100+ datasets found
  1. F

    Average Hourly Earnings of All Employees, Total Private

    • fred.stlouisfed.org
    json
    Updated Jul 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Average Hourly Earnings of All Employees, Total Private [Dataset]. https://fred.stlouisfed.org/series/CES0500000003
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 3, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Average Hourly Earnings of All Employees, Total Private (CES0500000003) from Mar 2006 to Jun 2025 about earnings, average, establishment survey, hours, wages, private, employment, and USA.

  2. Salaries & Wages Survey 2020 - Malaysia

    • catalog.ihsn.org
    Updated Jan 16, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Statistics Malaysia (2021). Salaries & Wages Survey 2020 - Malaysia [Dataset]. https://catalog.ihsn.org/catalog/8588
    Explore at:
    Dataset updated
    Jan 16, 2021
    Dataset authored and provided by
    Department of Statistics Malaysia
    Time period covered
    2020
    Area covered
    Malaysia
    Description

    Abstract

    This survey provides salaries & wages statistics at the national level. The survey also provides aggregate data by state as well as urban and rural areas. The survey was carried out using the household approach covering all states in Malaysia. Salaries & Wages Survey uses the personal interview method. During the survey period, trained interviewers visit households in selected living quarters (LQs) to collect demographic information on all household members and salaries & wages particulars of household members aged 15 years and over. The main objective is to collect information on monthly salaries & wages form the principal occupation of paid employee in public and private sectors. The main statistics reported are median and mean monthly salaries & wages by sex, ethnic group, educational attainment, strata, state, occupation and industry. The results of these statistics is published in the 'Salaries & Wages Survey Report'.

    Starting with the Salaries & Wages Report 2017, the main statistics presented in the report is for the citizens. Meanwhile, the salaries & wages selected statistics consists of non citizens is shown in a separate table.

    Geographic coverage

    This survey provides estimates at national and state level as well as urban and rural areas.

    Geographic coverage notes

    National level.

    Analysis unit

    Household/Individual

    Universe

    All household members and salaries & wages particulars of household members aged 15 years and over.

    Kind of data

    Sample survey data [ssd]

    Frequency of data collection

    Monthly

    Sampling procedure

    The survey is carried out using probability sampling through household approach comprising Malaysian citizens and non-citizens. The survey is carried out using probability sampling through household approach comprising Malaysian citizens and non-citizens.

    Mode of data collection

    Face-to-face [f2f]

  3. T

    United States Wages and Salaries Growth

    • tradingeconomics.com
    • pl.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, United States Wages and Salaries Growth [Dataset]. https://tradingeconomics.com/united-states/wage-growth
    Explore at:
    csv, json, xml, excelAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1960 - May 31, 2025
    Area covered
    United States
    Description

    Wages in the United States increased 4.72 percent in May of 2025 over the same month in the previous year. This dataset provides the latest reported value for - United States Wages and Salaries Growth - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  4. d

    CT Occupational Employment & Wages (OES) - 2022-Q1

    • catalog.data.gov
    • data.ct.gov
    Updated Aug 9, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.ct.gov (2024). CT Occupational Employment & Wages (OES) - 2022-Q1 [Dataset]. https://catalog.data.gov/dataset/ct-occupational-employment-wages-oes-2020-q1
    Explore at:
    Dataset updated
    Aug 9, 2024
    Dataset provided by
    data.ct.gov
    Area covered
    Connecticut
    Description

    The Connecticut Occupational Employment and Wage data provides employment and wage data by occupation and is based on the results of the Occupational Employment Statistics (OES) survey. The OES program conducts a bi-annual mail survey designed to produce estimates of employment and wages for over 800 occupations. These estimates are generated at the national, state, and metropolitan area levels. For more information, please visit us at http://www1.ctdol.state.ct.us/lmi/wages/default.asp.

