100+ datasets found
  1. a

    Fundamentals of Mapping and Visualization

    • hub.arcgis.com
    Updated May 3, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Delaware (2019). Fundamentals of Mapping and Visualization [Dataset]. https://hub.arcgis.com/documents/d083dd3edc1b4b9d9d3ee95c75717f60
    Explore at:
    Dataset updated
    May 3, 2019
    Dataset authored and provided by
    State of Delaware
    Description

    Using ArcGIS, anyone can quickly make and share a map-but creating an effective map requires knowing a few design fundamentals. Enroll in this plan to learn techniques to appropriately symbolize and label map features, apply settings that enhance user interaction with your maps, and create impactful data visualizations that resonate with your intended audience.Goals Choose appropriate map symbols to represent your data. Create attractive labels to provide information about map features. Visualize data in 2D and 3D.

  2. 3D Visualisation Map (2017)

    • data.gov.hk
    Updated Jul 13, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.gov.hk (2020). 3D Visualisation Map (2017) [Dataset]. https://data.gov.hk/en-data/dataset/hk-landsd-openmap-smo-3d-vis-map
    Explore at:
    Dataset updated
    Jul 13, 2020
    Dataset provided by
    data.gov.hk
    Description

    3D Visualisation Map (2017)

  3. 3D Visualisation Map (Tile-based models)

    • data.gov.hk
    Updated Apr 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.gov.hk (2023). 3D Visualisation Map (Tile-based models) [Dataset]. https://data.gov.hk/en-data/dataset/hk-landsd-openmap-3d-visualisation-map-tile-based-models
    Explore at:
    Dataset updated
    Apr 4, 2023
    Dataset provided by
    data.gov.hk
    Description

    The 3D Visualisation Map (Tile-based models) are based on the mesh model made from the oblique aerial images. The dataset covers the whole territory of Hong Kong. You can click the link below to access the 3D Visualisation Map (https://3d.map.gov.hk/).

  4. Multibeam Sonar Data Visualization Map

    • noaa.hub.arcgis.com
    Updated Mar 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA GeoPlatform (2022). Multibeam Sonar Data Visualization Map [Dataset]. https://noaa.hub.arcgis.com/maps/6795496737cf451d8fa4d5306b60889e
    Explore at:
    Dataset updated
    Mar 15, 2022
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Authors
    NOAA GeoPlatform
    Area covered
    Description

    This map contains multibeam sonar survey data collected during the 2021 field project. This file supports the New Technology and the Search for Historic Shipwrecks StoryMap created by the National Oceanic and Atmospheric Administration (NOAA) National Centers for Coastal Ocean Science (NCCOS) and Office of National Marine Sanctuaries (ONMS). The StoryMap can be viewed here. The StoryMap was funded through NOAA's Office of Ocean Exploration and Research. More information on the project can be found here. All project files are stored in the NOAA National Centers for Environmental Information.

  5. I

    Interactive Map Creation Tools Report

    • marketresearchforecast.com
    doc, pdf, ppt
    Updated Mar 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Research Forecast (2025). Interactive Map Creation Tools Report [Dataset]. https://www.marketresearchforecast.com/reports/interactive-map-creation-tools-35432
    Explore at:
    pdf, ppt, docAvailable download formats
    Dataset updated
    Mar 15, 2025
    Dataset authored and provided by
    Market Research Forecast
    License

    https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    Discover the booming interactive map creation tools market! This in-depth analysis reveals a $2.5 billion market in 2025, projected to reach $8 billion by 2033, driven by cloud-based solutions and growing data visualization needs. Learn about key players, market segmentation, and regional trends shaping this exciting sector.

