100+ datasets found
  1. Gender pay gap in OECD countries 2023

    • statista.com
    • ai-chatbox.pro
    Updated May 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Gender pay gap in OECD countries 2023 [Dataset]. https://www.statista.com/statistics/934039/gender-pay-gap-select-countries/
    Explore at:
    Dataset updated
    May 30, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    Worldwide, OECD
    Description

    As of 2023, South Korea is the country with the highest gender pay gap among OECD countries, with a **** percent difference between the genders. The gender pay gap displays the difference between the median wages of full-time employed men and full-time employed women.

  2. s

    Gender Pay Gap in Wages by country, urbanisation, and disability status

    • pacific-data.sprep.org
    • pacificdata.org
    Updated Mar 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SPC (2025). Gender Pay Gap in Wages by country, urbanisation, and disability status [Dataset]. https://pacific-data.sprep.org/dataset/gender-pay-gap-wages-country-urbanisation-and-disability-status
    Explore at:
    application/vnd.sdmx.data+csv; charset=utf-8; labels=name; version=2Available download formats
    Dataset updated
    Mar 7, 2025
    Dataset provided by
    Pacific Data Hub
    Authors
    SPC
    License

    Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
    License information was derived automatically

    Area covered
    -0.964522222222143], [132.96906215119782, -13.988142823532371], -18.659481219982183], [182.93768888888897, 1.157388888886373], -6.158711111111074], [201.69602777805974, -4.190236111110949], 1.977611111111344], Federated States of Micronesia, Vanuatu, Palau, Tuvalu, Tonga, Samoa, Kiribati, Republic of the Marshall Islands, Solomon Islands
    Description

    This table describes gender pay gap and is defined as the ratio of the gross earnings between women and men. The disaggregation variables are subject to data availability and where the numbers are lesser than 6, the disaggregation will be dropped.

    Find more Pacific data on PDH.stat.

  3. Gender pay gap in European countries 2022

    • statista.com
    • ai-chatbox.pro
    Updated Oct 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Gender pay gap in European countries 2022 [Dataset]. https://www.statista.com/statistics/1203135/gender-pay-gap-in-europe-by-country/
    Explore at:
    Dataset updated
    Oct 15, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2022
    Area covered
    Europe
    Description

    Men in the European Union earned approximately 13 percent more than women in 2022, with Estonia having the biggest gender pay gap of 21 percent and Luxembourg having the lowest at minus 0.7 percent, meaning that on average women actually earned more than men in Luxembourg during that year.

  4. Latin America & Caribbean: gender pay gap index 2024, by country

    • ai-chatbox.pro
    • statista.com
    Updated Aug 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jose Sanchez (2024). Latin America & Caribbean: gender pay gap index 2024, by country [Dataset]. https://www.ai-chatbox.pro/?_=%2Ftopics%2F9479%2Ffemale-entrepreneurship-in-latin-america%2F%23XgboD02vawLKoDs%2BT%2BQLIV8B6B4Q9itA
    Explore at:
    Dataset updated
    Aug 22, 2024
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Jose Sanchez
    Area covered
    Latin America
    Description

    In 2024, Barbados was the country with the highest gender pay gap index in Latin America and the Caribbean, with a score of 0.87. Guatemala, on the other hand, had the worst score in the region, at 0.45 points. This shows that, on average, women's income in Guatemala represents only 45 percent of the income received by men. Is the gender pay gap likely to be bridged? In a 2021 survey, 55 percent of respondents in Peru thought it was likely that women will be paid as much as men for the same work. This was one of the most optimistic perspectives when compared to the other Latin American nations surveyed. For instance, in Brazil, only one third of the adults interviewed said that this would be possible in the near future. Based on people's views on salary equality, Mexico was found to be one of the Latin American countries with the best wage equality perception index, which shows that the population's perceptions do not always match reality. In Mexico, the gender pay gap based on estimated income stood at 0.52. The software pay gap in Mexico The digital era does not necessarily favor income equality between genders. Recent data shows that men working in the Mexican software industry receive significantly higher monthly salaries than women or non-binary persons. Wage differences based on gender were specially noticeable in the field of software architecture, where a woman's salary represented, on average, only 60 percent of what a man would earn for performing the same tasks in a comparable position.