  5. Occupational Employment and Wage Statistics (OES)

    • catalog.data.gov
    Updated May 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bureau of Labor Statistics (2022). Occupational Employment and Wage Statistics (OES) [Dataset]. https://catalog.data.gov/dataset/occupational-employment-and-wage-statistics-oes
    Explore at:
    Dataset updated
    May 16, 2022
    Dataset provided by
    Bureau of Labor Statisticshttp://www.bls.gov/
    Description

    The Occupational Employment and Wage Statistics (OES) program conducts a semi-annual survey to produce estimates of employment and wages for specific occupations. The OES program collects data on wage and salary workers in nonfarm establishments in order to produce employment and wage estimates for about 800 occupations. Data from self-employed persons are not collected and are not included in the estimates. The OES program produces these occupational estimates by geographic area and by industry. Estimates based on geographic areas are available at the National, State, Metropolitan, and Nonmetropolitan Area levels. The Bureau of Labor Statistics produces occupational employment and wage estimates for over 450 industry classifications at the national level. The industry classifications correspond to the sector, 3-, 4-, and 5-digit North American Industry Classification System (NAICS) industrial groups. More information and details about the data provided can be found at http://www.bls.gov/oes

  6. F

    Employed full time: Median usual weekly real earnings: Wage and salary...

    • fred.stlouisfed.org
    json
    Updated Apr 16, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Employed full time: Median usual weekly real earnings: Wage and salary workers: 16 years and over [Dataset]. https://fred.stlouisfed.org/series/LES1252881600Q
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Apr 16, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Employed full time: Median usual weekly real earnings: Wage and salary workers: 16 years and over (LES1252881600Q) from Q1 1979 to Q1 2025 about full-time, salaries, workers, earnings, 16 years +, wages, median, real, employment, and USA.

  7. U.S. monthly average hourly earnings nonfarm payroll employees 2022-2024

    • statista.com
    Updated Jul 3, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abigail Tierney (2024). U.S. monthly average hourly earnings nonfarm payroll employees 2022-2024 [Dataset]. https://www.statista.com/topics/789/wages-and-salary/
    Explore at:
    Dataset updated
    Jul 3, 2024
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Abigail Tierney
    Area covered
    United States
    Description

    In October 2024, the average hourly earnings for all employees on private nonfarm payrolls in the United States stood at 35.46 U.S. dollars. The data have been seasonally adjusted. Employed persons are employees on nonfarm payrolls and consist of: persons who did any work for pay or profit during the survey reference week; persons who did at least 15 hours of unpaid work in a family-operated enterprise; and persons who were temporarily absent from their regular jobs because of illness, vacation, bad weather, industrial dispute, or various personal reasons.

  8. Z

    Wages and Work Survey 2020 Bangladesh - dataset

    • data.niaid.nih.gov
    Updated Nov 19, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kea Tijdens (2021). Wages and Work Survey 2020 Bangladesh - dataset [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_4304893
    Explore at:
    Dataset updated
    Nov 19, 2021
    Dataset authored and provided by
    Kea Tijdens
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Bangladesh
    Description

    Management summary

    Decent Wage Bangladesh phase 1

    The aims of the project Decent Wage Bangladesh phase 1 aimed to gain insight in actual wages, the cost of living and the collective labour agreements in four low-paid sectors in three regions of Bangladesh, in order to strengthen the power of trade unions. The project received funding from Mondiaal FNV in the Netherlands and seeks to contribute to the to the knowledge and research pathway of Mondiaal’s theory of change related to social dialogue. Between August and November 2020 five studies have been undertaken. In a face-to-face survey on wages and work 1,894 workers have been interviewed. In a survey on the cost-of-living 19,252 prices have been observed. The content of 27 collective agreements have been analysed. Fifth, desk research regarding the four sectors was undertaken. The project was coordinated by WageIndicator Foundation, an NGO operating websites with information about work and wages in 140 countries, a wide network of correspondents and a track record in collecting and analysing data regarding wage patters, cost of living, minimum wages and collective agreements. For this project WageIndicator collaborated with its partner Bangladesh Institute of Development Studies (BIDS) in Dhaka, with a track record in conducting surveys in the country and with whom a long-lasting relationship exists. Relevant information was posted on the WageIndicator Bangladesh website and visual graphics and photos on the project webpage. The results of the Cost-of-Living survey can be seen here.

