100+ datasets found
  1. U.S. wage and salary workers: weekly earnings by gender and ethnicity Q1...

    • statista.com
    Updated May 30, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abigail Tierney (2016). U.S. wage and salary workers: weekly earnings by gender and ethnicity 2023 [Dataset]. https://www.statista.com/study/11647/wage-inequality-in-the-us-statista-dossier/
    Explore at:
    Dataset updated
    May 30, 2016
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Abigail Tierney
    Area covered
    United States
    Description

    This statistic shows the median weekly earnings of full-time wage and salary workers in the United States by gender and ethnicity in the first quarter of 2025. The usual weekly earnings of a male Asian American wage worker was 1,822 U.S. dollars.

  2. Income Inequality in U.S. Counties

    • hub.arcgis.com
    Updated Sep 29, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2015). Income Inequality in U.S. Counties [Dataset]. https://hub.arcgis.com/maps/b2db6f24618d4aad9885d2dd51024842
    Explore at:
    Dataset updated
    Sep 29, 2015
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Urban Observatory by Esri
    Area covered
    Description

    Income InequalityThe level of income inequality among households in a county can be measured using the Gini index. A Gini index varies between zero and one. A value of one indicates perfect inequality, where only one household in the county has any income. A value of zero indicates perfect equality, where all households in the county have equal income.The United States, as a country, has a Gini Index of 0.47 for this time period. For comparision in this map, the purple counties have greater income inequality, while orange counties have less inequality of incomes. For reference, Brazil has an index of 0.58 (relatively high inequality) and Denmark has an index of 0.24 (relatively low inequality).The 5-year Gini index for the U.S. was 0.4695 in 2007-2011 and 0.467 in 2006-2010. Appalachian Regional Commission, September 2013Data source: U.S. Census Bureau, 5-Year American Community Survey, 2006-2010 & 2007-2011

  3. U.S. wealth distribution Q2 2024

    • statista.com
    • alfareestrrf.ru
    • +1more
    Updated Oct 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. wealth distribution Q2 2024 [Dataset]. https://www.statista.com/statistics/203961/wealth-distribution-for-the-us/
    Explore at:
    Dataset updated
    Oct 29, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In the first quarter of 2024, almost two-thirds percent of the total wealth in the United States was owned by the top 10 percent of earners. In comparison, the lowest 50 percent of earners only owned 2.5 percent of the total wealth. Income inequality in the U.S. Despite the idea that the United States is a country where hard work and pulling yourself up by your bootstraps will inevitably lead to success, this is often not the case. In 2023, 7.4 percent of U.S. households had an annual income under 15,000 U.S. dollars. With such a small percentage of people in the United States owning such a vast majority of the country’s wealth, the gap between the rich and poor in America remains stark. The top one percent The United States follows closely behind China as the country with the most billionaires in the world. Elon Musk alone held around 219 billion U.S. dollars in 2022. Over the past 50 years, the CEO-to-worker compensation ratio has exploded, causing the gap between rich and poor to grow, with some economists theorizing that this gap is the largest it has been since right before the Great Depression.

  4. c

    Gender Wage Gap

    • data.ccrpc.org
    csv
    Updated Oct 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Champaign County Regional Planning Commission (2024). Gender Wage Gap [Dataset]. https://data.ccrpc.org/dataset/gender-wage-gap
    Explore at:
    csv(1958)Available download formats
    Dataset updated
    Oct 22, 2024
    Dataset provided by
    Champaign County Regional Planning Commission
    Description

    The gender wage gap indicator compares the median earnings between male and female workers in Champaign County.

    Two worker populations are analyzed: all workers, including part-time and seasonal workers and those that were not employed for the full survey year; and full-time, year-round workers. The gender wage gap is included because it blends economics and equity, and illustrates that a major economic talking point on the national level is just as relevant at the local scale.

    For all four populations (male full-time, year-round workers; female full-time, year-round workers; all male workers; and all female workers), the estimated median earnings were higher in 2023 than in 2005. The greatest increase in a population’s estimated median earnings between 2005 and 2023 was for female full-time, year-round workers; the smallest increase between 2005 and 2023 was for all female workers. In both categories (all and full-time, year-round), the estimated median annual earnings for male workers was consistently higher than for female workers.

    The gender gap between the two estimates in 2023 was larger for full-time, year-round workers than all workers. For full-time, year-round workers, the difference was $11,863; for all workers, it was approaching $9,700.

    The Associated Press wrote this article in October 2024 about how Census Bureau data shows that in 2023 in the United States, the gender wage gap between men and women working full-time widened year-over-year for the first time in 20 years.

    Income data was sourced from the U.S. Census Bureau’s American Community Survey (ACS) 1-Year Estimates, which are released annually.

