20 datasets found
  1. Visualize Urban Sprawl

    • sdiinnovation-geoplatform.hub.arcgis.com
    • africageoportal.com
    • +4more
    Updated Sep 11, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2020). Visualize Urban Sprawl [Dataset]. https://sdiinnovation-geoplatform.hub.arcgis.com/datasets/esri::visualize-urban-sprawl
    Explore at:
    Dataset updated
    Sep 11, 2020
    Dataset authored and provided by
    Esrihttp://esri.com/
    Description

    This template is used to compute urban growth between two land cover datasets, that are classified into 20 classes based on the Anderson Level II classification system. This raster function template is used to generate a visual representation indicating urbanization across two different time periods. Typical datasets used for this template is the National Land Cover Database. A more detailed blog on the datasets can be found on ArcGIS Blogs. This template works in ArcGIS Pro Version 2.6 and higher. It's designed to work on Enterprise 10.8.1 and higher.References:Raster functionsWhen to use this raster function templateThe template is useful to generate an intuitive visualization of urbanization across two images.Sample Images to test this againstNLCD2006 and NLCD2011How to use this raster function templateIn ArcGIS Pro, search ArcGIS Living Atlas for raster function templates to apply them to your imagery layer. You can also download the raster function template, attach it to a mosaic dataset, and publish it as an image service. The output is a visual representation of urban sprawl across two images. Applicable geographiesThe template is designed to work globally.

  2. Lesson Plan: Using raster data and imagery in ArcGIS Pro

    • imagery-ivt.hub.arcgis.com
    Updated May 12, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Imagery Virtual Team (2022). Lesson Plan: Using raster data and imagery in ArcGIS Pro [Dataset]. https://imagery-ivt.hub.arcgis.com/datasets/lesson-plan-using-raster-data-and-imagery-in-arcgis-pro
    Explore at:
    Dataset updated
    May 12, 2022
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri Imagery Virtual Team
    Description

    Lesson Plan: Discover ArcGIS Pro's capabilities for visualizing and analyzing raster data and satellite imagery.1. Prepare imagery and raster data for analysis2. Assess hail damage in cornfields with satellite imagery in ArcGIS Pro3. Get started with multidimensional multispectral imagery4. Classify land cover to measure shrinking lakes

  3. Vegetative Differerence Image

    • angola.africageoportal.com
    • agriculture.africageoportal.com
    • +7more
    Updated Sep 17, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2020). Vegetative Differerence Image [Dataset]. https://angola.africageoportal.com/datasets/esri::vegetative-differerence-image
    Explore at:
    Dataset updated
    Sep 17, 2020
    Dataset authored and provided by
    Esrihttp://esri.com/
    Description

    Vegetative Difference Image gives an easy to interpret visual representation of vegetative increase/decrease across 2 time periods.This raster function template is used to generate a visual product. The results cannot be used for analysis. This templates generates an NDVI in the backend, hence it requires your imagery to have the red and near infrared bands. In the resulting image, greens indicate increase in vegetation, while the magenta indicates decrease in vegetationReferences:Raster functionsWhen to use this raster function templateThis template is particularly useful when trying to intuitively visualize the increase or decrease in vegetation over two time periods. How to use this raster function templateIn ArcGIS Pro, search ArcGIS Living Atlas for raster function templates to apply them to your imagery layer. You can also download the raster function template, attach it to a mosaic dataset, and publish it as an image service. This index supports many satellite sensors, such as Landsat-8, Sentinel-2, Quickbird, IKONOS, Geoeye-1, and Pleiades-1.Applicable geographiesThe template uses a standard vegetation which is designed to work globally.

  4. d

    Simulation and visualization of coastal tsunami impacts from the SAFRR...

    • catalog.data.gov
    • data.usgs.gov
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Simulation and visualization of coastal tsunami impacts from the SAFRR tsunami source - Maximum tsunami velocity model of Half Moon Bay, California [Dataset]. https://catalog.data.gov/dataset/simulation-and-visualization-of-coastal-tsunami-impacts-from-the-safrr-tsunami-source-maxi-f6f99
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    U.S. Geological Survey
    Area covered
    Half Moon Bay, California
    Description

    A high-resolution raster dataset of simulated maximum tsunami velocities in Half Moon Bay, California, based on the Science Application for Risk Reduction (SAFRR) tsunami scenario.

  5. d

    Simulation and visualization of coastal tsunami impacts from the SAFRR...

    • datasets.ai
    • data.usgs.gov
    • +1more
    55
    Updated Aug 8, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of the Interior (2024). Simulation and visualization of coastal tsunami impacts from the SAFRR tsunami source - Maximum tsunami velocity model of Santa Cruz, California [Dataset]. https://datasets.ai/datasets/simulation-and-visualization-of-coastal-tsunami-impacts-from-the-safrr-tsunami-source-maxi
    Explore at:
    55Available download formats
    Dataset updated
    Aug 8, 2024
    Dataset authored and provided by
    Department of the Interior
    Area covered
    Santa Cruz, California
    Description

    A high-resolution raster dataset of simulated maximum tsunami velocities in Santa Cruz, California, based on the Science Application for Risk Reduction (SAFRR) tsunami scenario.

  6. d

    Simulation and visualization of coastal tsunami impacts from the SAFRR...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Simulation and visualization of coastal tsunami impacts from the SAFRR tsunami source - Maximum tsunami velocity model of Oakland/Alameda, California [Dataset]. https://catalog.data.gov/dataset/simulation-and-visualization-of-coastal-tsunami-impacts-from-the-safrr-tsunami-source-maxi-03ce4
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    U.S. Geological Survey
    Area covered
    Oakland, Alameda, Alameda County, California
    Description

    A high-resolution raster dataset of simulated maximum tsunami velocities in the Oakland and Alameda area of California based on the Science Application for Risk Reduction (SAFRR) tsunami scenario.

  7. Terrain

    • opendata.rcmrd.org
    • pacificgeoportal.com
    • +11more
    Updated Jul 4, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2013). Terrain [Dataset]. https://opendata.rcmrd.org/datasets/58a541efc59545e6b7137f961d7de883
    Explore at:
    Dataset updated
    Jul 4, 2013
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This dynamic World Elevation Terrain service provides numeric values representing ground surface heights, based on a digital terrain model (DTM). The ground heights are based on multiple sources. Heights are orthometric (sea level = 0), and water bodies that are above sea level have approximated nominal water heights.What can you do with this layer?Use for Visualization: This layer is generally not optimal for direct visualization. By default, 32 bit floating point values are returned, resulting in higher bandwidth requirements. Therefore, usage should be limited to applications requiring elevation data values. Alternatively, client applications can select from numerous additional functions, applied on the server, that return rendered data. For visualizations such as multi-directional hillshade, hillshade, elevation tinted hillshade, and slope, consider using the appropriate server-side function defined on this service.Use for Analysis: Yes. This layer provides data as floating point elevation values suitable for use in analysis.Note: This image services combine data from different sources and resample the data dynamically to the requested projection, extent and pixel size. For analyses using ArcGIS Desktop, you can filter a dataset, specify the projection, extent and cell size using the Make Image Server Layer geoprocessing tool.Server Functions: This layer has server functions defined for the following elevation derivatives. In ArcGIS desktop, server function can be invoked from Layer Properties - Processing Templates.

