22 datasets found
  1. Cost of living index in the U.S. 2024, by state

    • statista.com
    Updated May 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Cost of living index in the U.S. 2024, by state [Dataset]. https://www.statista.com/statistics/1240947/cost-of-living-index-usa-by-state/
    Explore at:
    Dataset updated
    May 27, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    United States
    Description

    West Virginia and Kansas had the lowest cost of living across all U.S. states, with composite costs being half of those found in Hawaii. This was according to a composite index that compares prices for various goods and services on a state-by-state basis. In West Virginia, the cost of living index amounted to **** — well below the national benchmark of 100. Virginia— which had an index value of ***** — was only slightly above that benchmark. Expensive places to live included Hawaii, Massachusetts, and California. Housing costs in the U.S. Housing is usually the highest expense in a household’s budget. In 2023, the average house sold for approximately ******* U.S. dollars, but house prices in the Northeast and West regions were significantly higher. Conversely, the South had some of the least expensive housing. In West Virginia, Mississippi, and Louisiana, the median price of the typical single-family home was less than ******* U.S. dollars. That makes living expenses in these states significantly lower than in states such as Hawaii and California, where housing is much pricier. What other expenses affect the cost of living? Utility costs such as electricity, natural gas, water, and internet also influence the cost of living. In Alaska, Hawaii, and Connecticut, the average monthly utility cost exceeded *** U.S. dollars. That was because of the significantly higher prices for electricity and natural gas in these states.

  2. Living Wage

    • data.ca.gov
    • data.chhs.ca.gov
    • +1more
    pdf, xlsx, zip
    Updated Aug 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2024). Living Wage [Dataset]. https://data.ca.gov/dataset/living-wage
    Explore at:
    pdf, xlsx, zipAvailable download formats
    Dataset updated
    Aug 29, 2024
    Dataset authored and provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This table contains data on the living wage and the percent of families with incomes below the living wage for California, its counties, regions and cities/towns. Living wage is the wage needed to cover basic family expenses (basic needs budget) plus all relevant taxes; it does not include publicly provided income or housing assistance. The percent of families below the living wage was calculated using data from the Living Wage Calculator and the U.S. Census Bureau, American Community Survey. The table is part of a series of indicators in the Healthy Communities Data and Indicators Project of the Office of Health Equity. The living wage is the wage or annual income that covers the cost of the bare necessities of life for a worker and his/her family. These necessities include housing, transportation, food, childcare, health care, and payment of taxes. Low income populations and non-white race/ethnic have disproportionately lower wages, poorer housing, and higher levels of food insecurity. More information about the data table and a data dictionary can be found in the About/Attachments section.

  3. 2025 State Employee Pay

    • kaggle.com
    Updated Jul 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sonawane Lalit (2025). 2025 State Employee Pay [Dataset]. https://www.kaggle.com/datasets/sonawanelalitsunil/2025-state-employee-pay
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 8, 2025
    Dataset provided by
    Kaggle
    Authors
    Sonawane Lalit
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    The 2025 State Employee Pay page provides a comprehensive breakdown of salary structures, cost-of-living adjustments (COLAs), pay raises, and classification changes for state employees across various departments and positions. It includes information on:

    Updated salary schedules by classification and grade

    Annual cost-of-living adjustments (if approved by legislature)

    Bonus or incentive pay (where applicable)

    Pay equity adjustments

    Job title and classification updates

    Agency-specific pay plans

    This resource is essential for current state workers, HR professionals, policy analysts, and those considering employment in the public sector.

    Whether you're a classified employee, exempt worker, or part of a unionized workforce, this guide outlines how your pay may be affected throughout 2025 based on legislation, union negotiations, and state budget allocations.

  4. U.S. median household income 2023, by state

    • statista.com
    • ai-chatbox.pro
    Updated Sep 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). U.S. median household income 2023, by state [Dataset]. https://www.statista.com/statistics/233170/median-household-income-in-the-united-states-by-state/
    Explore at:
    Dataset updated
    Sep 16, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    In 2023, the real median household income in the state of Alabama was 60,660 U.S. dollars. The state with the highest median household income was Massachusetts, which was 106,500 U.S. dollars in 2023. The average median household income in the United States was at 80,610 U.S. dollars.