  5. c

    Gender Wage Gap

    • data.ccrpc.org
    csv
    Updated Oct 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Champaign County Regional Planning Commission (2024). Gender Wage Gap [Dataset]. https://data.ccrpc.org/dataset/gender-wage-gap
    Explore at:
    csv(1958)Available download formats
    Dataset updated
    Oct 22, 2024
    Dataset provided by
    Champaign County Regional Planning Commission
    Description

    The gender wage gap indicator compares the median earnings between male and female workers in Champaign County.

    Two worker populations are analyzed: all workers, including part-time and seasonal workers and those that were not employed for the full survey year; and full-time, year-round workers. The gender wage gap is included because it blends economics and equity, and illustrates that a major economic talking point on the national level is just as relevant at the local scale.

    For all four populations (male full-time, year-round workers; female full-time, year-round workers; all male workers; and all female workers), the estimated median earnings were higher in 2023 than in 2005. The greatest increase in a population’s estimated median earnings between 2005 and 2023 was for female full-time, year-round workers; the smallest increase between 2005 and 2023 was for all female workers. In both categories (all and full-time, year-round), the estimated median annual earnings for male workers was consistently higher than for female workers.

    The gender gap between the two estimates in 2023 was larger for full-time, year-round workers than all workers. For full-time, year-round workers, the difference was $11,863; for all workers, it was approaching $9,700.

    The Associated Press wrote this article in October 2024 about how Census Bureau data shows that in 2023 in the United States, the gender wage gap between men and women working full-time widened year-over-year for the first time in 20 years.

    Income data was sourced from the U.S. Census Bureau’s American Community Survey (ACS) 1-Year Estimates, which are released annually.

    As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.

    Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.

    For interested data users, the 2020 ACS 1-Year Experimental data release includes a dataset on Median Earnings in the Past 12 Months (in 2020 Inflation-Adjusted Dollars) by Sex by Work Experience in the Past 12 Months for the Population 16 Years and Over with Earnings in the Past 12 Months.

    Sources: U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using data.census.gov; (16 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using data.census.gov; (20 October 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using data.census.gov; (21 September 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using data.census.gov; (7 June 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using data.census.gov; (7 June 2021).; U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).

  6. Global gender pay gap 2015-2025

    • statista.com
    • ai-chatbox.pro
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Global gender pay gap 2015-2025 [Dataset]. https://www.statista.com/statistics/1212140/global-gender-pay-gap/
    Explore at:
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    The difference between the earnings of women and men shrank slightly over the past years. Considering the controlled gender pay gap, which measures the median salary for men and women with the same job and qualifications, women earned one U.S. cent less. By comparison, the uncontrolled gender pay gap measures the median salary for all men and all women across all sectors and industries and regardless of location and qualification. In 2025, the uncontrolled gender pay gap in the world stood at 0.83, meaning that women earned 0.83 dollars for every dollar earned by men.

  7. The global gender gap index 2025

    • statista.com
    Updated Jun 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). The global gender gap index 2025 [Dataset]. https://www.statista.com/statistics/244387/the-global-gender-gap-index/
    Explore at:
    Dataset updated
    Jun 11, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2025
    Area covered
    Worldwide
    Description

    The global gender gap index benchmarks national gender gaps on economic, political, education, and health-based criteria. In 2025, the country offering the most gender equal conditions was Iceland, with a score of 0.93. Overall, the Nordic countries make up 3 of the 5 most gender equal countries worldwide. The Nordic countries are known for their high levels of gender equality, including high female employment rates and evenly divided parental leave. Sudan is the second-least gender equal country Pakistan is found on the other end of the scale, ranked as the least gender equal country in the world. Conditions for civilians in the North African country have worsened significantly after a civil war broke out in April 2023. Especially girls and women are suffering and have become victims of sexual violence. Moreover, nearly 9 million people are estimated to be at acute risk of famine. The Middle East and North Africa have the largest gender gap Looking at the different world regions, the Middle East and North Africa have the largest gender gap as of 2023, just ahead of South Asia. Moreover, it is estimated that it will take another 152 years before the gender gap in the Middle East and North Africa is closed. On the other hand, Europe has the lowest gender gap in the world.