    Ready Made Garment (RMG), Leather and footwear, Construction and Tea gardens and estates are the key sectors in the report. In the Wages and Work Survey interviews have been held with 724 RMG workers in 65 factories, 337 leather and footwear workers in 34 factories, 432 construction workers in several construction sites and 401 workers in 5 tea gardens and 15 tea estates. The Wages and Work Survey 2020 was conducted in the Chattagram, Dhaka and Sylhet Divisions.

    Earnings have been measured in great detail. Monthly median wages for a standard working week are BDT 3,092 in tea gardens and estates, BDT 9,857 in Ready made garment, Bangladeshi Taka (BDT) 10,800 in leather and footwear and BDT 11,547 in construction. The females’ median wage is 77% lower than that of the males, reflecting the gender pay gap noticed around the world. The main reason is not that women and men are paid differently for the same work, but that men and women work in gender-segregated parts of the labour market. Women are dominating the low-paid work in the tea gardens and estates. Workers aged 40 and over are substantially lower paid than younger workers, and this can partly be ascribed to the presence of older women in the tea gardens and estates. Workers hired via an intermediary have higher median wages than workers with a permanent contract or without a contract. Seven in ten workers report that they receive an annual bonus. Almost three in ten workers report that they participate in a pension fund and this is remarkably high in the tea estates, thereby partly compensating the low wages in the sector. Participation in an unemployment fund, a disability fund or medical insurance is hardly observed, but entitlement to paid sick leave and access to medical facilites is frequently mentioned. Female workers participate more than males in all funds and facilities. Compared to workers in the other three sectors, workers in tea gardens and estates participate more in all funds apart from paid sick leave. Social security is almost absent in the construction sector. Does the employer provide non-monetary provisions such as food, housing, clothing, or transport? Food is reported by almost two in ten workers, housing is also reported by more than three in ten workers, clothing by hardly any worker and transport by just over one in ten workers. Food and housing are substantially more often reported in the tea gardens and estates than in the other sectors. A third of the workers reports that overtime hours are paid as normal hours plus a premium, a third reports that overtime hours are paid as normal hours and another third reports that these extra hours are not paid. The latter is particularly the case in construction, although construction workers work long contractual hours they hardly have “overtime hours”, making not paying overtime hours not a major problem.

    Living Wage calculations aim to indicate a wage level that allows families to lead decent lives. It represents an estimate of the monthly expenses necessary to cover the cost of food, housing, transportation, health, education, water, phone and clothing. The prices of 61 food items, housing and transportation have been collected by means of a Cost-of-Living Survey, resulting in 19,252 prices. In Chattagram the living wage for a typical family is BDT 13,000 for a full-time working adult. In Dhaka the living wage for a typical family is BDT 14,400 for a full-time working adult. In both regions the wages of the lowest paid quarter of the semi-skilled workers are only sufficient for the living wage level of a single adult, the wages of the middle paid quarter are sufficient for a single adult and a standard 2+2 family, and the wages in the highest paid quarter are sufficient for a single adult, a standard 2+2 family, and a typical family. In Sylhet the living wage for a typical family is BDT 16,800 for a full-time working adult. In Sylhet the wages of the semi-skilled workers are not sufficient for the living wage level of a single adult, let alone for a standard 2+2 family or a typical family. However, the reader should take into account that these earnings are primarily based on the wages in the tea gardens and estates, where employers provide non-monetary provisions such as housing and food. Nevertheless, the wages in Sylhet are not sufficient for a living wage.