  5. County Health Rankings 2022

    • atlas-connecteddmv.hub.arcgis.com
    Updated Aug 29, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). County Health Rankings 2022 [Dataset]. https://atlas-connecteddmv.hub.arcgis.com/maps/3a684a0851e74ff1b55225dbdfde78b4
    Explore at:
    Dataset updated
    Aug 29, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The County Health Rankings, a collaboration between the Robert Wood Johnson Foundation and the University of Wisconsin Population Health Institute, measure the health of nearly all counties in the nation and rank them within states. This feature layer contains 2022 County Health Rankings data for nation, state, and county levels. The Rankings are compiled using county-level measures from a variety of national and state data sources. Some example measures are:adult smokingphysical inactivityflu vaccinationschild povertydriving alone to workTo see a full list of variables, as well as their definitions and descriptions, explore the Fields information by clicking the Data tab here in the Item Details. These measures are standardized and combined using scientifically-informed weights."By ranking the health of nearly every county in the nation, County Health Rankings & Roadmaps (CHR&R) illustrates how where we live affects how well and how long we live. CHR&R also shows what each of us can do to create healthier places to live, learn, work, and play – for everyone."Counties are ranked within their state on both health outcomes and health factors. Counties with a lower (better) health outcomes ranking than health factors ranking may see the health of their county decline in the future, as factors today can result in outcomes later. Conversely, counties with a lower (better) factors ranking than outcomes ranking may see the health of their county improve in the future.Some new variables in the 2022 Rankings data compared to previous versions:COVID-19 age-adjusted mortalitySchool segregationSchool funding adequacyGender pay gapChildcare cost burdenChildcare centersLiving wage (while the Living wage measure was introduced to the CHRR dataset in 2022 from the Living Wage Calculator, it is not available in the Living Atlas dataset and user’s interested in the most up to date living wage data can look that up on the Living Wage Calculator website).Data Processing Notes:Data downloaded April 2022Slight modifications made to the source data are as follows:The string " raw value" was removed from field labels/aliases so that auto-generated legends and pop-ups would only have the measure's name, not "(measure's name) raw value" and strings such as "(%)", "rate", or "per 100,000" were added depending on the type of measure.Percentage and Prevalence fields were multiplied by 100 to make them easier to work with in the map.Ratios were set to null if negative to make them easier to work with in the map.For demographic variables, the word "numerator" was removed and the word "population" was added where appropriate.Fields dropped from analytic data file: yearall fields ending in "_cihigh" and "_cilow"and any variables that are not listed in the sources and years documentation.Analytic data file was then merged with state-specific ranking files so that all county rankings and subrankings are included in this layer.2010 US boundaries were used as the data contain 2010 US census geographies, for a total of 3,142 counties.

  6. Data from: Valuation of Specific Crime Rates in the United States, 1980 and...

    • catalog.data.gov
    • icpsr.umich.edu
    Updated Mar 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Institute of Justice (2025). Valuation of Specific Crime Rates in the United States, 1980 and 1990 [Dataset]. https://catalog.data.gov/dataset/valuation-of-specific-crime-rates-in-the-united-states-1980-and-1990-cb3f7
    Explore at:
    Dataset updated
    Mar 12, 2025
    Dataset provided by
    National Institute of Justicehttp://nij.ojp.gov/
    Area covered
    United States
    Description

    This project was designed to isolate the effects that individual crimes have on wage rates and housing prices, as gauged by individuals' and households' decisionmaking preferences changing over time. Additionally, this project sought to compute a dollar value that individuals would bear in their wages and housing costs to reduce the rates of specific crimes. The study used multiple decades of information obtained from counties across the United States to create a panel dataset. This approach was designed to compensate for the problem of collinearity by tracking how housing and occupation choices within particular locations changed over the decade considering all amenities or disamenities, including specific crime rates. Census data were obtained for this project from the Integrated Public Use Microdata Series (IPUMS) constructed by Ruggles and Sobek (1997). Crime data were obtained from the Federal Bureau of Investigation's Uniform Crime Reports (UCR). Other data were collected from the American Chamber of Commerce Researchers Association, County and City Data Book, National Oceanic and Atmospheric Administration, and Environmental Protection Agency. Independent variables for the Wages Data (Part 1) include years of education, school enrollment, sex, ability to speak English well, race, veteran status, employment status, and occupation and industry. Independent variables for the Housing Data (Part 2) include number of bedrooms, number of other rooms, building age, whether unit was a condominium or detached single-family house, acreage, and whether the unit had a kitchen, plumbing, public sewers, and water service. Both files include the following variables as separating factors: census geographic division, cost-of-living index, percentage unemployed, percentage vacant housing, labor force employed in manufacturing, living near a coastline, living or working in the central city, per capita local taxes, per capita intergovernmental revenue, per capita property taxes, population density, and commute time to work. Lastly, the following variables measured amenities or disamenities: average precipitation, temperature, windspeed, sunshine, humidity, teacher-pupil ratio, number of Superfund sites, total suspended particulate in air, and rates of murder, rape, robbery, aggravated assault, burglary, larceny, auto theft, violent crimes, and property crimes.