  6. 3D Visualisation Map (Non-textured models) | DATA.GOV.HK

    • data.gov.hk
    Updated Oct 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.gov.hk (2025). 3D Visualisation Map (Non-textured models) | DATA.GOV.HK [Dataset]. https://data.gov.hk/en-data/dataset/hk-landsd-openmap-3d-visualisation-map-non-textured-models
    Explore at:
    Dataset updated
    Oct 2, 2025
    Dataset provided by
    data.gov.hk
    Description

    The 3D Visualisation Map (Non-textured models) are a set of digital data of 3D models featuring geometry models to represent the geometrical shape and position of different types of ground objects, including building, infrastructure and terrain. The dataset covers the whole territory of Hong Kong. You can click the link below to access the 3D Visualisation Map (https://3d.map.gov.hk).

  7. a

    ArcGIS Pro: Mapping and Visualization

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated May 3, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Delaware (2019). ArcGIS Pro: Mapping and Visualization [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/documents/delaware::arcgis-pro-mapping-and-visualization/about
    Explore at:
    Dataset updated
    May 3, 2019
    Dataset authored and provided by
    State of Delaware
    Description

    Discover how to display and symbolize both 2D and 3D data. Search, access, and create new map symbols. Learn to specify and configure text symbols for your map. Complete your map by creating an effective layout to display and distribute your work.

  8. Geospatial Data Pack for Visualization

    • kaggle.com
    zip
    Updated Oct 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vega Datasets (2025). Geospatial Data Pack for Visualization [Dataset]. https://www.kaggle.com/datasets/vega-datasets/geospatial-data-pack
    Explore at:
    zip(1422109 bytes)Available download formats
    Dataset updated
    Oct 21, 2025
    Dataset authored and provided by
    Vega Datasets
    Description

    Geospatial Data Pack for Visualization 🗺️

    Learn Geographic Mapping with Altair, Vega-Lite and Vega using Curated Datasets

    Complete geographic and geophysical data collection for mapping and visualization. This consolidation includes 18 complementary datasets used by 31+ Vega, Vega-Lite, and Altair examples 📊. Perfect for learning geographic visualization techniques including projections, choropleths, point maps, vector fields, and interactive displays.

    Source data lives on GitHub and can also be accessed via CDN. The vega-datasets project serves as a common repository for example datasets used across these visualization libraries and related projects.

    Why Use This Dataset? 🤔

    • Comprehensive Geospatial Types: Explore a variety of core geospatial data models:
      • Vector Data: Includes points (like airports.csv), lines (like londonTubeLines.json), and polygons (like us-10m.json).
      • Raster-like Data: Work with gridded datasets (like windvectors.csv, annual-precip.json).
    • Diverse Formats: Gain experience with standard and efficient geospatial formats like GeoJSON (see Table 1, 2, 4), compressed TopoJSON (see Table 1), and plain CSV/TSV (see Table 2, 3, 4) for point data and attribute tables ready for joining.
    • Multi-Scale Coverage: Practice visualization across different geographic scales, from global and national (Table 1, 4) down to the city level (Table 1).
    • Rich Thematic Mapping: Includes multiple datasets (Table 3) specifically designed for joining attributes to geographic boundaries (like states or counties from Table 1) to create insightful choropleth maps.
    • Ready-to-Use & Example-Driven: Cleaned datasets tightly integrated with 31+ official examples (see Appendix) from Altair, Vega-Lite, and Vega, allowing you to immediately practice techniques like projections, point maps, network maps, and interactive displays.
    • Python Friendly: Works seamlessly with essential Python libraries like Altair (which can directly read TopoJSON/GeoJSON), Pandas, and GeoPandas, fitting perfectly into the Kaggle notebook environment.

    Table of Contents

    Dataset Inventory 🗂️

    This pack includes 18 datasets covering base maps, reference points, statistical data for choropleths, and geophysical data.