    Employment contracts. Whereas almost all workers in construction have no contract, in the leather industry workers have predominantly a permanent contract, specifically in Chattagram. In RMG the workers in Chattagram mostly have a permanent contract, whereas in Dhaka this is only the case for four in ten workers. RMG workers in Dhaka are in majority hired through a labour intermediary. Workers in the tea gardens and estates in Chattagram in majority have no contract, whereas in Sylhet they have in majority a permanent contract. On average the workers have eleven years of work experience. Almost half of the employees say they have been promoted in their current workplace.

    COVID-19 Absenteeism from work was very high in the first months of the pandemic, when the government ordered a general lock down (closure) for all industries. Almost all workers in construction, RMG and leather reported that they were absent from work from late March to late May 2020. Female workers were far less absent than male workers, and this is primarily due to the fact that the tea gardens and estates with their highly female workforce did not close. From 77% in March-May absenteeism tremendously dropped till 5% in June-September. By September the number of absent days had dropped to almost zero in all sectors. Absenteeism was predominantly due to workplace closures, but in some cases due to the unavailability of transport. More than eight all absent workers faced a wage reduction. Wage reduction has been applied equally across the various groups of workers. The workers who faced reduced earnings reported borrowing from family or friends (66% of those who faced wage reduction), receiving food distribution of the government (23%), borrowing from a micro lenders (MFI) (20%), borrowing from other small lenders (14%), receiving rations from the employer (9%) or receiving cash assistance from the government or from non-governmental institutions (both 4%). Male workers have borrowed from family or friends more often than female workers, and so did workers aged 40-49 and couples with more than two children.

    COVID-19 Hygiene at the workplace After return to work workers have assessed hygiene at the workplace and the supply of hygiene facilities. Workers are most positive about the safe distance or space in dining seating areas (56% assesses this as a low risk), followed by the independent use of all work equipment, as opposed to shared (46%). They were least positive about a safe distance between work stations and number of washrooms/toilets, and more than two in ten workers assess the number of washrooms/toilets even as a high risk. Handwashing facilities are by a large majority of the workers assessed as adequate with a low risk. In contrast, gloves were certainly not adequately supplied, as more than seven in ten workers state that these are not adequately supplied. This may be due to the fact that use of gloves could affect workers’ productivity, depending on the occupations.

  9. A

    ‘CT Occupational Employment & Wages (OES) - 2020-Q1’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Jan 26, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘CT Occupational Employment & Wages (OES) - 2020-Q1’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/data-gov-ct-occupational-employment-wages-oes-2020-q1-3dc7/d1501028/?iid=013-126&v=presentation
    Explore at:
    Dataset updated
    Jan 26, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Connecticut
    Description

    Analysis of ‘CT Occupational Employment & Wages (OES) - 2020-Q1’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/50b9dff3-58ef-4c52-9fd9-fd0ffda9f300 on 26 January 2022.

    --- Dataset description provided by original source is as follows ---

    The Connecticut Occupational Employment and Wage data provides employment and wage data by occupation and is based on the results of the Occupational Employment Statistics (OES) survey. The OES program conducts a bi-annual mail survey designed to produce estimates of employment and wages for over 800 occupations. These estimates are generated at the national, state, and metropolitan area levels. For more information, please visit us at http://www1.ctdol.state.ct.us/lmi/wages/default.asp.

    --- Original source retains full ownership of the source dataset ---

  10. Wages

    • open.canada.ca
    • ouvert.canada.ca
    csv
    Updated Dec 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Employment and Social Development Canada (2024). Wages [Dataset]. https://open.canada.ca/data/en/dataset/adad580f-76b0-4502-bd05-20c125de9116
    Explore at:
    csvAvailable download formats
    Dataset updated
    Dec 12, 2024
    Dataset provided by
    Ministry of Employment and Social Development of Canadahttp://esdc-edsc.gc.ca/
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    The wages on the Job Bank website are specific to an occupation and provide information on the earnings of workers at the regional level. Wages for most occupations are also provided at the national and provincial level. In Canada, all jobs are associated with one specific occupational grouping which is determined by the National Occupational Classification. For most occupations, a minimum, median and maximum wage estimates are displayed. They are update annually. If you have comments or questions regarding the wage information, please contact the Labour Market Information Division at: NC-LMI-IMT-GD@hrsdc-rhdcc.gc.ca

