2 datasets found
  1. Z

    Data from: Visualizing histopathologic deep learning classification and...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jan 24, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Faust, Kevin; Xie, Quin; Han, Dominick; Goyle, Kartikay; Volynskaya, Zoya; Djuric, Ugljesa; Diamandis, Phedias (2020). Visualizing histopathologic deep learning classification and anomaly detection using nonlinear feature space dimensionality reduction [Dataset]. https://data.niaid.nih.gov/resources?id=ZENODO_1237975
    Explore at:
    Dataset updated
    Jan 24, 2020
    Dataset provided by
    University Health Network
    University of Toronto
    Authors
    Faust, Kevin; Xie, Quin; Han, Dominick; Goyle, Kartikay; Volynskaya, Zoya; Djuric, Ugljesa; Diamandis, Phedias
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Training image dataset used in the manuscript "Visualizing histopathologic deep learning classification and anomaly detection using nonlinear feature space dimensionality reduction"

  2. AstroSpectra-MNIST Dataset

    • kaggle.com
    zip
    Updated May 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    zzuygs (2025). AstroSpectra-MNIST Dataset [Dataset]. https://www.kaggle.com/datasets/zzuygs/astrospectra-mnist-dataset
    Explore at:
    zip(50526909 bytes)Available download formats
    Dataset updated
    May 23, 2025
    Authors
    zzuygs
    Description

    Description:

    AstroSpectra-MNIST is a novel dataset designed to benchmark machine learning models on astronomical spectral classification tasks. We provide a lightweight, easily storable, and processable dataset.Through a series of processes including data preprocessing and normalization, the astronomical spectral data from LAMOST are converted into lightweight grayscale images in the format of 28*28 pixels. AstroSpectra-MNIST maintains the same image structure as MNIST but differs in storage format. It is characterized by its small size, ease of storage and accessibility. It includes two versions: AstroSpectra-MNIST-v1 and AstroSpectra-MNIST-v2. v1 includes three categories: Star, Galaxy, and QSO, which are labeled with the numbers 1, 2, and 3, respectively. v2 covers three subcategories of stars, namely F-type, G-type, and K-type, which are also labeled with the numbers 1, 2, and 3.

    Dataset Structure:

    AstroSpectra-MNIST/ ├── AstroSpectra-MNIST-v1/ │ ├── train_imagesv1/ │ ├── test_imagesv1/ │ ├── train_labelsv1.csv │ └── test_labelsv1.csv ├── AstroSpectra-MNIST-v2/ │ ├── train_imagesv2/ │ ├── test_imagesv2/ │ ├── train_labelsv2.csv │ └── test_labelsv2.csv └── README.md

    • AstroSpectra-MNIST-v1(stars, galaxies, quasars)

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F27013442%2Faf12f069bd2fa5a08bd448352343d0b5%2FIMG_202508013580_568x169.png?generation=1754018243177992&alt=media" alt="">

    File NameDescriptionFormatSize
    train_imagesv1/8000 grayscale imagesPNG4.42 MB
    test_imagesv1/1000 grayscale imagesPNG564 KB
    train_labelsv1.csvLabels for v1 training setCSV131 KB
    test_labelsv1.csvLabels for v1 test setCSV16.5 KB
    • AstroSpectra-MNIST-v2(F-type, G-type, K-type stars) https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F27013442%2F3bcf0868cb7b042321498af84776c3fc%2FIMG_202508017134_565x176.png?generation=1754036704871576&alt=media" alt="">
    File NameDescriptionFormatSize
    train_imagesv2/42454 grayscale imagesPNG25.9 MB
    test_imagesv2/7546 grayscale imagesPNG4.56 MB
    train_labelsv2.csvLabels for v2 training setCSV776 KB
    test_labelsv2.csvLabels for v2 test setCSV124 KB

    Visualization and Analysis:

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F27013442%2F793bfcc0e1f1b4204cd6960a9c3d9de2%2Fb4cd842b5059ed8b7c405d1d6891029.png?generation=1754015363119559&alt=media" alt="AstroSpectra-MNIST Sample">

    -**AstroSpectra-MNIST-v1**: PCA shows partial split among Star, Galaxy, and QSO classes, suggesting distinguishable spectral patterns. t-SNE offers clearer class separation and reveals subclusters within the stellar class, indicating internal heterogeneity and supporting the need for secondary classification.

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F27013442%2Fa1fde7f039b9d6c0605bb5acd66b05af%2Fd7c16f68e5ee1d39f302c5671d2c5af.png?generation=1754015398742400&alt=media" alt="AstroSpectra-MNIST Sample">

    -**AstroSpectra-MNIST-v2**: PCA shows significant overlap among F, G,and K subclasses, highlighting classification difficulty. t-SNE improves separation and shows discernible subclass clusters despite some overlap, demonstrating its advantage in visualizing complex spectroscopic data.

    Benchmark:

    Classical models (e.g., AlexNet) are adapted by converting input channels to grayscale (single-channel), adjusting the output layer to 3 classes, and standardizing images through upsampling to 224×224 resolution. Additionally, we created two custom CNN models, SimpleCNN1 and SimpleCNN2, each processing 28×28 grayscale images through dual convolution pool blocks and fully connected layers to output three class predictions.

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F27013442%2Feda312eb5756e823880b0d5000b3240c%2FIMG_202508016628_576x301.png?generation=1754035851976237&alt=media" alt="">

    We obtain 3601-dimensional raw spectrum vectors from LAMOST DR1 and compress them into 721-dimensional feature vectors using a mean filter. This new dataset is named LineAstroSpectra and includes two versions: LineAstroSpectra-v1 and LineAstroSpectra-v2. Models and hyperparameters identical to the AstroSpectra-MNIST benchmark were applied to LineAstroSpectra. The results provide a direct comparison between the raw spectral and the corresponding AstroSpectra-MNIST version. For machine l...

  3. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Faust, Kevin; Xie, Quin; Han, Dominick; Goyle, Kartikay; Volynskaya, Zoya; Djuric, Ugljesa; Diamandis, Phedias (2020). Visualizing histopathologic deep learning classification and anomaly detection using nonlinear feature space dimensionality reduction [Dataset]. https://data.niaid.nih.gov/resources?id=ZENODO_1237975

Data from: Visualizing histopathologic deep learning classification and anomaly detection using nonlinear feature space dimensionality reduction

Related Article
Explore at:
Dataset updated
Jan 24, 2020
Dataset provided by
University Health Network
University of Toronto
Authors
Faust, Kevin; Xie, Quin; Han, Dominick; Goyle, Kartikay; Volynskaya, Zoya; Djuric, Ugljesa; Diamandis, Phedias
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Training image dataset used in the manuscript "Visualizing histopathologic deep learning classification and anomaly detection using nonlinear feature space dimensionality reduction"

Search
Clear search
Close search
Google apps
Main menu