    As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.

    Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.

    For interested data users, the 2020 ACS 1-Year Experimental data release includes a dataset on Median Earnings in the Past 12 Months (in 2020 Inflation-Adjusted Dollars) by Sex by Work Experience in the Past 12 Months for the Population 16 Years and Over with Earnings in the Past 12 Months.

    Sources: U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using data.census.gov; (16 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using data.census.gov; (20 October 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using data.census.gov; (21 September 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using data.census.gov; (7 June 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using data.census.gov; (7 June 2021).; U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).

  5. d

    Income Inequality

    • catalog.data.gov
    • healthdata.gov
    • +2more
    Updated Nov 27, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2024). Income Inequality [Dataset]. https://catalog.data.gov/dataset/income-inequality-d6ae1
    Explore at:
    Dataset updated
    Nov 27, 2024
    Dataset provided by
    California Department of Public Health
    Description

    This table contains data on income inequality. The primary measure is the Gini index – a measure of the extent to which the distribution of income among families/households within a community deviates from a perfectly equal distribution. The index ranges from 0.0, when all families (households) have equal shares of income (implies perfect equality), to 1.0 when one family (household) has all the income and the rest have none (implies perfect inequality). Index data is provided for California and its counties, regions, and large cities/towns. The data is from the U.S. Census Bureau, American Community Survey. The table is part of a series of indicators in the Healthy Communities Data and Indicators Project of the Office of Health Equity. Income is linked to acquiring resources for healthy living. Both household income and the distribution of income across a society independently contribute to the overall health status of a community. On average Western industrialized nations with large disparities in income distribution tend to have poorer health status than similarly advanced nations with a more equitable distribution of income. Approximately 119,200 (5%) of the 2.4 million U.S. deaths in 2000 are attributable to income inequality. The pathways by which income inequality act to increase adverse health outcomes are not known with certainty, but policies that provide for a strong safety net of health and social services have been identified as potential buffers. More information about the data table and a data dictionary can be found in the About/Attachments section.

  6. Data from: Evidence on Wage Inequality, Worker Education and Technology

    • icpsr.umich.edu
    Updated Nov 28, 2005
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wheeler, Christopher H. (2005). Evidence on Wage Inequality, Worker Education and Technology [Dataset]. http://doi.org/10.3886/ICPSR01314.v1
    Explore at:
    Dataset updated
    Nov 28, 2005
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    Wheeler, Christopher H.
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/1314/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/1314/terms

    Time period covered
    1983 - 2002
    Area covered
    United States
    Description

    The rise in United States wage inequality over the past two decades is commonly associated with an increase in the use of "skill-biased" technologies (e.g., computer equipment) in the workplace, yet relatively few studies have attempted to measure the direct link between the two. This paper explores the relationship among inequality, worker education levels, and workplace computer usage using a sample of 230 United States industries between 1983 and 2002. The results generate two primary conclusions: First, this rising inequality in the United States has been caused predominantly by increasing wage dispersion within industries rather than between industries. Second, within-industry inequality is strongly tied to both the frequency of computer usage among workers and the fraction of total employment with a college degree. Both results lend support to the idea that skill-biased technological change has been an important element in the rise of United States wage inequality.

  7. U.S. Gini gap between rich and poor 2023, by state

    • statista.com
    • ai-chatbox.pro
    Updated Oct 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). U.S. Gini gap between rich and poor 2023, by state [Dataset]. https://www.statista.com/statistics/227249/greatest-gap-between-rich-and-poor-by-us-state/
    Explore at:
    Dataset updated
    Oct 25, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    New York was the state with the greatest gap between rich and poor, with a Gini coefficient score of 0.52 in 2023. Although not a state, District of Columbia was among the highest Gini coefficients in the United States that year.

  8. U.S. gender wage gap, by industry 2021

    • statista.com
    • ai-chatbox.pro
    Updated Aug 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). U.S. gender wage gap, by industry 2021 [Dataset]. https://www.statista.com/statistics/244202/us-gender-wage-gap-by-industry/
    Explore at:
    Dataset updated
    Aug 23, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2021
    Area covered
    United States
    Description

    In 2021, female employee earnings were outpaced by male earnings across nearly all industries, with sharp disparities in the professional and technical services industry, as well as the finance and insurance industry. In that year, there were no industries in which women earned more than men.

  9. F

    GINI Index for the United States

    • fred.stlouisfed.org
    json
    Updated Jun 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). GINI Index for the United States [Dataset]. https://fred.stlouisfed.org/series/SIPOVGINIUSA
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jun 5, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    United States
    Description

    Graph and download economic data for GINI Index for the United States (SIPOVGINIUSA) from 1963 to 2023 about gini, indexes, and USA.