    Slope Degrees Slope Percent Aspect Ellipsoidal height Hillshade Multi-Directional Hillshade Dark Multi-Directional Hillshade Elevation Tinted Hillshade Slope Map Aspect Map Data Sources and Coverage: This layer is compiled from a variety of best available sources from several data providers. To see the coverage and extents of various datasets comprising this service in an interactive map, see Elevation Coverage Map.Mosaic Method: This image service uses a default mosaic method of "By Attribute”, using Field 'Best' and target of 0. Each of the rasters has been attributed with ‘Best’ field value that is generally a function of the pixel size such that higher resolution datasets are displayed at higher priority. Other mosaic methods can be set, but care should be taken as the order of the rasters may change. Where required, queries can also be set to display only specific datasets such as only NED or the lock raster mosaic rule used to lock to a specific dataset.Accuracy: The accuracy of these services will vary as a function of location and data source. Please refer to the metadata available in the services, and follow the links to the original sources for further details. An estimate of CE90 and LE90 are included as attributes, where available.This layer allows query, identify, and export image requests. The layer is restricted to a 5,000 x 5,000 pixel limit in a single request.This layer is part of a larger collection of elevation layers that you can use to perform a variety of mapping analysis tasks.

  8. A

    Pan-Arctic Visualization of Landscape Change (2003-2022), Arctic PASSION...

    • apgc.awi.de
    • doi.pangaea.de
    geotiff, html, png +2
    Updated May 31, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    PANGAEA (2024). Pan-Arctic Visualization of Landscape Change (2003-2022), Arctic PASSION Permafrost Service [Dataset]. http://doi.org/10.1594/PANGAEA.964814
    Explore at:
    html, zip, png(115760), geotiff, wmsAvailable download formats
    Dataset updated
    May 31, 2024
    Dataset provided by
    PANGAEA
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Arctic
    Description

    This raster dataset, in Cloud Optimized GeoTIFF format (COG), provides information on land surface changes at the pan-arctic scale. Multispectral Landsat-5 TM, Landsat-7 ETM+, and Landsat-8 OLI imagery (cloud-cover less than 80%, months July and August) was used for detecting disturbance trends (associated with abrupt permafrost degradation) between 2003 and 2022.

    For each satellite image we calculated the Tasseled Cap multi-spectral index to translate the spectral reflectance signal to the semantic information Brightness, Greenness, and Wetness. In order to characterize change information, we calculated the linear trend of the Brightness, Greenness and Wetness over two decades on the individual pixel level. The final map product therefore contains information on the direction and magnitude of change for all three Tasseled Cap parameters in 30m spatial resolution across the pan-arctic permafrost domain. Features detected include coastal erosion, lake drainage, infrastructure expansion, and fires.

    The general processing methodology was developed by Fraser et al. 2014 and adapted and expanded by Nitze et al. 2016 and Nitze et al. 2018. Here we upscaled the processing to the circum-arctic permafrost region and the recent 20-year period from 2003 through 2022. The service covers the permafrost region up to 81° North: Alaska (USA), Canada, Greenland, Iceland, Norway, Sweden, Finland, Russia, Mongolia, and China. For Russia and China, regions not containing permafrost were excluded. The data has been processed in Google EarthEngine within the research projects ERC PETA-CARB, ESA CCI+ Permafrost, NSF Permafrost Discovery Gateway, and EU Arctic PASSION.

    The dataset is a contribution to the "Panarctic requirements-driven Permafrost Service" of the Arctic PASSION project. Changes in the Tasseled Cap indices Brightness, Greenness, and Wetness are displayed in the image bands red, green, and blue, respectively. Here, coastal erosion (a trend of a land surface transitioning to a water surface) is depicted in dark blue colors, while coastal accretion (a trend of a water surface transitioning to a land surface) is depicted in bright orange colors. Drained lakes appear in bright yellow or orange colors, depending on the soil conditions and vegetation regrowth. Fire scars are a further common feature, which can appear in different colors, depending on the time of the fire and pre-fire land cover.

    The data can be explored via the Arctic Landscape EXplorer (ALEX) and is available as a public web map service (WMS), both hosted by Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research.

  9. TopoBathy

    • hub.arcgis.com
    • cacgeoportal.com
    • +2more
    Updated Apr 10, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2014). TopoBathy [Dataset]. https://hub.arcgis.com/datasets/c753e5bfadb54d46b69c3e68922483bc
    Explore at:
    Dataset updated
    Apr 10, 2014
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This dynamic World Elevation TopoBathy service combines topography (land elevation) and bathymetry (water depths) around the world. Heights are based on multiple sources and are orthometric (sea level = 0, and bathymetric values are negative downward from sea level). The source data of land elevation in this service is same as in the Terrain layer. When possible, the water areas are represented by the best available bathymetry. What can you do with this layer?Use for Visualization: This layer is generally not optimal for direct visualization. By default, 32 bit floating point values are returned, resulting in higher bandwidth requirements. Therefore, usage should be limited to applications requiring elevation data values. Alternatively, client applications can select additional functions, applied on the server, that return rendered data. For visualizations such as hillshade or elevation tinted hillshade, consider using the appropriate server-side function defined on this service. Use for Analysis: Yes. This layer provides data as floating point elevation values suitable for use in analysis. NOTE: This image services combine data from different sources and resample the data dynamically to the requested projection, extent and pixel size. For analyses using ArcGIS Desktop, you can filter a dataset, specify the projection, extent and cell size using the Make Image Server Layer geoprocessing tool. Server Functions: This layer has server functions defined for the following elevation derivatives. In ArcGIS desktop, server function can be invoked from Layer Properties - Processing Templates.

    Slope Degrees Slope Percentage Hillshade Multi-Directional Hillshade Elevation Tinted HillshadeSlope MapData Sources and Coverage: This layer is compiled from a variety of best available sources from several data providers. To see the coverage and extents of various datasets comprising this service in an interactive map, see Elevation Coverage Map.Mosaic Method: This image service uses a default mosaic method of "By Attribute”, using Field 'Best' and target of 0. Each of the rasters has been attributed with ‘Best’ field value that is generally a function of the pixel size such that higher resolution datasets are displayed at higher priority. Other mosaic methods can be set, but care should be taken as the order of the rasters may change. Where required, queries can also be set to display only specific datasets such as only NED or the lock raster mosaic rule used to lock to a specific dataset.Accuracy: The accuracy of these services will vary as a function of location and data source. Please refer to the metadata available in the services, and follow the links to the original sources for further details. An estimate of CE90 and LE90 is included as attributes, where available.This layer allows query, identify, and export image requests. The layer is restricted to a 5,000 x 5,000 pixel limit in a single request. This layer is part of a larger collection of elevation layers that you can use to perform a variety of mapping analysis tasks.Disclaimer: Bathymetry data sources are not to be used for navigation/safety at sea.