  11. Employee wages by industry, annual

    • www150.statcan.gc.ca
    • open.canada.ca
    • +2more
    Updated Jan 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Employee wages by industry, annual [Dataset]. http://doi.org/10.25318/1410006401-eng
    Explore at:
    Dataset updated
    Jan 24, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Average hourly and weekly wage rate, and median hourly and weekly wage rate by North American Industry Classification System (NAICS), type of work, gender, and age group.

  12. g

    Occupational Employment and Wage Estimates | gimi9.com

    • gimi9.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Occupational Employment and Wage Estimates | gimi9.com [Dataset]. https://gimi9.com/dataset/data-gov_occupational-employment-and-wage-estimates/
    Explore at:
    Description

    Washington State, metropolitan statistical areas (MSA) and nonmetropolitan areas (NMA), 2020 OEWS is a program of the U.S. Department of Labor, Bureau of Labor Statistics (BLS). This federal-state cooperative program produces employment and wage estimates for nearly 867 occupations. The occupational employment and wage estimates are based on data collected from the OEWS survey. The survey includes employment counts, occupations and wages from more than 4,200 Washington state employers. Data from six survey panels are combined to create a sample size of more than 26,400 employers. Blanks in the data columns indicate suppressed data.

  13. c

    Annual Survey of Hours and Earnings, 2020: Synthetic Data Pilot

    • datacatalogue.cessda.eu
    • beta.ukdataservice.ac.uk
    Updated Nov 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2024). Annual Survey of Hours and Earnings, 2020: Synthetic Data Pilot [Dataset]. http://doi.org/10.5255/UKDA-SN-9045-1
    Explore at:
    Dataset updated
    Nov 29, 2024
    Authors
    Office for National Statistics
    Time period covered
    Dec 19, 2022 - Jan 3, 2023
    Area covered
    United Kingdom
    Variables measured
    Institutions/organisations, Individuals, National
    Measurement technique
    Compilation/Synthesis
    Description

    Abstract copyright UK Data Service and data collection copyright owner.


    The Annual Survey of Hours and Earnings, 2020: Synthetic Data Pilot is a synthetic version of the Annual Survey of Hours and Earnings (ASHE) study available via Trusted Research Environments (TREs).

    ASHE is one of the most extensive surveys of the earnings of individuals in the UK. Data on the wages, paid hours of work, and pensions arrangements of nearly one per cent of the working population are collected. Other variables relating to age, occupation and industrial classification are also available. The ASHE sample is drawn from National Insurance records for working individuals, and the survey forms are sent to their respective employers to complete. ASHE is available for research projects demonstrating public good to accredited or approved researchers via TREs such as the Office for National Statistics Secure Research Service (SRS) or the UK Data Service Secure Lab (at SN 6689). To access collections stored within TREs, researchers need to undergo an accreditation process.

    Gaining access to data in a secure environment can be time and resource intensive. This pilot has created a low fidelity, low disclosure risk synthetic version of ASHE data, which can be made available to researchers more quickly while they wait for access to the real data.

    The synthetic data were created using the Synthpop package in R. The sample method was used; this takes a simple random sample with replacement from the real values. The project was carried out in the period between 19th December 2022 and 3rd January 2023. Further information is available within the documentation.

    User feedback received through this pilot will help the ONS to maximise benefits of data access and further explore the feasibility of synthesising more data in future.


    Main Topics:

    The ASHE synthetic data contain the same variables as ASHE for each individual, relating to wages, hours of work, pension arrangements, and occupation and industrial classifications. There are also variables for age, gender and full/part-time status. Because ASHE data are collected by the employer, there are also variables relating to the organisation employing the individual. These include employment size and legal status (e.g. public company). Various geography variables are included in the data files. The year variable in this synthetic dataset is 2020.