  10. d

    The Politics of Income Inequality in the United States

    • search.dataone.org
    Updated Nov 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nathan J. Kelly (2023). The Politics of Income Inequality in the United States [Dataset]. http://doi.org/10.7910/DVN/HEBC6G
    Explore at:
    Dataset updated
    Nov 20, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Nathan J. Kelly
    Time period covered
    Jan 1, 1947 - Jan 1, 2000
    Description

    This file contains data needed to replicate all time series analyses from my book The Politics of Income Inequality in the United States.

  11. T

    Income Inequality in Lake County, IN

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Feb 9, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2020). Income Inequality in Lake County, IN [Dataset]. https://tradingeconomics.com/united-states/income-inequality-in-lake-county-in-fed-data.html
    Explore at:
    excel, json, xml, csvAvailable download formats
    Dataset updated
    Feb 9, 2020
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1976 - Dec 31, 2025
    Area covered
    Lake County
    Description

    Income Inequality in Lake County, IN was 15.56681 Ratio in January of 2023, according to the United States Federal Reserve. Historically, Income Inequality in Lake County, IN reached a record high of 15.56681 in January of 2023 and a record low of 13.13563 in January of 2010. Trading Economics provides the current actual value, an historical data chart and related indicators for Income Inequality in Lake County, IN - last updated from the United States Federal Reserve on June of 2025.

  12. f

    Wage inequality: log(UTIP—UNIDO).

    • plos.figshare.com
    xls
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Angelica Sbardella; Emanuele Pugliese; Luciano Pietronero (2023). Wage inequality: log(UTIP—UNIDO). [Dataset]. http://doi.org/10.1371/journal.pone.0182774.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Angelica Sbardella; Emanuele Pugliese; Luciano Pietronero
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    OLS estimation, different model specifications.

  13. Wage Gap of Black-White in USA Dataset

    • kaggle.com
    Updated Mar 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mannat Pruthi (2024). Wage Gap of Black-White in USA Dataset [Dataset]. https://www.kaggle.com/datasets/mannatpruthi/wage-gap-of-black-white-in-usa-dataset/suggestions
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 28, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Mannat Pruthi
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Area covered
    United States
    Description

    This dataset focuses on the black-white wage gap in the United States. It provides insights into the disparities in hourly wages between black and white workers, as well as different gender and subgroup breakdowns.

    The data is derived from the Economic Policy Institute’s State of Working America Data Library, a reputable source for socio-economic research and analysis.

  14. d

    Income Inequality and Redistributive Spending in the U.S. States

    • search.dataone.org
    Updated Nov 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Moldogaziev, Tima T.; Monogan III, James E.; Witko, Christopher (2023). Income Inequality and Redistributive Spending in the U.S. States [Dataset]. http://doi.org/10.7910/DVN/PQUUEF
    Explore at:
    Dataset updated
    Nov 21, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Moldogaziev, Tima T.; Monogan III, James E.; Witko, Christopher
    Description

    Data on redistributive spending in the 50 American states from 1974-2012. Also includes two Gini coefficient measures, economic measures, and demographic measures.

  15. U.S. household income Gini Index 1990-2023

    • statista.com
    Updated Sep 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). U.S. household income Gini Index 1990-2023 [Dataset]. https://www.statista.com/statistics/219643/gini-coefficient-for-us-individuals-families-and-households/
    Explore at:
    Dataset updated
    Sep 16, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In 2023, according to the Gini coefficient, household income distribution in the United States was 0.47. This figure was at 0.43 in 1990, which indicates an increase in income inequality in the U.S. over the past 30 years. What is the Gini coefficient? The Gini coefficient, or Gini index, is a statistical measure of economic inequality and wealth distribution among a population. A value of zero represents perfect economic equality, and a value of one represents perfect economic inequality. The Gini coefficient helps to visualize income inequality in a more digestible way. For example, according to the Gini coefficient, the District of Columbia and the state of New York have the greatest amount of income inequality in the U.S. with a score of 0.51, and Utah has the greatest income equality with a score of 0.43. The Gini coefficient around the world The Gini coefficient is also an effective measure to help picture income inequality around the world. For example, in 2018 income inequality was highest in South Africa, while income inequality was lowest in Slovenia.

  16. o

    Data from: GEOWEALTH-US: Spatial wealth inequality data for the United...