    1. BASE MAP BOUNDARIES (Topological Data)

    DatasetFileSizeFormatLicenseDescriptionKey Fields / Join Info
    US Map (1:10m)us-10m.json627 KBTopoJSONCC-BY-4.0US state and county boundaries. Contains states and counties objects. Ideal for choropleths.id (FIPS code) property on geometries
    World Map (1:110m)world-110m.json117 KBTopoJSONCC-BY-4.0World country boundaries. Contains countries object. Suitable for world-scale viz.id property on geometries
    London BoroughslondonBoroughs.json14 KBTopoJSONCC-BY-4.0London borough boundaries.properties.BOROUGHN (name)
    London CentroidslondonCentroids.json2 KBGeoJSONCC-BY-4.0Center points for London boroughs.properties.id, properties.name
    London Tube LineslondonTubeLines.json78 KBGeoJSONCC-BY-4.0London Underground network lines.properties.name, properties.color

    2. GEOGRAPHIC REFERENCE POINTS (Point Data) 📍

    DatasetFileSizeFormatLicenseDescriptionKey Fields / Join Info
    US Airportsairports.csv205 KBCSVPublic DomainUS airports with codes and coordinates.iata, state, `l...
  9. h

    ARCHITRAVE [map visualization : data & software]

    • heidata.uni-heidelberg.de
    application/gzip, pdf
    Updated Oct 22, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hendrik Ziegler; Hendrik Ziegler; Alexandra Pioch; Alexandra Pioch (2021). ARCHITRAVE [map visualization : data & software] [Dataset]. http://doi.org/10.11588/DATA/AT1QUR
    Explore at:
    pdf(241144), application/gzip(914689)Available download formats
    Dataset updated
    Oct 22, 2021
    Dataset provided by
    heiDATA
    Authors
    Hendrik Ziegler; Hendrik Ziegler; Alexandra Pioch; Alexandra Pioch
    License

    https://heidata.uni-heidelberg.de/api/datasets/:persistentId/versions/2.0/customlicense?persistentId=doi:10.11588/DATA/AT1QURhttps://heidata.uni-heidelberg.de/api/datasets/:persistentId/versions/2.0/customlicense?persistentId=doi:10.11588/DATA/AT1QUR

    Time period covered
    1685 - 1723
    Area covered
    France, Paris, France, Belgium, Italy, Versailles, France, Netherlands, Poland, Germany, Spain
    Dataset funded by
    DFG-ANR
    Description

    The dataset includes cartographic visualization data and software designed, implemented, and published for the ARCHITRAVE research project website. The research focused on the edition, executed in German and French, of six travelogues by German travelers of the Baroque period who visited Paris and Versailles. The edited texts are published in the Textgrid repository. For all further information on the content and objectives of the research, please refer to the website (https://architrave.eu/) and given literature. Three visualizations were created for the website: the travel stops of five of the travelers on their way to Paris and Versailles the sites in Europe mentioned in the six travelogues the sites in Paris described by the six travelers The visualizations were implemented with Leaflet.js. The dataset contains scripts for data crunching processed geodata scripts for leaflet.js License README

  10. s

    Visualization & Mind Maps Plugin Statistics

    • system3.md
    Updated Feb 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    System 3 (2025). Visualization & Mind Maps Plugin Statistics [Dataset]. https://system3.md/observatory/categories/visualization-mindmaps
    Explore at:
    Dataset updated
    Feb 9, 2025
    Dataset authored and provided by
    System 3
    Description

    Download statistics and trends for 141 plugins in the Visualization & Mind Maps category

  11. C

    Dataset visualization service: Land Use Map sc. 1:25000

    • ckan.mobidatalab.eu
    wms
    Updated May 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoDatiGovIt RNDT (2023). Dataset visualization service: Land Use Map sc. 1:25000 [Dataset]. https://ckan.mobidatalab.eu/tl/dataset/land-use-map-dataset-display-service-sc-1-25000
    Explore at:
    wmsAvailable download formats
    Dataset updated
    May 3, 2023
    Dataset provided by
    GeoDatiGovIt RNDT
    Description

    The land use legend originates from the CORINE land cover project. It is a tessellation of artificially modeled terrains, agricultural territories, wooded territories and semi-natural environments, wetlands, waters, etc. - Coverage: Entire Regional Territory - Origin: Photo-interpretation and aerial shots in B/W or in color at 1:13000 scale.