  10. Sentinel-2 Views

    • hub.arcgis.com
    • uneca.africageoportal.com
    • +24more
    Updated May 2, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). Sentinel-2 Views [Dataset]. https://hub.arcgis.com/datasets/fd61b9e0c69c4e14bebd50a9a968348c
    Explore at:
    Dataset updated
    May 2, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Sentinel-2, 10, 20, and 60m Multispectral, Multitemporal, 13-band imagery is rendered on-the-fly and available for visualization. This imagery layer pulls directly from the Sentinel-2 on AWS collection and is updated daily with new imagery.This imagery layer can be applied across a number of industries, scientific disciplines, and management practices. Some applications include, but are not limited to, land cover and environmental monitoring, climate change, deforestation, disaster and emergency management, national security, plant health and precision agriculture, forest monitoring, watershed analysis and runoff predictions, land-use planning, tracking urban expansion, highlighting burned areas and estimating fire severity.Geographic CoverageGlobalContinental land masses from 65.4° South to 72.1° North, with these special guidelines:All coastal waters up to 20 km from the shoreAll islands greater than 100 km2All EU islandsAll closed seas (e.g. Caspian Sea)The Mediterranean SeaTemporal CoverageThe revisit time for each point on Earth is every 5 days.This layer is updated daily with new imagery.This imagery layer includes a rolling collection of imagery acquired within the past 14 months.The number of images available will vary depending on location.Product LevelThis service provides Level-1C Top of Atmosphere imagery.Alternatively, Sentinel-2 Level-2A is also available.Image Selection/FilteringThe most recent and cloud free images are displayed by default.Any image available within the past 14 months can be displayed via custom filtering.Filtering can be done based on attributes such as Acquisition Date, Estimated Cloud Cover, and Tile ID.Tile_ID is computed as [year][month][day]T[hours][minutes][seconds]_[UTMcode][latitudeband][square]_[sequence]. More…Visual RenderingDefault rendering is Natural Color (bands 4,3,2) with Dynamic Range Adjustment (DRA).The DRA version of each layer enables visualization of the full dynamic range of the images.Rendering (or display) of band combinations and calculated indices is done on-the-fly from the source images via Raster Functions.Various pre-defined Raster Functions can be selected or custom functions created.Available renderings include: Agriculture with DRA, Bathymetric with DRA, Color-Infrared with DRA, Natural Color with DRA, Short-wave Infrared with DRA, Geology with DRA, NDMI Colorized, Normalized Difference Built-Up Index (NDBI), NDWI Raw, NDWI - with VRE Raw, NDVI – with VRE Raw (NDRE), NDVI - VRE only Raw, NDVI Raw, Normalized Burn Ratio, NDVI Colormap.Multispectral BandsBandDescriptionWavelength (µm)Resolution (m)1Coastal aerosol0.433 - 0.453602Blue0.458 - 0.523103Green0.543 - 0.578104Red0.650 - 0.680105Vegetation Red Edge0.698 - 0.713206Vegetation Red Edge0.733 - 0.748207Vegetation Red Edge0.773 - 0.793208NIR0.785 - 0.900108ANarrow NIR0.855 - 0.875209Water vapour0.935 - 0.9556010SWIR – Cirrus1.365 - 1.3856011SWIR-11.565 - 1.6552012SWIR-22.100 - 2.28020Additional NotesOverviews exist with a spatial resolution of 150m and are updated every quarter based on the best and latest imagery available at that time.To work with source images at all scales, the ‘Lock Raster’ functionality is available.NOTE: ‘Lock Raster’ should only be used on the layer for short periods of time, as the imagery and associated record Object IDs may change daily.This ArcGIS Server dynamic imagery layer can be used in Web Maps and ArcGIS Desktop as well as Web and Mobile applications using the REST based Image services API.Images can be exported up to a maximum of 4,000 columns x 4,000 rows per request.Data SourceSentinel-2 imagery is the result of close collaboration between the (European Space Agency) ESA, the European Commission and USGS. Data is hosted by the Amazon Web Services as part of their Registry of Open Data. Users can access the imagery from Sentinel-2 on AWS , or alternatively access EarthExplorer or the Copernicus Data Space Ecosystem to download the scenes.For information on Sentinel-2 imagery, see Sentinel-2.

  11. Lesson: Get started with multidimensional multispectral imagery

    • imagery-ivt.hub.arcgis.com
    Updated May 18, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Imagery Virtual Team (2022). Lesson: Get started with multidimensional multispectral imagery [Dataset]. https://imagery-ivt.hub.arcgis.com/datasets/lesson-get-started-with-multidimensional-multispectral-imagery
    Explore at:
    Dataset updated
    May 18, 2022
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri Imagery Virtual Team
    Description

    Lesson: Use a multidimensional stack of Landsat imagery to visualize how a Chilean copper mine has changed over time.The Chuquicamata mine in northern Chile is the largest open pit copper mine by excavated volume on the planet. It opened in 1882, is still operational today, and has expanded significantly over the last decades. In this lesson, you are interested in monitoring the expansion of the Chuquicamata mining area so you can analyze the impact on surrounding ecosystems.Multidimensional raster data, or image cubes, consists of rasters or imagery that have been collected over multiple times, depths, or heights and are stacked into a single dataset. You can use this data to monitor changes and trends in environmental phenomena, urban development, natural resources, and more. In ArcGIS Pro, you'll learn how to generate a multidimensional mosaic dataset that contains Landsat multispectral imagery, showing the copper mine at different points in time. You'll convert the dataset to Esri's native Cloud Raster Format (CRF) and run a quick analysis for visualizing how this copper mine has changed over time. This will give you a general understanding of how to get started with multidimensional multispectral raster data.This lesson was last tested on December 14, 2021, using ArcGIS Pro 2.9. If you're using a different version of ArcGIS Pro, you may encounter different functionality and results.RequirementsArcGIS Pro (get a free trial)Lesson Plan1. Create a multidimensional raster from Landsat dataCreate a mosaic dataset from imagery collected from Landsat Thematic Mapper, and build multidimensional information.15 minutes2. Work with a multidimensional CRFUse a geoprocessing tool to convert the mosaic dataset to Esri's native multidimensional raster type and visualize change.10 minutes3. Enhance spectral informationGenerate a multidimensional band ratio layer to see how the Chuquicamata copper mine can be analyzed.15 minutes