    • openicpsr.org
    delimited
    Updated Jun 23, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Joel Suss; Dylan Connor; Tom Kemeny (2023). GEOWEALTH-US: Spatial wealth inequality data for the United States, 1960-2020 [Dataset]. http://doi.org/10.3886/E192306V4
    Explore at:
    delimitedAvailable download formats
    Dataset updated
    Jun 23, 2023
    Dataset provided by
    University of Toronto
    Arizona State University
    London School of Economics
    Authors
    Joel Suss; Dylan Connor; Tom Kemeny
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    1960 - 2020
    Area covered
    United States
    Description

    Wealth inequality has been sharply rising in the United States and across many other high-income countries. Due to a lack of data, we know little about how this trend has unfolded across locations within countries. Investigating this subnational geography of wealth is crucial, as from one generation to the next, wealth powerfully shapes opportunity and disadvantage across individuals and communities. Using machine-learning-based imputation to link newly assembled national historical surveys conducted by the U.S. Federal Reserve to population survey microdata, the data presented in this paper addresses this gap. The Geographic Wealth Inequality Database ("GEOWEALTH-US") provides the first estimates of the level and distribution of wealth at various geographical scales within the United States from 1960 to 2020. The GEOWEALTH-US database enables new lines investigation into the contribution of inter-regional wealth patterns to major societal challenges including wealth concentration, spatial income inequality, equality of opportunity, housing unaffordability, and political polarization.

  17. T

    Income Inequality in Jefferson Parish, LA

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Feb 10, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2020). Income Inequality in Jefferson Parish, LA [Dataset]. https://tradingeconomics.com/united-states/income-inequality-in-jefferson-parish-la-fed-data.html
    Explore at:
    excel, json, csv, xmlAvailable download formats
    Dataset updated
    Feb 10, 2020
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1976 - Dec 31, 2025
    Area covered
    Jefferson Parish, Louisiana
    Description

    Income Inequality in Jefferson Parish, LA was 17.14348 Ratio in January of 2023, according to the United States Federal Reserve. Historically, Income Inequality in Jefferson Parish, LA reached a record high of 17.14348 in January of 2023 and a record low of 13.72062 in January of 2010. Trading Economics provides the current actual value, an historical data chart and related indicators for Income Inequality in Jefferson Parish, LA - last updated from the United States Federal Reserve on June of 2025.

  18. F

    Income Gini Ratio for Households by Race of Householder, All Races

    • fred.stlouisfed.org
    json
    Updated Sep 10, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Income Gini Ratio for Households by Race of Householder, All Races [Dataset]. https://fred.stlouisfed.org/series/GINIALLRH
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Sep 10, 2024
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Income Gini Ratio for Households by Race of Householder, All Races (GINIALLRH) from 1967 to 2023 about gini, households, income, and USA.

  19. F

    Income Inequality in Fairfax County, VA

    • fred.stlouisfed.org
    json
    Updated Dec 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Income Inequality in Fairfax County, VA [Dataset]. https://fred.stlouisfed.org/series/2020RATIO051059
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Dec 12, 2024
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    Fairfax County, Virginia
    Description

    Graph and download economic data for Income Inequality in Fairfax County, VA (2020RATIO051059) from 2010 to 2023 about Fairfax County, VA; inequality; Washington; VA; income; and USA.

  20. o

    Data and Code for: Civil Rights Enforcement and the Racial Wage Gap

    • openicpsr.org
    Updated Apr 26, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jose J. Lopez; Jamein P. Cunningham (2021). Data and Code for: Civil Rights Enforcement and the Racial Wage Gap [Dataset]. http://doi.org/10.3886/E138924V1
    Explore at:
    Dataset updated
    Apr 26, 2021
    Dataset provided by
    American Economic Association
    Authors
    Jose J. Lopez; Jamein P. Cunningham
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    We present new evidence on three measures of civil rights enforcement--litigation, judge dismissal, and plaintiff win rates--across United States district courts from 1979 to 2016. Across courts, higher shares of Republican judges are associated with higher dismissal rates, regardless of court composition in terms of gender and race. Further, we find that states with higher litigation rates also exhibit higher racial wage gaps, whereas states where judge dismissal (plaintiff win) rates are higher experience higher (lower) racial wage gaps. Our results highlight the importance of legal institutions on the persistence of racial inequality.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Abigail Tierney (2016). U.S. wage and salary workers: weekly earnings by gender and ethnicity 2023 [Dataset]. https://www.statista.com/study/11647/wage-inequality-in-the-us-statista-dossier/
Organization logo

U.S. wage and salary workers: weekly earnings by gender and ethnicity Q1 2025

Explore at:
Dataset updated
May 30, 2016
Dataset provided by
Statistahttp://statista.com/
Authors
Abigail Tierney
Area covered
United States
Description

This statistic shows the median weekly earnings of full-time wage and salary workers in the United States by gender and ethnicity in the first quarter of 2025. The usual weekly earnings of a male Asian American wage worker was 1,822 U.S. dollars.

Search
Clear search
Close search
Google apps
Main menu