  12. d

    Data from: 3d visualization of zoning plans

    • dexes.eu
    • data.groningen.nl
    • +2more
    pdf
    Updated Sep 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Groningen (2024). 3d visualization of zoning plans [Dataset]. https://dexes.eu/nl/dataset/3d-visualization-of-zoning-plans/68c21fa554a367ab0c0dc0d3
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Sep 17, 2024
    Dataset authored and provided by
    Groningen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Traditionally, zoning plans have been represented on a 2D map. However, visualizing a zoning plan in 2D has several limitations, such as visualizing heights of buildings. Furthermore, a zoning plan is abstract, which for citizens can be hard to interpret. Therefore, the goal of this research is to explore how a zoning plan can be visualized in 3D and how it can be visualized it is understandable for the public. The 3D visualization of a zoning plan is applied in a case study, presented in Google Earth, and a survey is executed to verify how the respondents perceive the zoning plan from the case study. An important factor of zoning plans is interpretation, since it determines if the public is able to understand what is visualized by the zoning plan. This is challenging, since a zoning plan is abstract and consists of many detailed information and difficult terms. In the case study several techniques are used to visualize the zoning plan in 3D. The survey shows that visualizing heights in 3D gives a good impression of the maximum heights and is considered as an important advantage in comparison to 2D. The survey also made clear including existing buildings is useful, which can help that the public can recognize the area easier. Another important factor is interactivity. Interactivity can range from letting people navigate through a zoning plan area and in the case study users can click on a certain area or object in the plan and subsequently a menu pops up showing more detailed information of a certain object. The survey made clear that using a popup menu is useful, but this technique did not optimally work. Navigating in Google Earth was also being positively judged. Information intensity is also an important factor Information intensity concerns the level of detail of a 3D representation of an object. Zoning plans are generally not meant to be visualized in a high level of detail, but should be represented abstract. The survey could not implicitly point out that the zoning plan shows too much or too less detail, but it could point out that the majority of the respondents answered that the zoning plan does not show too much information. The interface used for the case study, Google Earth, has a substantial influence on the interpretation of the zoning plan. The legend in Google Earth is unclear and an explanation of the zoning plan is lacking, which is required to make the zoning plan more understandable. This research has shown that 3D can stimulate the interpretation of zoning plans, because users can get a better impression of the plan and is clearer than a current 2D zoning plan. However, the interpretation of a zoning plan, even in 3D, still is complex.

  13. H

    Map Visualization example of RHESSys output at Coweeta subbasin18

    • hydroshare.org
    • search.dataone.org
    zip
    Updated Mar 21, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    YOUNG-DON CHOI (2020). Map Visualization example of RHESSys output at Coweeta subbasin18 [Dataset]. https://www.hydroshare.org/resource/13ab4895ec1d43cfa91b76452511a9d4
    Explore at:
    zip(489.7 MB)Available download formats
    Dataset updated
    Mar 21, 2020
    Dataset provided by
    HydroShare
    Authors
    YOUNG-DON CHOI
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Map Visualization example of RHESSys output at Coweeta subbasin18

  14. I

    Interactive Map Creation Tools Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Apr 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). Interactive Map Creation Tools Report [Dataset]. https://www.marketreportanalytics.com/reports/interactive-map-creation-tools-55534
    Explore at:
    doc, pdf, pptAvailable download formats
    Dataset updated
    Apr 3, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    Discover the booming interactive map creation tools market! Our in-depth analysis reveals a $2 billion market in 2025, projected to grow at 15% CAGR through 2033. Learn about key trends, leading companies (Mapbox, ArcGIS, Google), and regional insights to capitalize on this expanding sector.