  12. a

    Ground Surface Elevation - 30m

    • idaho-epscor-gem3-uidaho.hub.arcgis.com
    • datalibrary-lnr.hub.arcgis.com
    Updated Jun 30, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of Idaho (2021). Ground Surface Elevation - 30m [Dataset]. https://idaho-epscor-gem3-uidaho.hub.arcgis.com/datasets/b625fbd8c4c34f9c8d853e3d00258440
    Explore at:
    Dataset updated
    Jun 30, 2021
    Dataset authored and provided by
    University of Idaho
    Area covered
    Pacific Ocean, South Pacific Ocean
    Description

    This dynamic image service provides numeric values representing ground surface heights, based on a digital terrain model (DTM). Heights are orthometric (sea level = 0), and water bodies that are above sea level have approximated nominal water heights.What can you do with this layer?Use for Visualization: This layer is generally not optimal for direct visualization. By default, 32 bit floating point values are returned, resulting in higher bandwidth requirements. Therefore, usage should be limited to applications requiring elevation data values. Alternatively, client applications can select from numerous additional functions, applied on the server, that return rendered data. For visualizations such as hillshade, slope, consider using the appropriate server-side function defined on this service.Use for Analysis: Yes. This layer provides data as floating point elevation values suitable for use in analysis.NOTE: The image service uses North America Albers Equal Area Conic projection (WKID: 102008) and resamples the data dynamically to the requested projection, extent and pixel size. For analyses requiring the highest accuracy, when using ArcGIS Desktop, you will need to use native coordinates (GCS_North_American_1983, WKID: 4269) and specify the native resolutions (0.0002777777777779 degrees) as the cell size geoprocessing environment setting and ensure that the request is aligned with the source pixels.Server Functions: This layer has server functions defined for the following elevation derivatives:Slope DegreesSlope PercentageAspectHillshadePre-symbolized Slope Degrees Map Data Sources: The data for this layer comes from NED 1 arc-second dataset from the USGS's National Elevation Dataset program with original source data in its native coordinate system.Data Coverage: The dataset covers the conterminous United States, Hawaii, partial Alaska, Puerto Rico, Territorial Islands of the United States, Canada and Mexico.This layer has query, identify, and export image services available. The layer is restricted to a 24,000 x 24,000 pixel limit. This layer is part of a larger collection of elevation layers that you can use to perform a variety of mapping analysis tasks.

  13. Landsat 8-9 Normalized Difference Moisture Index (NDMI) Colorized

    • hub.arcgis.com
    • geoglows.amerigeoss.org
    • +2more
    Updated Aug 11, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2016). Landsat 8-9 Normalized Difference Moisture Index (NDMI) Colorized [Dataset]. https://hub.arcgis.com/datasets/3750c9c5799043978b32b45f789d75ad
    Explore at:
    Dataset updated
    Aug 11, 2016
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer includes Landsat 8 and 9 imagery rendered on-the-fly as Normalized Difference Moisture Index (NDMI) Colorized for use in visualization and analysis. This layer is time enabled and includes a number of band combinations and indices rendered on demand. The imagery includes eight multispectral bands from the Operational Land Imager (OLI) and two bands from the Thermal Infrared Sensor (TIRS). It is updated daily with new imagery directly sourced from the USGS Landsat collection on AWS.Geographic CoverageGlobal Land Surface.Polar regions are available in polar-projected Imagery Layers: Landsat Arctic Views and Landsat Antarctic Views.Temporal CoverageThis layer is updated daily with new imagery.Working in tandem, Landsat 8 and 9 revisit each point on Earth's land surface every 8 days.Most images collected from January 2015 to present are included.Approximately 5 images for each path/row from 2013 and 2014 are also included.Product LevelThe Landsat 8 and 9 imagery in this layer is comprised of Collection 2 Level-1 data.The imagery has Top of Atmosphere (TOA) correction applied.TOA is applied using the radiometric rescaling coefficients provided the USGS.The TOA reflectance values (ranging 0 – 1 by default) are scaled using a range of 0 – 10,000.Image Selection/FilteringA number of fields are available for filtering, including Acquisition Date, Estimated Cloud Cover, and Product ID.To isolate and work with specific images, either use the ‘Image Filter’ to create custom layers or add a ‘Query Filter’ to restrict the default layer display to a specified image or group of images.Visual RenderingDefault rendering is Normalized Difference Moisture Index Colorized, calculated as (b5 - b6)/(b5 + b6) with a colormap applied. Wetlands and moist areas are blues, and dry areas in deep yellow and brown.Raster Functions enable on-the-fly rendering of band combinations and calculated indices from the source imagery.The DRA version of each layer enables visualization of the full dynamic range of the images.Other pre-defined Raster Functions can be selected via the renderer drop-down or custom functions can be created.This layer is part of a larger collection of Landsat Imagery Layers that you can use to perform a variety of mapping analysis tasks.Pre-defined functions: Natural Color with DRA, Agriculture with DRA, Geology with DRA, Color Infrared with DRA, Bathymetric with DRA, Short-wave Infrared with DRA, Normalized Difference Moisture Index Colorized, NDVI Raw, NDVI Colorized, NBR Raw15 meter Landsat Imagery Layers are also available: Panchromatic and Pansharpened.Multispectral BandsThe table below lists all available multispectral OLI bands. Normalized Difference Moisture Index consumes bands 5 and 6.BandDescriptionWavelength (µm)Spatial Resolution (m)1Coastal aerosol0.43 - 0.45302Blue0.45 - 0.51303Green0.53 - 0.59304Red0.64 - 0.67305Near Infrared (NIR)0.85 - 0.88306SWIR 11.57 - 1.65307SWIR 22.11 - 2.29308Cirrus (in OLI this is band 9)1.36 - 1.38309QA Band (available with Collection 1)*NA30*More about the Quality Assessment BandTIRS BandsBandDescriptionWavelength (µm)Spatial Resolution (m)10TIRS110.60 - 11.19100 * (30)11TIRS211.50 - 12.51100 * (30)*TIRS bands are acquired at 100 meter resolution, but are resampled to 30 meter in delivered data product.Additional Usage NotesImage exports are limited to 4,000 columns x 4,000 rows per request.This dynamic imagery layer can be used in Web Maps and ArcGIS Pro as well as web and mobile applications using the ArcGIS REST APIs.WCS and WMS compatibility means this imagery layer can be consumed as WCS or WMS services.The Landsat Explorer App is another way to access and explore the imagery.This layer is part of a larger collection of Landsat Imagery Layers.Data SourceLandsat imagery is sourced from the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). Data is hosted by the Amazon Web Services as part of their Public Data Sets program.For information, see Landsat 8 and Landsat 9.