  8. Gender salary gap (not adjusted to individual characteristics) by hourly...

    • ine.es
    csv, html, json +4
    Updated Feb 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    INE - Instituto Nacional de Estadística (2023). Gender salary gap (not adjusted to individual characteristics) by hourly salary by sectors of economic activity and period in the EU [Dataset]. https://www.ine.es/jaxiT3/Tabla.htm?t=10895&L=1
    Explore at:
    txt, text/pc-axis, xlsx, xls, html, csv, jsonAvailable download formats
    Dataset updated
    Feb 21, 2023
    Dataset provided by
    National Statistics Institutehttp://www.ine.es/
    Authors
    INE - Instituto Nacional de Estadística
    License

    https://www.ine.es/aviso_legalhttps://www.ine.es/aviso_legal

    Time period covered
    Jan 1, 2009 - Jan 1, 2020
    Area covered
    European Union
    Variables measured
    Source, Countries, Secciones, Type of data, Sustainable development indicators
    Description

    Women and Men in Spain: Gender salary gap (not adjusted to individual characteristics) by hourly salary by sectors of economic activity and period in the EU. Annual. National.

  9. f

    Data availability per country.

    • plos.figshare.com
    xls
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Karolina Goraus Tanska; Joanna Tyrowicz; Lucas Augusto van der Velde (2023). Data availability per country. [Dataset]. http://doi.org/10.1371/journal.pone.0241107.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Karolina Goraus Tanska; Joanna Tyrowicz; Lucas Augusto van der Velde
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data availability per country.

  10. f

    Account of the decomposition methods used in this study.

    • plos.figshare.com
    xls
    Updated Jun 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Karolina Goraus Tanska; Joanna Tyrowicz; Lucas Augusto van der Velde (2023). Account of the decomposition methods used in this study. [Dataset]. http://doi.org/10.1371/journal.pone.0241107.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 4, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Karolina Goraus Tanska; Joanna Tyrowicz; Lucas Augusto van der Velde
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Account of the decomposition methods used in this study.

  11. Gender pay gap

    • ons.gov.uk
    • cy.ons.gov.uk
    zip
    Updated Oct 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2024). Gender pay gap [Dataset]. https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/earningsandworkinghours/datasets/annualsurveyofhoursandearningsashegenderpaygaptables
    Explore at:
    zipAvailable download formats
    Dataset updated
    Oct 29, 2024
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Annual gender pay gap estimates for UK employees by age, occupation, industry, full-time and part-time, region and other geographies, and public and private sector. Compiled from the Annual Survey of Hours and Earnings.

  12. Gender pay gap in Russia 2005-2021

    • statista.com
    Updated Feb 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Gender pay gap in Russia 2005-2021 [Dataset]. https://www.statista.com/statistics/1261581/gender-pay-gap-russia/
    Explore at:
    Dataset updated
    Feb 12, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Russia
    Description

    The unadjusted gender pay gap in Russia reached 23.7 percent in 2021. In other words, the difference between the average hourly wages of men and women amounted to nearly 24 percent of the average hourly male wages. The higher this share is, the higher the difference is between male and female earnings in a country.

    Gender pay gap situation in Russia Over the period under consideration from 2005, Russia's gender pay gap generally decreased. In 2005, it peaked at nearly 34 percent, while the lowest figure was marked in 2013, at below 23 percent. Despite the recent decreases, as of 2021, there was not a single industry where women earned more than men in Russia. For example, in the information and communication industry, female employees earned on average 35.8 thousand less than a month than male employees. Overall, across industries, a female's salary constituted 72.5 percent of that of a man in Russia.

    Is gender pay equality likely in Russia? In the ranking of most gender-equal countries in the world, Russia placed 49th with an index of 0.2 where zero referred to full equality and one meant full inequality. Furthermore, almost a half of Russians believed that full gender equality with respect to pay is unlikely in the country. To compare, 70 percent of respondents in China believed the opposite, according to a survey from 2021.

  13. f

    Median pay gap.