  14. 2020 American Community Survey: B19052 | WAGE OR SALARY INCOME IN THE PAST...

    • data.census.gov
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS, 2020 American Community Survey: B19052 | WAGE OR SALARY INCOME IN THE PAST 12 MONTHS FOR HOUSEHOLDS (ACS 5-Year Estimates Detailed Tables) [Dataset]. https://data.census.gov/table/ACSDT5Y2020.B19052?q=B19052&g=160XX00US4861904
    Explore at:
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2020
    Description

    Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, for 2020, the 2020 Census provides the official counts of the population and housing units for the nation, states, counties, cities, and towns. For 2016 to 2019, the Population Estimates Program provides estimates of the population for the nation, states, counties, cities, and towns and intercensal housing unit estimates for the nation, states, and counties..Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2016-2020 American Community Survey 5-Year Estimates.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..The 2016-2020 American Community Survey (ACS) data generally reflect the September 2018 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas. In certain instances, the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB delineation lists due to differences in the effective dates of the geographic entities..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2010 data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.

  15. c

    Gender Wage Gap

    • data.ccrpc.org
    csv
    Updated Oct 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Champaign County Regional Planning Commission (2024). Gender Wage Gap [Dataset]. https://data.ccrpc.org/dataset/gender-wage-gap
    Explore at:
    csv(1958)Available download formats
    Dataset updated
    Oct 22, 2024
    Dataset provided by
    Champaign County Regional Planning Commission
    Description

    The gender wage gap indicator compares the median earnings between male and female workers in Champaign County.

    Two worker populations are analyzed: all workers, including part-time and seasonal workers and those that were not employed for the full survey year; and full-time, year-round workers. The gender wage gap is included because it blends economics and equity, and illustrates that a major economic talking point on the national level is just as relevant at the local scale.

    For all four populations (male full-time, year-round workers; female full-time, year-round workers; all male workers; and all female workers), the estimated median earnings were higher in 2023 than in 2005. The greatest increase in a population’s estimated median earnings between 2005 and 2023 was for female full-time, year-round workers; the smallest increase between 2005 and 2023 was for all female workers. In both categories (all and full-time, year-round), the estimated median annual earnings for male workers was consistently higher than for female workers.

    The gender gap between the two estimates in 2023 was larger for full-time, year-round workers than all workers. For full-time, year-round workers, the difference was $11,863; for all workers, it was approaching $9,700.

    The Associated Press wrote this article in October 2024 about how Census Bureau data shows that in 2023 in the United States, the gender wage gap between men and women working full-time widened year-over-year for the first time in 20 years.

    Income data was sourced from the U.S. Census Bureau’s American Community Survey (ACS) 1-Year Estimates, which are released annually.

    As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.

    Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.

    For interested data users, the 2020 ACS 1-Year Experimental data release includes a dataset on Median Earnings in the Past 12 Months (in 2020 Inflation-Adjusted Dollars) by Sex by Work Experience in the Past 12 Months for the Population 16 Years and Over with Earnings in the Past 12 Months.

    Sources: U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using data.census.gov; (16 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using data.census.gov; (20 October 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using data.census.gov; (21 September 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using data.census.gov; (7 June 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using data.census.gov; (7 June 2021).; U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).

  16. T

    United States - Employed full time: Wage and salary workers: Survey...

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Jan 1, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2021). United States - Employed full time: Wage and salary workers: Survey researchers occupations: 16 years and over: Women [Dataset]. https://tradingeconomics.com/united-states/employed-full-time-wage-and-salary-workers-survey-researchers-occupations-16-years-and-over-women-fed-data.html
    Explore at:
    excel, json, xml, csvAvailable download formats
    Dataset updated
    Jan 1, 2021
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1976 - Dec 31, 2025
    Area covered
    United States
    Description

    United States - Employed full time: Wage and salary workers: Survey researchers occupations: 16 years and over: Women was 1.00000 Thous. of Persons in January of 2024, according to the United States Federal Reserve. Historically, United States - Employed full time: Wage and salary workers: Survey researchers occupations: 16 years and over: Women reached a record high of 3.00000 in January of 2020 and a record low of 0.00000 in January of 2011. Trading Economics provides the current actual value, an historical data chart and related indicators for United States - Employed full time: Wage and salary workers: Survey researchers occupations: 16 years and over: Women - last updated from the United States Federal Reserve on June of 2025.