  14. Landsat 8-9 Natural Color with DRA

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Aug 11, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2016). Landsat 8-9 Natural Color with DRA [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/datasets/esri::landsat-8-9-natural-color-with-dra/about
    Explore at:
    Dataset updated
    Aug 11, 2016
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer includes Landsat 8 and 9 imagery rendered on-the-fly as Natural Color with DRA for use in visualization and analysis. This layer is time enabled and includes a number of band combinations and indices rendered on demand. The imagery includes eight multispectral bands from the Operational Land Imager (OLI) and two bands from the Thermal Infrared Sensor (TIRS). It is updated daily with new imagery directly sourced from the USGS Landsat collection on AWS.Geographic CoverageGlobal Land Surface.Polar regions are available in polar-projected Imagery Layers: Landsat Arctic Views and Landsat Antarctic Views.Temporal CoverageThis layer is updated daily with new imagery.Working in tandem, Landsat 8 and 9 revisit each point on Earth's land surface every 8 days.Most images collected from January 2015 to present are included.Approximately 5 images for each path/row from 2013 and 2014 are also included.Product LevelThe Landsat 8 and 9 imagery in this layer is comprised of Collection 2 Level-1 data.The imagery has Top of Atmosphere (TOA) correction applied.TOA is applied using the radiometric rescaling coefficients provided the USGS.The TOA reflectance values (ranging 0 – 1 by default) are scaled using a range of 0 – 10,000.Image Selection/FilteringA number of fields are available for filtering, including Acquisition Date, Estimated Cloud Cover, and Product ID.To isolate and work with specific images, either use the ‘Image Filter’ to create custom layers or add a ‘Query Filter’ to restrict the default layer display to a specified image or group of images.Visual RenderingDefault rendering is Natural Color (bands 4,3,2) with Dynamic Range Adjustment (DRA).Raster Functions enable on-the-fly rendering of band combinations and calculated indices from the source imagery.The DRA version of each layer enables visualization of the full dynamic range of the images.Other pre-defined Raster Functions can be selected via the renderer drop-down or custom functions can be created.This layer is part of a larger collection of Landsat Imagery Layers that you can use to perform a variety of mapping analysis tasks.Pre-defined functions: Natural Color with DRA, Agriculture with DRA, Geology with DRA, Color Infrared with DRA, Bathymetric with DRA, Short-wave Infrared with DRA, Normalized Difference Moisture Index Colorized, NDVI Raw, NDVI Colorized, NBR Raw15 meter Landsat Imagery Layers are also available: Panchromatic and Pansharpened.Multispectral BandsThe table below lists all available multispectral OLI bands. Natural Color with DRA consumes bands 4,3,2.BandDescriptionWavelength (µm)Spatial Resolution (m)1Coastal aerosol0.43 - 0.45302Blue0.45 - 0.51303Green0.53 - 0.59304Red0.64 - 0.67305Near Infrared (NIR)0.85 - 0.88306SWIR 11.57 - 1.65307SWIR 22.11 - 2.29308Cirrus (in OLI this is band 9)1.36 - 1.38309QA Band (available with Collection 1)*NA30*More about the Quality Assessment BandTIRS BandsBandDescriptionWavelength (µm)Spatial Resolution (m)10TIRS110.60 - 11.19100 * (30)11TIRS211.50 - 12.51100 * (30)*TIRS bands are acquired at 100 meter resolution, but are resampled to 30 meter in delivered data product.Additional Usage NotesImage exports are limited to 4,000 columns x 4,000 rows per request.This dynamic imagery layer can be used in Web Maps and ArcGIS Pro as well as web and mobile applications using the ArcGIS REST APIs.WCS and WMS compatibility means this imagery layer can be consumed as WCS or WMS services.The Landsat Explorer App is another way to access and explore the imagery.This layer is part of a larger collection of Landsat Imagery Layers.Data SourceLandsat imagery is sourced from the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). Data is hosted by the Amazon Web Services as part of their Public Data Sets program.For information, see Landsat 8 and Landsat 9.

  15. Landsat Arctic Views

    • hub.arcgis.com
    • open-data-pittsylvania.hub.arcgis.com
    • +2more
    Updated Jun 23, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2016). Landsat Arctic Views [Dataset]. https://hub.arcgis.com/datasets/6334dd0f09f04a3583a37233540d73c0
    Explore at:
    Dataset updated
    Jun 23, 2016
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This dynamic imagery layer features Landsat 8 and Landsat GLS imagery for use in visualization and analysis. This layer is time enabled and includes a number of band combinations and indices rendered on demand. The imagery includes eight multispectral bands from the Operational Land Imager (OLI) and two bands from the Thermal Infrared Sensor (TIRS). It is updated daily with new imagery directly sourced from the USGS Landsat collection on AWS.To view this imagery layer, you'll want to add it to a map that is using the Polar projection of WGS_1984_EPSG_Alaska_Polar_Stereographic, for example the Arctic Ocean Basemap or the Arctic Imagery basemap. Other polar projections may be used within their useful limits. There is no imagery above 82°30’N due to the orbit of the satellite.Geographic CoverageArctic RegionTemporal CoverageThis layer is updated daily with new imagery.Landsat 8 revisits each point on Earth's land surface every 16 days.Most images collected from January 2015 to present are included.Approximately 5 images for each path/row from 2013 and 2014 are also included.This layer also includes imagery from the Global Land Survey* (circa 2010, 2005, 2000, 1990, 1975).Product LevelThe Landsat 8 imagery in this layer is comprised of Collection 2 Level-1 data.The imagery has Top of Atmosphere (TOA) correction applied.TOA is applied using the radiometric rescaling coefficients provided the USGS.The TOA reflectance values (ranging 0 – 1 by default) are scaled using a range of 0 – 10,000.Image Selection/FilteringA number of fields are available for filtering, including Acquisition Date, Estimated Cloud Cover, and Product ID.To isolate and work with specific images, either use the ‘Image Filter’ to create custom layers or add a ‘Query Filter’ to restrict the default layer display to a specified image or group of images.Visual RenderingDefault rendering is Natural Color (bands 4,3,2) with Dynamic Range Adjustment (DRA).Raster Functions enable on-the-fly rendering of band combinations and calculated indices from the source imagery.The DRA version of each layer enables visualization of the full dynamic range of the images.This layer is part of a larger collection of Landsat Imagery Layers that you can use to perform a variety of mapping analysis tasks.Other pre-defined Raster Functions can be selected via the renderer drop-down or custom functions can be created. Available functions on this layer include:Agriculture with DRA – Bands shortwave IR-1, near-IR, blue (6, 5, 2) with dynamic range adjustment applied on apparent reflectance. Vigorous vegetation is bright green, stressed vegetation dull green and bare areas as brown.NDSI Colorized – Normalized difference Snow index (NDSI) with color map, computed as (b3-b6)/(b3+b6) on apparent reflectance. Dark blue represents dense snow, yellow and green areas represent clouds.Bathymetric with DRA – Bands red, green, coastal/aerosol (4, 3, 1) with dynamic range adjustment. Useful in bathymetric mapping applications.Color Infrared with DRA – Bands near-IR, red, green (5, 4, 3) with dynamic range adjustment. Healthy vegetation is bright red while stressed vegetation is dull red.Geology with DRA – Bands shortwave IR-1, near-IR, blue (7, 6, 2) with dynamic range adjustment. Vigorous vegetation is bright green, stressed vegetation dull green and bare areas as brown.Natural Color with DRA – Natural Color bands red, green, blue (4, 3, 2) displayed with dynamic range adjustmentShort-wave Infrared with DRA – Bands shortwave IR-2, shortwave IR-1, red (7, 6, 4) with dynamic range adjustmentAgriculture – Bands shortwave IR-1, near-IR, blue (6, 5, 2) with fixed stretch applied on apparent reflectance. Vigorous vegetation is bright green, stressed vegetation dull green and bare areas as brown.Bathymetry – Bands red, green, coastal/aerosol (4, 3, 1) with fixed stretch applied on apparent reflectance. Useful in bathymetric mapping applications.Color Infrared – Bands near-IR, red, green (5, 4, 3) with a fixed stretch. Healthy vegetation is bright red while stressed vegetation is dull red.Geology – Bands shortwave IR-1, near-IR, blue (7, 6, 2) with a fixed stretch. Vigorous vegetation is bright green, stressed vegetation dull green and bare areas as brown.Natural Color – Natural Color bands red, green, blue (4, 3, 2) displayed with a fixed stretch.Short-wave Infrared – Bands shortwave IR-2, shortwave IR-1, red (7, 5, 4) with a fixed stretchNormalized Difference Moisture Index Colorized – Normalized Difference Moisture Index with color map, computed as (b5 - b6)/(b5 + b6). Wetlands and moist areas are blues, and dry areas in deep yellow and brownNDSI Raw – Normalized difference Snow index (NDSI) computed as (b3 - b6) / (b3 + b6)NDVI Raw – Normalized difference vegetation index (NDVI) computed as (b5 - b4) / (b5 + b4)NBR Raw – Normalized Burn Ratio (NBR) computed as (b5 - b7) / (b5 + b7)Multispectral BandsThe table below lists all available multispectral OLI bands. Natural Color with DRA consumes bands 4,3,2