  7. Z

    Wages and Work Survey 2020 Bangladesh - dataset

    • data.niaid.nih.gov
    Updated Nov 19, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kea Tijdens (2021). Wages and Work Survey 2020 Bangladesh - dataset [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_4304893
    Explore at:
    Dataset updated
    Nov 19, 2021
    Dataset authored and provided by
    Kea Tijdens
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Bangladesh
    Description

    Management summary

    Decent Wage Bangladesh phase 1

    The aims of the project Decent Wage Bangladesh phase 1 aimed to gain insight in actual wages, the cost of living and the collective labour agreements in four low-paid sectors in three regions of Bangladesh, in order to strengthen the power of trade unions. The project received funding from Mondiaal FNV in the Netherlands and seeks to contribute to the to the knowledge and research pathway of Mondiaal’s theory of change related to social dialogue. Between August and November 2020 five studies have been undertaken. In a face-to-face survey on wages and work 1,894 workers have been interviewed. In a survey on the cost-of-living 19,252 prices have been observed. The content of 27 collective agreements have been analysed. Fifth, desk research regarding the four sectors was undertaken. The project was coordinated by WageIndicator Foundation, an NGO operating websites with information about work and wages in 140 countries, a wide network of correspondents and a track record in collecting and analysing data regarding wage patters, cost of living, minimum wages and collective agreements. For this project WageIndicator collaborated with its partner Bangladesh Institute of Development Studies (BIDS) in Dhaka, with a track record in conducting surveys in the country and with whom a long-lasting relationship exists. Relevant information was posted on the WageIndicator Bangladesh website and visual graphics and photos on the project webpage. The results of the Cost-of-Living survey can be seen here.

    Ready Made Garment (RMG), Leather and footwear, Construction and Tea gardens and estates are the key sectors in the report. In the Wages and Work Survey interviews have been held with 724 RMG workers in 65 factories, 337 leather and footwear workers in 34 factories, 432 construction workers in several construction sites and 401 workers in 5 tea gardens and 15 tea estates. The Wages and Work Survey 2020 was conducted in the Chattagram, Dhaka and Sylhet Divisions.

    Earnings have been measured in great detail. Monthly median wages for a standard working week are BDT 3,092 in tea gardens and estates, BDT 9,857 in Ready made garment, Bangladeshi Taka (BDT) 10,800 in leather and footwear and BDT 11,547 in construction. The females’ median wage is 77% lower than that of the males, reflecting the gender pay gap noticed around the world. The main reason is not that women and men are paid differently for the same work, but that men and women work in gender-segregated parts of the labour market. Women are dominating the low-paid work in the tea gardens and estates. Workers aged 40 and over are substantially lower paid than younger workers, and this can partly be ascribed to the presence of older women in the tea gardens and estates. Workers hired via an intermediary have higher median wages than workers with a permanent contract or without a contract. Seven in ten workers report that they receive an annual bonus. Almost three in ten workers report that they participate in a pension fund and this is remarkably high in the tea estates, thereby partly compensating the low wages in the sector. Participation in an unemployment fund, a disability fund or medical insurance is hardly observed, but entitlement to paid sick leave and access to medical facilites is frequently mentioned. Female workers participate more than males in all funds and facilities. Compared to workers in the other three sectors, workers in tea gardens and estates participate more in all funds apart from paid sick leave. Social security is almost absent in the construction sector. Does the employer provide non-monetary provisions such as food, housing, clothing, or transport? Food is reported by almost two in ten workers, housing is also reported by more than three in ten workers, clothing by hardly any worker and transport by just over one in ten workers. Food and housing are substantially more often reported in the tea gardens and estates than in the other sectors. A third of the workers reports that overtime hours are paid as normal hours plus a premium, a third reports that overtime hours are paid as normal hours and another third reports that these extra hours are not paid. The latter is particularly the case in construction, although construction workers work long contractual hours they hardly have “overtime hours”, making not paying overtime hours not a major problem.

    Living Wage calculations aim to indicate a wage level that allows families to lead decent lives. It represents an estimate of the monthly expenses necessary to cover the cost of food, housing, transportation, health, education, water, phone and clothing. The prices of 61 food items, housing and transportation have been collected by means of a Cost-of-Living Survey, resulting in 19,252 prices. In Chattagram the living wage for a typical family is BDT 13,000 for a full-time working adult. In Dhaka the living wage for a typical family is BDT 14,400 for a full-time working adult. In both regions the wages of the lowest paid quarter of the semi-skilled workers are only sufficient for the living wage level of a single adult, the wages of the middle paid quarter are sufficient for a single adult and a standard 2+2 family, and the wages in the highest paid quarter are sufficient for a single adult, a standard 2+2 family, and a typical family. In Sylhet the living wage for a typical family is BDT 16,800 for a full-time working adult. In Sylhet the wages of the semi-skilled workers are not sufficient for the living wage level of a single adult, let alone for a standard 2+2 family or a typical family. However, the reader should take into account that these earnings are primarily based on the wages in the tea gardens and estates, where employers provide non-monetary provisions such as housing and food. Nevertheless, the wages in Sylhet are not sufficient for a living wage.

