https://www.ademcetinkaya.com/p/legal-disclaimer.htmlhttps://www.ademcetinkaya.com/p/legal-disclaimer.html
The S&P 500 VIX index is expected to remain elevated in the near term due to ongoing geopolitical uncertainties and concerns about the economic impact of the COVID-19 pandemic. However, the index could experience some volatility as investors assess the latest economic data and earnings reports. The index may experience a decline if positive economic signals emerge, or if market participants become more confident in the long-term outlook for the economy. Conversely, the index may experience a rise if geopolitical risks intensify or if economic data continues to disappoint.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States - CBOE Volatility : VIX was 15.94000 Index in July of 2025, according to the United States Federal Reserve. Historically, United States - CBOE Volatility : VIX reached a record high of 82.69000 in March of 2020 and a record low of 9.14000 in November of 2017. Trading Economics provides the current actual value, an historical data chart and related indicators for United States - CBOE Volatility : VIX - last updated from the United States Federal Reserve on July of 2025.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Contains historical data of the VIX Volatility Index from 2000 - 2025. The data is obtained from the yfinance api created by yahoo finance and contains the daily price data for the VIX.
The dataset contains the daily Open, Close, High, and Low of the VIX.
Columns Open: Starting price level of VIX for the day Close: Final price level of VIX for the day High: Highest price level of VIX for the day Low: Lowest price level of VIX for the day
The VIX is an index that measures near term volatility expectations for the S&P 500 gathered from SPX options data. VIX was created and maintained by CBOE.
This data can be used to train models on predicting the market's volatility forecasts. The VIX can also be compared to the realized historical volatility over a period of time.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This repository contains the supplementary materials for a deep learning study on stock price forecasting and trading strategy enhancement using volatility indicators.
The provided dataset and code support a CNN-GRU hybrid model designed to predict stock prices and evaluate trading strategies, with a focus on the Volatility Index (VIX) as an additional feature.
Included are two versions of the feature datasets (with and without VIX), preprocessed technical indicators (SMA, EMA, MACD, RSI, etc.), and the full implementation code in a Jupyter Notebook. The code enables reproduction of the experimental results, including model training, forecasting, and trading performance analysis.
These materials are shared to support research transparency, reproducibility, and reuse by other researchers in the fields of financial forecasting and applied deep learning.
Please refer to the included `README.txt` and `requirements.txt` for usage instructions and software dependencies.
**Data sources**:
- Historical stock prices: Yahoo Finance
- VIX data: Chicago Board Options Exchange (CBOE)
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Stock market volatility is a measure of risk in investment and it plays a key role in securities pricing and risk management. The paper empirically analyzes the relationship between India VIX and volatility in Indian stock market. India VIX is a measure of implied volatility which reflects markets’ expectation of future short-term stock market volatility. It is a volatility index based on the index option prices of Nifty. The study is based on time series data comprising of daily closing values of CNX Nifty 50 index comprising of 1656 observations from March 2009 to December 2015. The results of the study reveal that India VIX has predictive power for future short-term stock market volatility. It has higher forecasting ability for upward stock market movements as compared to downward movements. Therefore, it is more a bullish indicator. Moreover, the accuracy of forecasts provided by India VIX is higher for low magnitude future price changes relative to higher stock price movements. The current value of India VIX is found to be affected by past period volatility up to one month and it has forecasting ability for next one-month’s volatility which means the volatility in the Indian stock markets can be forecasted for up to 60 days period.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Forecast variation in MSTL with volatilities indexes.
Ticker Description 0 GC=F Gold 1 SI=F Silver 2 CL=F Crude Oil 3 ^GSPC S&P500 4 PL=F Platinum 5 HG=F Copper 6 DX=F Dollar Index 7 ^VIX Volatility Index 8 EEM MSCI EM ETF 9 EURUSD=X Euro USD 10 ^N100 Euronext100 11 ^IXIC Nasdaq 12 ^BSESN Bse sensex 13 ^NSEI Nifty 50 14 ^DJI Dow
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
National Stock Exchange of India Limited: Index: India VIX Index data was reported at 16.890 NA in 15 May 2025. This records a decrease from the previous number of 17.230 NA for 14 May 2025. National Stock Exchange of India Limited: Index: India VIX Index data is updated daily, averaging 15.989 NA from Jan 2012 (Median) to 15 May 2025, with 3308 observations. The data reached an all-time high of 83.608 NA in 24 Mar 2020 and a record low of 10.135 NA in 28 Jul 2023. National Stock Exchange of India Limited: Index: India VIX Index data remains active status in CEIC and is reported by Exchange Data International Limited. The data is categorized under High Frequency Database’s Financial and Futures Market – Table IN.EDI.SE: National Stock Exchange of India Limited.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Forecasting realized volatility with SVXI, VIXI, and HVI.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Forecasting realized volatility and downside realized volatility with SVXDI and BEXI.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Stock price volatility in Indonesia was reported at 21.77 in 2021, according to the World Bank collection of development indicators, compiled from officially recognized sources. Indonesia - Stock price volatility - actual values, historical data, forecasts and projections were sourced from the World Bank on July of 2025.
https://www.marketresearchstore.com/privacy-statementhttps://www.marketresearchstore.com/privacy-statement
[Keywords] Market include Xerox, GFI Genfare, Sony Corporation, Samsung SDS, Cubic Transportation Systems
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Stock price volatility in Pakistan was reported at 17.28 in 2021, according to the World Bank collection of development indicators, compiled from officially recognized sources. Pakistan - Stock price volatility - actual values, historical data, forecasts and projections were sourced from the World Bank on June of 2025.
https://www.ademcetinkaya.com/p/legal-disclaimer.htmlhttps://www.ademcetinkaya.com/p/legal-disclaimer.html
The S&P 500 VIX index is expected to remain elevated in the near term due to ongoing geopolitical uncertainties and concerns about the economic impact of the COVID-19 pandemic. However, the index could experience some volatility as investors assess the latest economic data and earnings reports. The index may experience a decline if positive economic signals emerge, or if market participants become more confident in the long-term outlook for the economy. Conversely, the index may experience a rise if geopolitical risks intensify or if economic data continues to disappoint.