    • plos.figshare.com
    txt
    Updated Jun 21, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Goedele Van den Broeck; Talip Kilic; Janneke Pieters (2023). Median pay gap. [Dataset]. http://doi.org/10.1371/journal.pone.0278188.s014
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jun 21, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Goedele Van den Broeck; Talip Kilic; Janneke Pieters
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The focus of this study is the implications of structural transformation for gender equality, specifically equal pay, in Sub-Saharan Africa. While structural transformation affects key development outcomes, including growth, poverty, and access to decent work, its effect on the gender pay gap is not clear ex-ante. Evidence on the gender pay gap in sub-Saharan Africa is limited, and often excludes rural areas and informal (self-)employment. This paper provides evidence on the extent and drivers of the gender pay gap in non-farm wage- and self-employment activities across three countries at different stages of structural transformation (Malawi, Tanzania and Nigeria). The analysis leverages nationally-representative survey data and decomposition methods, and is conducted separately among individuals residing in rural versus urban areas in each country. The results show that women earn 40 to 46 percent less than men in urban areas, which is substantially less than in high-income countries. The gender pay gap in rural areas ranges from (a statistically insignificant) 12 percent in Tanzania to 77 percent in Nigeria. In all rural areas, a major share of the gender pay gap (81 percent in Malawi, 83 percent in Tanzania and 70 percent in Nigeria) is explained by differences in workers’ characteristics, including education, occupation and sector. This suggests that if rural men and women had similar characteristics, most of the gender pay gap would disappear. Country-differences are larger across urban areas, where differences in characteristics account for only 32 percent of the pay gap in Tanzania, 50 percent in Malawi and 81 percent in Nigeria. Our detailed decomposition results suggest that structural transformation does not consistently help bridge the gender pay gap. Gender-sensitive policies are required to ensure equal pay for men and women.

  14. Unadjusted gender pay gap in the Nordic countries 2010-2021, by country

    • statista.com
    Updated Jul 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Unadjusted gender pay gap in the Nordic countries 2010-2021, by country [Dataset]. https://www.statista.com/statistics/1275632/nordics-unadjusted-gender-pay-gap/
    Explore at:
    Dataset updated
    Jul 4, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Nordic countries, Sweden, Finland, Denmark, Iceland, Norway
    Description

    Over the last decade, the unadjusted gender pay gap decreased in all five Nordic countries. In 2021, Iceland had the lowest pay gap between men and women at 10.2 percent. The pay gap was highest in Finland, above 16 percent. In Europe, Luxembourg had the lowest gender pay gap, whereas it was highest in Estonia.

  15. N

    Town And Country, MO annual median income by work experience and sex...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Town And Country, MO annual median income by work experience and sex dataset: Aged 15+, 2010-2023 (in 2023 inflation-adjusted dollars) // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/a53ba407-f4ce-11ef-8577-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Town and Country
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates. The dataset covers the years 2010 to 2023, representing 14 years of data. To analyze income differences between genders (male and female), we conducted an initial data analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series (R-CPI-U-RS) based on current methodologies. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Town And Country. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.

    Key observations: Insights from 2023

    Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Town And Country, the median income for all workers aged 15 years and older, regardless of work hours, was $132,192 for males and $43,214 for females.

    These income figures highlight a substantial gender-based income gap in Town And Country. Women, regardless of work hours, earn 33 cents for each dollar earned by men. This significant gender pay gap, approximately 67%, underscores concerning gender-based income inequality in the city of Town And Country.

    - Full-time workers, aged 15 years and older: In Town And Country, among full-time, year-round workers aged 15 years and older, males earned a median income of $241,648, while females earned $91,529, leading to a 62% gender pay gap among full-time workers. This illustrates that women earn 38 cents for each dollar earned by men in full-time roles. This level of income gap emphasizes the urgency to address and rectify this ongoing disparity, where women, despite working full-time, face a more significant wage discrepancy compared to men in the same employment roles.

    Remarkably, across all roles, including non-full-time employment, women displayed a similar gender pay gap percentage. This indicates a consistent gender pay gap scenario across various employment types in Town And Country, showcasing a consistent income pattern irrespective of employment status.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.

    Gender classifications include:

    • Male
    • Female

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Variables / Data Columns

    • Year: This column presents the data year. Expected values are 2010 to 2023
    • Male Total Income: Annual median income, for males regardless of work hours
    • Male FT Income: Annual median income, for males working full time, year-round
    • Male PT Income: Annual median income, for males working part time
    • Female Total Income: Annual median income, for females regardless of work hours
    • Female FT Income: Annual median income, for females working full time, year-round
    • Female PT Income: Annual median income, for females working part time

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Town And Country median household income by race. You can refer the same here

  16. N

    United States annual median income by work experience and sex dataset: Aged...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). United States annual median income by work experience and sex dataset: Aged 15+, 2010-2023 (in 2023 inflation-adjusted dollars) // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/a53c92b0-f4ce-11ef-8577-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates. The dataset covers the years 2010 to 2023, representing 14 years of data. To analyze income differences between genders (male and female), we conducted an initial data analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series (R-CPI-U-RS) based on current methodologies. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in United States. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.

    Key observations: Insights from 2023

    Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In United States, the median income for all workers aged 15 years and older, regardless of work hours, was $48,138 for males and $32,546 for females.