    Band

    Description

    Wavelength (µm)

    Spatial Resolution (m)

    1

    Coastal aerosol

    0.43 - 0.45

    30

    2

    Blue

    0.45 - 0.51

    30

    3

    Green

    0.53 - 0.59

    30

    4

    Red

    0.64 - 0.67

    30

    5

    Near Infrared (NIR)

    0.85 - 0.88

    30

    6

    SWIR 1

    1.57 - 1.65

    30

    7

    SWIR 2

    2.11 - 2.29

    30

    8

    Cirrus (in OLI this is band 9)

    1.36 - 1.38

    30

    9

    QA Band (available with Collection 1)*

    NA

    30

    *More about the Quality Assessment Band The layer also provides access to TIRS bands as follows: BandDescriptionWavelength (µm)Spatial Resolution (m)10TIRS110.60 - 11.19100 * (30)11TIRS211.50 - 12.51100 * (30)*TIRS bands are acquired at 100 meter resolution, but are resampled to 30 meter in delivered data product.Additional Usage NotesImage exports are limited to 4,000 columns x 4,000 rows per request.This dynamic imagery layer can be used in Web Maps and ArcGIS Pro as well as web and mobile applications using the ArcGIS REST APIs.WCS and WMS compatibility means this imagery layer can be consumed as WCS or WMS services.The Unlocking Landsat in the Arctic is another way to access and explore the imagery.This layer is part of a larger collection of Landsat Imagery Layers.Data SourceLandsat imagery is sourced from the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). Data is hosted by the Amazon Web Services as part of their Public Data Sets program.For information on Landsat 8 images, see Landsat8.*The Global Land Survey includes images from Landsat 1 through Landsat 7. Band numbers and band combinations differ from those of Landsat 8, but have been mapped to the most appropriate band as in the above table. For more information about the Global Land Survey, visit GLS.

  16. Multibeam Bathymetry Mosaic: Shaded Relief Visualization

    • noaa.hub.arcgis.com
    • fisheries-map-gallery-crm.hub.arcgis.com
    • +2more
    Updated May 5, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA GeoPlatform (2020). Multibeam Bathymetry Mosaic: Shaded Relief Visualization [Dataset]. https://noaa.hub.arcgis.com/maps/7c7dd79ba4dc4385be199e923d1b7c94
    Explore at:
    Dataset updated
    May 5, 2020
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Authors
    NOAA GeoPlatform
    Area covered
    Description

    Bathymetry is the measurement of the depth of the ocean floor, data that can be used for a variety of purposes such as: nautical charting, oceanographic research and modeling, habitat classification, maritime commerce, and recreational applications. The Multibeam Bathymetry Database (MBBDB) at NCEI collects and archives multibeam data from the earliest commercial installations (circa 1980) through today's modern high-resolution collections. Data are acquired from both U.S. and international government and academic sources (see individual cruise metadata records for source information) and consist of the raw (as collected) sonar data files. Datasets may also include processed or edited versions of the sonar data, ancillary data (i.e., sound velocity data), derived products (i.e., grids), and/or metadata for the data collection. The MBBDB provides data that span the globe and are discoverable and accessible via map interface or text-only search options. More information about the database can be found here.This ArcGIS image service provides a color shaded relief visualization of gridded multibeam data from the entire archive. Each individual survey has been gridded at a 3 arc-second cell size (~100m), divided into 10-degree tiles, then organized into an ArcGIS mosaic dataset. "Overviews" are then built upon the underlying tiles to provide a seamless raster that combines all the surveys. Where surveys overlap, the mean depth value of the contributing surveys is used.Note: NCEI's archive typically contains the raw, unedited multibeam data provided by the data contributors. There are some erroneous depth values and/or data artifacts visible in this service. These data should not be used for navigational purposes.There are three services providing access to the multibeam archive:Multibeam Bathymetry Mosaic (REST endpoint): provides depth values (default) or shaded-relief imagery. All surveys are combined together (using mean depth value) into "overviews".Multibeam Bathymetry Mosaic: Shaded Relief Visualization: tiled image service, provides rapid display of color shaded relief imagery.Multibeam Bathymetry Mosaic Subsets (REST endpoint): provides access to the individual surveys, and allows filtering by survey ID, platform name, source organization, survey date, etc. This service has slower performance than the others.This tiled service is also available as a downloadable tile package (.tpkx file) usable in ArcGIS Pro / ArcGIS Desktop software.For ship tracks of the multibeam surveys, along with additional metadata and links to obtain the data, see the corresponding Multibeam Bathymetric Surveys service.NCEI's Bathymetric Data Viewer (NOAA GeoPlatform entry) provides an interactive mapping interface to the multibeam database as well as other sources of bathymetric data.For visualization, the water depths are displayed using this color ramp:Mosaic last updated: Mar. 5, 2024.Metadata for the Multibeam Bathymetric Database