  15. Madrid cycle track: visualizing the cyclable city

    • tandf.figshare.com
    • datasetcatalog.nlm.nih.gov
    pdf
    Updated Jun 3, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gustavo Romanillos; Martin Zaltz Austwick (2023). Madrid cycle track: visualizing the cyclable city [Dataset]. http://doi.org/10.6084/m9.figshare.3830241.v2
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 3, 2023
    Dataset provided by
    Taylor & Francishttps://taylorandfrancis.com/
    Authors
    Gustavo Romanillos; Martin Zaltz Austwick
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Madrid
    Description

    Maps are currently experiencing a paradigm shift from static representations to dynamic platforms that capture, visualize and analyse new data, bringing different possibilities for exploration and research. The first objective of this paper is to present a map that illustrates, for the first time, the real flow of casual cyclists and bike messengers in the city of Madrid. The second objective is to describe the development and results of the Madrid Cycle Track initiative, an online platform launched with the aim of collecting cycling routes and other information from volunteers. In the framework of this initiative, different online maps are presented and their functionalities described. Finally, a supplemental video visualizes the cyclist flow over the course of a day.

  16. COVID-19 INDIA

    • kaggle.com
    zip
    Updated Apr 16, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data_explorer (2020). COVID-19 INDIA [Dataset]. https://www.kaggle.com/dataexplorer26/covid-apr16
    Explore at:
    zip(1039 bytes)Available download formats
    Dataset updated
    Apr 16, 2020
    Authors
    data_explorer
    Area covered
    India
    Description

    Context

    COVID-19, India This tutorial help in understanding basics of data visualization and mapping using Python.

    Content

    Data sets contain State wise confirmed cases, death toll, and cured cases till date.

    Acknowledgements

    I owe my thanks to the data sets provider.

    Inspiration

    Data visualization helps in creating trends, patterns, interactive graphs and maps. This will help policy and decision makers to understand,discuss and visualize the data.

  17. H

    06_COVID-19 Cases Dyanmic Map Visualization

    • dataverse.harvard.edu
    • search.dataone.org
    Updated Feb 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Spatial Data Lab (2024). 06_COVID-19 Cases Dyanmic Map Visualization [Dataset]. http://doi.org/10.7910/DVN/VABWVR
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 20, 2024
    Dataset provided by
    Harvard Dataverse
    Authors
    Spatial Data Lab
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This case study includes multiple workflows, visualizing global countries' COVID-19 cases as dynamic maps, such as HTML, GIF, and MP4.

  18. H

    FIM (Flood Information Map Visualization) Deck

    • hydroshare.org
    • search.dataone.org
    zip
    Updated Apr 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Moiyyad Sufi; Carlos Erazo; Ibrahim Demir (2025). FIM (Flood Information Map Visualization) Deck [Dataset]. https://www.hydroshare.org/resource/59fa9659f1d94caeb0376ad94db97331
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    Apr 8, 2025
    Dataset provided by
    HydroShare
    Authors
    Moiyyad Sufi; Carlos Erazo; Ibrahim Demir
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    The Flood Inundation Mapping (FIM) Visualization Deck is a web-based application designed to display and compare flood extent and depth information across various temporal and scenario conditions. It provides a front-end interface for accessing geospatial flood data and interacting with mapped outputs generated from hydraulic modeling.

    Core Functions: • Flood Extent Mapping: Visualizes flood extents from modeled scenarios (e.g., 2-year, 10-year, 100-year events) and real-time conditions based on streamflow observations or forecasts. • Flood Depth Visualization: Displays depth rasters over affected areas, derived from hydraulic simulations (e.g., HEC-RAS). • Scenario Comparison: Allows side-by-side viewing of multiple FIM outputs to support calibration or decision analysis. • Layer Management Toolbox: Users can toggle basemaps, adjust layer transparency, load datasets, and control map extents.