    These income figures highlight a substantial gender-based income gap in United States. Women, regardless of work hours, earn 68 cents for each dollar earned by men. This significant gender pay gap, approximately 32%, underscores concerning gender-based income inequality in the country of United States.

    - Full-time workers, aged 15 years and older: In United States, among full-time, year-round workers aged 15 years and older, males earned a median income of $67,966, while females earned $54,999, leading to a 19% gender pay gap among full-time workers. This illustrates that women earn 81 cents for each dollar earned by men in full-time roles. This analysis indicates a widening gender pay gap, showing a substantial income disparity where women, despite working full-time, face a more significant wage discrepancy compared to men in the same roles.

    Surprisingly, the gender pay gap percentage was higher across all roles, including non-full-time employment, for women compared to men. This suggests that full-time employment offers a more equitable income scenario for women compared to other employment patterns in United States.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.

    Gender classifications include:

    • Male
    • Female

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Variables / Data Columns

    • Year: This column presents the data year. Expected values are 2010 to 2023
    • Male Total Income: Annual median income, for males regardless of work hours
    • Male FT Income: Annual median income, for males working full time, year-round
    • Male PT Income: Annual median income, for males working part time
    • Female Total Income: Annual median income, for females regardless of work hours
    • Female FT Income: Annual median income, for females working full time, year-round
    • Female PT Income: Annual median income, for females working part time

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for United States median household income by race. You can refer the same here

  17. Gender pay gap in the CEE region 2023, by country

    • ai-chatbox.pro
    • statista.com
    Updated Apr 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Gender pay gap in the CEE region 2023, by country [Dataset]. https://www.ai-chatbox.pro/?_=%2Fstatistics%2F1172208%2Fcee-gender-pay-gap%2F%23XgboD02vawLbpWJjSPEePEUG%2FVFd%2Bik%3D
    Explore at:
    Dataset updated
    Apr 10, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    Central and Eastern Europe, CEE
    Description

    In 2023, female employees in Latvia were paid nearly 20 percent less than their male co-workers. That was the largest unadjusted gender pay gap among Central and Eastern European (CEE) countries. On the other hand, Romanian women's average hourly earnings were 3.8 percent lower than men's. To compare, the EU average for the gender pay gap amounted to 12 percent of men's average hourly earnings.

  18. N

    Hill Country Village, TX annual median income by work experience and sex...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Hill Country Village, TX annual median income by work experience and sex dataset: Aged 15+, 2010-2023 (in 2023 inflation-adjusted dollars) // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/a51c901b-f4ce-11ef-8577-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Hill Country Village, Texas
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates. The dataset covers the years 2010 to 2023, representing 14 years of data. To analyze income differences between genders (male and female), we conducted an initial data analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series (R-CPI-U-RS) based on current methodologies. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Hill Country Village. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.

    Key observations: Insights from 2023

    Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Hill Country Village, the median income for all workers aged 15 years and older, regardless of work hours, was $149,375 for males and $51,750 for females.

    These income figures highlight a substantial gender-based income gap in Hill Country Village. Women, regardless of work hours, earn 35 cents for each dollar earned by men. This significant gender pay gap, approximately 65%, underscores concerning gender-based income inequality in the city of Hill Country Village.

    - Full-time workers, aged 15 years and older: In Hill Country Village, among full-time, year-round workers aged 15 years and older, males earned a median income of $190,769, while females earned $70,250, leading to a 63% gender pay gap among full-time workers. This illustrates that women earn 37 cents for each dollar earned by men in full-time roles. This level of income gap emphasizes the urgency to address and rectify this ongoing disparity, where women, despite working full-time, face a more significant wage discrepancy compared to men in the same employment roles.

    Remarkably, across all roles, including non-full-time employment, women displayed a similar gender pay gap percentage. This indicates a consistent gender pay gap scenario across various employment types in Hill Country Village, showcasing a consistent income pattern irrespective of employment status.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.

    Gender classifications include:

    • Male
    • Female

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Variables / Data Columns

    • Year: This column presents the data year. Expected values are 2010 to 2023
    • Male Total Income: Annual median income, for males regardless of work hours
    • Male FT Income: Annual median income, for males working full time, year-round
    • Male PT Income: Annual median income, for males working part time
    • Female Total Income: Annual median income, for females regardless of work hours
    • Female FT Income: Annual median income, for females working full time, year-round
    • Female PT Income: Annual median income, for females working part time

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Hill Country Village median household income by race. You can refer the same here

  19. J

    The EU Gender Earnings Gap: Job Segregation and Working Time as Driving...