  17. Sentinel-2 Imagery: NDVI Colormap

    • hub.arcgis.com
    • sdgs.amerigeoss.org
    • +2more
    Updated May 2, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). Sentinel-2 Imagery: NDVI Colormap [Dataset]. https://hub.arcgis.com/datasets/dccafe125bbe4e2bb3315393acbd4701
    Explore at:
    Dataset updated
    May 2, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Sentinel-2, 10m Multispectral 13-band imagery, rendered on-the-fly. Available for visualization and analytics, this Imagery Layer pulls directly from the Sentinel-2 on AWS collection and is updated daily with new imagery.This imagery layer can be used for multiple purposes including but not limited to vegetation, land cover, plant health, deforestation and environmental monitoring.Geographic CoverageGlobalContinental land masses from 65.4° South to 72.1° North, with these special guidelines:All coastal waters up to 20 km from the shoreAll islands greater than 100 km2All EU islandsAll closed seas (e.g. Caspian Sea)The Mediterranean SeaNote: Areas of interest going beyond the Mission baseline (as laid out in the Mission Requirements Document) will be assessed, and may be added to the baseline if sufficient resources are identified.Temporal CoverageThe revisit time for each point on Earth is every 5 days.This layer is updated daily with new imagery.This imagery layer is designed to include imagery collected within the past 14 months. Custom Image Services can be created for access to images older than 14 months.The number of images available will vary depending on location.Image Selection/FilteringThe most recent and cloud free image, for any location, is displayed by default.Any image available, within the past 14 months, can be displayed via custom filtering.Filtering can be done based on Acquisition Date, Estimated Cloud Cover, and Tile ID.Tile_ID is computed as [year][month][day]T[hours][minutes][seconds]_[UTMcode][latitudeband][square]_[sequence]. More…NOTE: Not using filters, and loading the entire archive, may affect performance.Analysis ReadyThis imagery layer is analysis ready with TOA correction applied.Visual RenderingDefault rendering is NDVI Colormap (Normalized Difference vegetation index with colormap) computed as NIR(Band8)-Red(Band4)/NIR(Band8)+Red(Band4) . The raw version of this layer is NDVI-Raw.Green represents vigorous vegetation and brown represents sparse vegetation.Rendering (or display) of band combinations and calculated indices is done on-the-fly from the source images via Raster Functions.Various pre-defined Raster Functions can be selected or custom functions created.Available renderings include: Agriculture with DRA, Bathymetric with DRA, Color-Infrared with DRA, Natural Color with DRA, Short-wave Infrared with DRA, Geology with DRA, NDMI Colorized, Normalized Difference Built-Up Index (NDBI), NDWI Raw, NDWI - with VRE Raw, NDVI – with VRE Raw (NDRE), NDVI - VRE only Raw, NDVI Raw, Normalized Burn RatioMultispectral BandsBandDescriptionWavelength (µm)Resolution (m)1Coastal aerosol0.433 - 0.453602Blue0.458 - 0.523103Green0.543 - 0.578104Red0.650 - 0.680105Vegetation Red Edge0.698 - 0.713206Vegetation Red Edge0.733 - 0.748207Vegetation Red Edge0.773 - 0.793208NIR0.785 - 0.900108ANarrow NIR0.855 - 0.875209Water vapour0.935 - 0.9556010SWIR – Cirrus1.365 - 1.3856011SWIR-11.565 - 1.6552012SWIR-22.100 - 2.28020Additional NotesOverviews exist with a spatial resolution of 150m and are updated every quarter based on the best and latest imagery available at that time.To work with source images at all scales, the ‘Lock Raster’ functionality is available.NOTE: ‘Lock Raster’ should only be used on the layer for short periods of time, as the imagery and associated record Object IDs may change daily.This ArcGIS Server dynamic imagery layer can be used in Web Maps and ArcGIS Desktop as well as Web and Mobile applications using the REST based Image services API.Images can be exported up to a maximum of 4,000 columns x 4,000 rows per request.Data SourceSentinel-2 imagery is the result of close collaboration between the (European Space Agency) ESA, the European Commission and USGS. Data is hosted by the Amazon Web Services as part of their Registry of Open Data. Users can access the imagery from Sentinel-2 on AWS , or alternatively access Sentinel2Look Viewer, EarthExplorer or the Copernicus Open Access Hub to download the scenes.For information on Sentinel-2 imagery, see Sentinel-2.

  18. a

    POPULATION CHANGE 1990-2010 NBEP2017 (raster)

    • narragansett-bay-estuary-program-nbep.hub.arcgis.com
    • hub.arcgis.com
    Updated Feb 4, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    POPULATION CHANGE 1990-2010 NBEP2017 (raster) [Dataset]. https://narragansett-bay-estuary-program-nbep.hub.arcgis.com/datasets/249ce397feee4612a0434f7019d292b1
    Explore at:
    Dataset updated
    Feb 4, 2020
    Dataset authored and provided by
    NBEP_GIS
    Description

    Raster dataset of a kernel density analysis of population change from 1990 to 2010 in the Narragansett Bay, Little Narragansett Bay, and Southwest Coastal ponds watersheds. The raster is for visualization of population change, showing where population has moved within the watershed, and where those changes were most substantial. This dataset was developed by the US Environmental Protection Agency ORD Atlantic Coastal Environmental Sciences Division in collaboration with the Narragansett Bay Estuary Program and other partners. For more information, please reference the 2017 State of Narragansett Bay & Its Watershed Technical Report (nbep.org).