    Data Inputs: • Precomputed flood inundation extents (raster/tile layers) • Depth grids • Stream gauge metadata • Associated hydraulic model outputs

    Technical Stack: • Front-end: Built with JavaScript, primarily using Leaflet.js for interactive map rendering. • Back-end Services: Uses GeoServer to serve raster tiles and vector layers (via WMS/WFS). Uses OGC-compliant services and REST endpoints for data queries. • Data Formats: Raster layers (e.g., GeoTIFF, PNG tiles), vector layers (GeoJSON, shapefiles), elevation models, and model-derived grid outputs. • Database: Integrates with a PostgreSQL/PostGIS backend or similar spatial database for hydrologic and geospatial data management. • Deployment: Hosted via University of Iowa infrastructure, with modular UI elements tied to specific watersheds or study areas.

    Intended Use: The application provides a reference and exploratory tool for comparing modeled flood scenarios, visualizing extent and depth data, and interacting with region-specific inundation data products.

  19. d

    Zoning Map in 3D

    • catalog.data.gov
    • opendata.dc.gov
    Updated Feb 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Washington, DC (2025). Zoning Map in 3D [Dataset]. https://catalog.data.gov/dataset/zoning-map-in-3d
    Explore at:
    Dataset updated
    Feb 5, 2025
    Dataset provided by
    City of Washington, DC
    Description

    The DC Office of Zoning (OZ) proudly announces an expansion of its online mapping services with the release of the DCOZ 3D Zoning Map. This new mapping application builds off existing DC Open Datasets and new OZ Zoning data to visualize the District in 3D, providing greater context for proposed development projects and helping enhance Board of Zoning Adjustment and Zoning Commission decisions throughout the District. The 3D Zoning Map was developed to enhance District resident’s understanding, knowledge, and participation in Zoning matters, and help increase transparency in the Zoning process.

  20. Data from: NDS: an interactive, web-based system to visualize urban...

    • tandf.figshare.com
    mp4
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yu Lan; Elizabeth Delmelle; Eric Delmelle (2023). NDS: an interactive, web-based system to visualize urban neighborhood dynamics in United States [Dataset]. http://doi.org/10.6084/m9.figshare.14484512.v1
    Explore at:
    mp4Available download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    Taylor & Francishttps://taylorandfrancis.com/
    Authors
    Yu Lan; Elizabeth Delmelle; Eric Delmelle
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    NDS is an interactive, web-based system, for the visualization of multidimensional neighborhood dynamics across the 50 largest US Metropolitan Statistical Areas (MSAs) from 1980 to 2010 (http://neighborhooddynamics.dreamhosters.com). Four different visualization tools are developed: (1) an interactive time slider to show neighborhood classification changes for different years; (2) multiple interactive bar charts for each variables of each neighborhood; (3) an animated neighborhood’s trajectory and sequence cluster on a self-organizing map (SOM) output space; and (4) a synchronized visualization tool showing maps for four time stamps at once. The development of this interactive online platform for visualizing dynamics overcomes many of the challenges associated with communicating changes for multiple variables, across multiple time stamps, and for a large geographic area when relying upon static maps. The system enables users to select and dive into details on particular neighborhoods and explore their changes over time.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
State of Delaware (2019). Fundamentals of Mapping and Visualization [Dataset]. https://hub.arcgis.com/documents/d083dd3edc1b4b9d9d3ee95c75717f60

Fundamentals of Mapping and Visualization

Explore at:
Dataset updated
May 3, 2019
Dataset authored and provided by
State of Delaware
Description

Using ArcGIS, anyone can quickly make and share a map-but creating an effective map requires knowing a few design fundamentals. Enroll in this plan to learn techniques to appropriately symbolize and label map features, apply settings that enhance user interaction with your maps, and create impactful data visualizations that resonate with your intended audience.Goals Choose appropriate map symbols to represent your data. Create attractive labels to provide information about map features. Visualize data in 2D and 3D.

Search
Clear search
Close search
Google apps
Main menu