    • journaldata.zbw.eu
    do, stata do, txt
    Updated Mar 3, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Christina Boll; Anja Rossen; Andre Wolf; Christina Boll; Anja Rossen; Andre Wolf (2021). The EU Gender Earnings Gap: Job Segregation and Working Time as Driving Factors (do-files) [Dataset]. http://doi.org/10.15456/jbnst.2017327.092758
    Explore at:
    txt, stata do, doAvailable download formats
    Dataset updated
    Mar 3, 2021
    Dataset provided by
    ZBW - Leibniz Informationszentrum Wirtschaft
    Authors
    Christina Boll; Anja Rossen; Andre Wolf; Christina Boll; Anja Rossen; Andre Wolf
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    European Union
    Description

    This paper estimates size and impact factors of the gender pay gap in Europe. It adds to the literature in three aspects. First, we update existing figures on the gender pay gaps in the EU based on the Structure of Earnings Survey 2010 (SES). Second, we enrich the literature by undertaking comprehensive country comparisons of the gap components based on an Oaxaca-Blinder decomposition. Overall, we analyze 21 EU countries plus Norway, which clearly exceeds the scope of existing microdata stud-ies. Third, we examine the sources of the unexplained gap. The sectoral segregation of genders is identified as the most important barrier to gender pay equality in Euro-pean countries. In addition, the fact that part-time positions are more frequent among women notably contributes to the gap. We conclude that policies aiming at closing the gender pay gap should focus more on the sector level than on the aggre-gate economy.

  20. N

    Lost Nation, IA annual median income by work experience and sex dataset:...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Lost Nation, IA annual median income by work experience and sex dataset: Aged 15+, 2010-2023 (in 2023 inflation-adjusted dollars) // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/lost-nation-ia-income-by-gender/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Iowa, Lost Nation
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates. The dataset covers the years 2010 to 2023, representing 14 years of data. To analyze income differences between genders (male and female), we conducted an initial data analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series (R-CPI-U-RS) based on current methodologies. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Lost Nation. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.

    Key observations: Insights from 2023

    Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Lost Nation, the median income for all workers aged 15 years and older, regardless of work hours, was $45,208 for males and $22,778 for females.

    These income figures highlight a substantial gender-based income gap in Lost Nation. Women, regardless of work hours, earn 50 cents for each dollar earned by men. This significant gender pay gap, approximately 50%, underscores concerning gender-based income inequality in the city of Lost Nation.

    - Full-time workers, aged 15 years and older: In Lost Nation, among full-time, year-round workers aged 15 years and older, males earned a median income of $51,667, while females earned $36,719, leading to a 29% gender pay gap among full-time workers. This illustrates that women earn 71 cents for each dollar earned by men in full-time roles. This analysis indicates a widening gender pay gap, showing a substantial income disparity where women, despite working full-time, face a more significant wage discrepancy compared to men in the same roles.

    Surprisingly, the gender pay gap percentage was higher across all roles, including non-full-time employment, for women compared to men. This suggests that full-time employment offers a more equitable income scenario for women compared to other employment patterns in Lost Nation.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.

    Gender classifications include:

    • Male
    • Female

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Variables / Data Columns

    • Year: This column presents the data year. Expected values are 2010 to 2023
    • Male Total Income: Annual median income, for males regardless of work hours
    • Male FT Income: Annual median income, for males working full time, year-round
    • Male PT Income: Annual median income, for males working part time
    • Female Total Income: Annual median income, for females regardless of work hours
    • Female FT Income: Annual median income, for females working full time, year-round
    • Female PT Income: Annual median income, for females working part time

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Lost Nation median household income by race. You can refer the same here

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Gender pay gap in OECD countries 2023 [Dataset]. https://www.statista.com/statistics/934039/gender-pay-gap-select-countries/
Organization logo

Gender pay gap in OECD countries 2023

Explore at:
5 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
May 30, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
2023
Area covered
Worldwide, OECD
Description

As of 2023, South Korea is the country with the highest gender pay gap among OECD countries, with a **** percent difference between the genders. The gender pay gap displays the difference between the median wages of full-time employed men and full-time employed women.

Search
Clear search
Close search
Google apps
Main menu