  17. Annual Survey of Hours and Earnings: 2021 (based on SOC 2020)

    • gov.uk
    • s3.amazonaws.com
    Updated Jun 27, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2022). Annual Survey of Hours and Earnings: 2021 (based on SOC 2020) [Dataset]. https://www.gov.uk/government/statistics/annual-survey-of-hours-and-earnings-2021-based-on-soc-2020
    Explore at:
    Dataset updated
    Jun 27, 2022
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Office for National Statistics
    Description

    Official statistics are produced impartially and free from political influence.

  18. d

    2020 State Employee Pay

    • catalog.data.gov
    • data.mo.gov
    • +1more
    Updated Sep 27, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.mo.gov (2024). 2020 State Employee Pay [Dataset]. https://catalog.data.gov/dataset/2020-state-employee-pay
    Explore at:
    Dataset updated
    Sep 27, 2024
    Dataset provided by
    data.mo.gov
    Description

    Pay Information for calendar year 2020 for the employees of the State of Missouri by their Agency of employment, Position Title or Employee name.

  19. IT Salary Survey for EU region(2018-2020)

    • kaggle.com
    Updated Jan 19, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Parul Pandey (2021). IT Salary Survey for EU region(2018-2020) [Dataset]. https://www.kaggle.com/parulpandey/2020-it-salary-survey-for-eu-region/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 19, 2021
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Parul Pandey
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    European Union
    Description

    Context

    An anonymous salary survey has been conducted annually since 2015 among European IT specialists with a stronger focus on Germany. This year 1238 respondents volunteered to participate in the survey. The data has been made publicly available by the authors. The dataset contains rich information about the salary patterns among the IT professionals in the EU region and offers some great insights.

    An accompanying article - IT Salary Survey December 2020 has also been published which goes deeper into the findings.

    Acknowledgements 🙏🏻

    Thanks to Ksenia Legostay for curating and analyzing the data. Additional thanks to Viktor Shcherban and Sergey Vasilyev for collaborating on the survey.

  20. Earnings Data from the Benefits and Earnings Public-Use File - 2020

    • catalog.data.gov
    Updated Jul 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Social Security Administration (2025). Earnings Data from the Benefits and Earnings Public-Use File - 2020 [Dataset]. https://catalog.data.gov/dataset/earnings-data-from-the-benefits-and-earnings-public-use-file-2020
    Explore at:
    Dataset updated
    Jul 4, 2025
    Dataset provided by
    Social Security Administrationhttp://ssa.gov/
    Description

    This file contains earnings data and is part of a set of two separate but associated subfiles, one with Social Security benefit information and the other with longitudinal earnings information. Sample beneficiary records drawn from the Old-Age, Survivors, and Disability Insurance (OASDI) program can be linked to their corresponding earnings histories.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2025). Average Hourly Earnings of All Employees, Total Private [Dataset]. https://fred.stlouisfed.org/series/CES0500000003

Average Hourly Earnings of All Employees, Total Private

CES0500000003

Explore at:
44 scholarly articles cite this dataset (View in Google Scholar)
jsonAvailable download formats
Dataset updated
Jul 3, 2025
License

https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

Description

Graph and download economic data for Average Hourly Earnings of All Employees, Total Private (CES0500000003) from Mar 2006 to Jun 2025 about earnings, average, establishment survey, hours, wages, private, employment, and USA.

Search
Clear search
Close search
Google apps
Main menu