. The most recent year under analysis has seen an increase in traffic to OpenAI's artificial intelligence chatbot. This is the highest traffic volume achieved by the site to date, with values for the most recent analyzed month exceeding twice the average monthly visits for the entire examined period between April 2023 and April 2024.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Explore our detailed website traffic dataset featuring key metrics like page views, session duration, bounce rate, traffic source, and conversion rates.