  19. Landsat GLS Pansharpened

    • hub.arcgis.com
    • afrigeo.africageoportal.com
    • +2more
    Updated Oct 20, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2015). Landsat GLS Pansharpened [Dataset]. https://hub.arcgis.com/datasets/cada00e67e77433d87f639803376a0e6
    Explore at:
    Dataset updated
    Oct 20, 2015
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer includes Landsat GLS pansharpened imagery rendered on-the-fly as Natural Color with DRA for use in visualization and analysis. This layer is time enabled and includes a number of pansharpened renderings on demand. The layer includes 30m natural color Landsat 7 ETM+, Landsat 5 TM, and Landsat 4 imagery, enhanced with 15m panchromatic imagery.Geographic CoverageWorld-wide imagery coverage.Temporal CoverageThis imagery layer includes data from epochs 2010, 2005 and 2000. Analysis ReadyThis imagery layer is analysis ready with Top of Atmosphere (TOA) correction applied.The TOA reflectance values (ranging 0 – 1 by default) are scaled using a range of 0 – 10,000.The scale is equivalent to other TOA reflectance products, including those provided by the USGS.Image Selection/FilteringNewer images are displayed by default on top.The entire archive is accessible via custom filtering.A number of fields are available for filtering, including Acquisition Date, Estimated Cloud Cover, and Product ID.By setting the filter to Best is lesser than QQQQ one can control to see the best N scenes, where QQQQ=N*1million.NOTE: Turning off all filters, and loading the entire archive, may affect performance.Visual RenderingDefault layer is Pansharpened Enhanced with Dynamic Range Adjustment (DRA), which is a band combination (original bands 4,3,2) that displays natural colors.The DRA version of each layer enables visualization of the full dynamic range of the images.Rendering (or display) of band combinations and calculated indices is done on-the-fly from the source images via Raster Functions.Various pre-defined Raster Functions can be selected or custom functions can be created.Other Layer Usage Notes...Overviews exist with a spatial resolution of 300m and are updated weekly based on the best and latest imagery available at that time.To work with individual source images at all scales, either use the ‘Lock Raster’ functionality or add a query filter to restrict the display to a specified image or group of images.NOTE: ‘Lock Raster’ should only be used on the layer for short periods of time, as the imagery and associated record Object IDs may change daily.Images can be exported up to a maximum of 2,000 columns x 2,000 rows per request.This ArcGIS Server dynamic Imagery Layer can be used in Web Maps and ArcGIS Desktop as well as Web and Mobile applications using the REST based Image Services API.WCS and WMS compatibility means this imagery can be consumed as WCS or WMS services.Landsat Web App via Unlock Earth's Secrets.Data SourceLandsat imagery is sourced from the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). Data is hosted by the Amazon Web Services as part of their Public Data Sets program. Users can access full scenes from Landsat on AWS, or alternatively access LandsatLook to review and download full scenes from the complete USGS archive.The Global Land Survey includes images from Landsat 1 through Landsat 7. Band numbers and band combinations differ from those of Landsat 8, but have been mapped to the most appropriate band as in the above table. For more information about the Global Land Survey, visit GLS.

  20. Multibeam Bathymetry Mosaic: Shaded Relief Visualization (Tile Package -...

    • noaa.hub.arcgis.com
    Updated Mar 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA GeoPlatform (2024). Multibeam Bathymetry Mosaic: Shaded Relief Visualization (Tile Package - March 2024) [Dataset]. https://noaa.hub.arcgis.com/content/04768bf39292449a97a057aadf69bdf6
    Explore at:
    Dataset updated
    Mar 28, 2024
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Authors
    NOAA GeoPlatform
    Area covered
    Ross Sea, Pacific Ocean, Arctic Ocean, Bering Sea, Proliv Longa, South Pacific Ocean, North Pacific Ocean, Proliv Longa
    Description

    Note: this is a downloadable tile package (.tpkx format) for use in ArcGIS desktop software. The online tiled image service can be found here. Each time the Multibeam Bathymetry Mosaic is updated, this tile package will be deleted and replaced with a new one (with a new URL). Please refer to the tiled layer page for a link to the current tile package.Bathymetry is the measurement of the depth of the ocean floor, data that can be used for a variety of purposes such as: nautical charting, oceanographic research and modeling, habitat classification, maritime commerce, and recreational applications. The Multibeam Bathymetry Database (MBBDB) at NCEI collects and archives multibeam data from the earliest commercial installations (circa 1980) through today's modern high-resolution collections. Data are acquired from both U.S. and international government and academic sources (see individual cruise metadata records for source information) and consist of the raw (as collected) sonar data files. Datasets may also include processed or edited versions of the sonar data, ancillary data (i.e., sound velocity data), derived products (i.e., grids), and/or metadata for the data collection. The MBBDB provides data that span the globe and are discoverable and accessible via map interface or text-only search options. More information about the database can be found here.This ArcGIS image service provides a color shaded relief visualization of gridded multibeam data from the entire archive. Each individual survey has been gridded at a 3 arc-second cell size (~100m), divided into 10-degree tiles, then organized into an ArcGIS mosaic dataset. "Overviews" are then built upon the underlying tiles to provide a seamless raster that combines all the surveys. Where surveys overlap, the mean depth value of the contributing surveys is used.Note: NCEI's archive typically contains the raw, unedited multibeam data provided by the data contributors. There are some erroneous depth values and/or data artifacts visible in this service. These data should not be used for navigational purposes.There are three services providing access to the multibeam archive:Multibeam Bathymetry Mosaic (REST endpoint): provides depth values (default) or shaded-relief imagery. All surveys are combined together (using mean depth value) into "overviews".Multibeam Bathymetry Mosaic: Shaded Relief Visualization: tiled image service, provides rapid display of color shaded relief imagery.Multibeam Bathymetry Mosaic Subsets (REST endpoint): provides access to the individual surveys, and allows filtering by survey ID, platform name, source organization, survey date, etc. This service has slower performance than the others.For ship tracks of the multibeam surveys, along with additional metadata and links to obtain the data, see the corresponding Multibeam Bathymetric Surveys service.NCEI's Bathymetric Data Viewer (NOAA GeoPlatform entry) provides an interactive mapping interface to the multibeam database as well as other sources of bathymetric data.For visualization, the water depths are displayed using this color ramp:Mosaic last updated: March 5, 2024.Metadata for the Multibeam Bathymetric Database

  21. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Esri (2020). Visualize Urban Sprawl [Dataset]. https://sdiinnovation-geoplatform.hub.arcgis.com/datasets/esri::visualize-urban-sprawl
Organization logo

Visualize Urban Sprawl

Explore at:
6 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Sep 11, 2020
Dataset authored and provided by
Esrihttp://esri.com/
Description

This template is used to compute urban growth between two land cover datasets, that are classified into 20 classes based on the Anderson Level II classification system. This raster function template is used to generate a visual representation indicating urbanization across two different time periods. Typical datasets used for this template is the National Land Cover Database. A more detailed blog on the datasets can be found on ArcGIS Blogs. This template works in ArcGIS Pro Version 2.6 and higher. It's designed to work on Enterprise 10.8.1 and higher.References:Raster functionsWhen to use this raster function templateThe template is useful to generate an intuitive visualization of urbanization across two images.Sample Images to test this againstNLCD2006 and NLCD2011How to use this raster function templateIn ArcGIS Pro, search ArcGIS Living Atlas for raster function templates to apply them to your imagery layer. You can also download the raster function template, attach it to a mosaic dataset, and publish it as an image service. The output is a visual representation of urban sprawl across two images. Applicable geographiesThe template is designed to work globally.

Search
Clear search
Close search
Google apps
Main menu