    Employment contracts. Whereas almost all workers in construction have no contract, in the leather industry workers have predominantly a permanent contract, specifically in Chattagram. In RMG the workers in Chattagram mostly have a permanent contract, whereas in Dhaka this is only the case for four in ten workers. RMG workers in Dhaka are in majority hired through a labour intermediary. Workers in the tea gardens and estates in Chattagram in majority have no contract, whereas in Sylhet they have in majority a permanent contract. On average the workers have eleven years of work experience. Almost half of the employees say they have been promoted in their current workplace.

    COVID-19 Absenteeism from work was very high in the first months of the pandemic, when the government ordered a general lock down (closure) for all industries. Almost all workers in construction, RMG and leather reported that they were absent from work from late March to late May 2020. Female workers were far less absent than male workers, and this is primarily due to the fact that the tea gardens and estates with their highly female workforce did not close. From 77% in March-May absenteeism tremendously dropped till 5% in June-September. By September the number of absent days had dropped to almost zero in all sectors. Absenteeism was predominantly due to workplace closures, but in some cases due to the unavailability of transport. More than eight all absent workers faced a wage reduction. Wage reduction has been applied equally across the various groups of workers. The workers who faced reduced earnings reported borrowing from family or friends (66% of those who faced wage reduction), receiving food distribution of the government (23%), borrowing from a micro lenders (MFI) (20%), borrowing from other small lenders (14%), receiving rations from the employer (9%) or receiving cash assistance from the government or from non-governmental institutions (both 4%). Male workers have borrowed from family or friends more often than female workers, and so did workers aged 40-49 and couples with more than two children.

    COVID-19 Hygiene at the workplace After return to work workers have assessed hygiene at the workplace and the supply of hygiene facilities. Workers are most positive about the safe distance or space in dining seating areas (56% assesses this as a low risk), followed by the independent use of all work equipment, as opposed to shared (46%). They were least positive about a safe distance between work stations and number of washrooms/toilets, and more than two in ten workers assess the number of washrooms/toilets even as a high risk. Handwashing facilities are by a large majority of the workers assessed as adequate with a low risk. In contrast, gloves were certainly not adequately supplied, as more than seven in ten workers state that these are not adequately supplied. This may be due to the fact that use of gloves could affect workers’ productivity, depending on the occupations.

  8. n

    ALARI: Alaska Local and Regional Information - Datasets - North Slope...

    • catalog.northslopescience.org
    Updated Feb 23, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2016). ALARI: Alaska Local and Regional Information - Datasets - North Slope Science Catalog [Dataset]. https://catalog.northslopescience.org/dataset/1667
    Explore at:
    Dataset updated
    Feb 23, 2016
    Area covered
    North Slope Borough, Alaska
    Description

    This State of Alaska, Department of Labor and Workforce Development website provides a wide variety of Alaska social data for research and analysis. It includes data on: population and census, wages, employment/employer, unemployment, industry, occupation, cost of living and housing, and training. Local and regional GIS data from the 2010 census are provided for: borough and census areas, places, census tracts, block groups and blocks.

  9. Employee wages by industry, annual

    • www150.statcan.gc.ca
    • open.canada.ca
    • +2more
    Updated Jan 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Employee wages by industry, annual [Dataset]. http://doi.org/10.25318/1410006401-eng
    Explore at:
    Dataset updated
    Jan 24, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Average hourly and weekly wage rate, and median hourly and weekly wage rate by North American Industry Classification System (NAICS), type of work, gender, and age group.

  10. T

    Russia Average Monthly Wages

    • tradingeconomics.com
    • pl.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated May 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Russia Average Monthly Wages [Dataset]. https://tradingeconomics.com/russia/wages
    Explore at:
    excel, csv, xml, jsonAvailable download formats
    Dataset updated
    May 15, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1990 - Mar 31, 2025
    Area covered
    Russia
    Description

    Wages in Russia increased to 97645 RUB/Month in March from 89646 RUB/Month in February of 2025. This dataset provides the latest reported value for - Russia Average Monthly Wages - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  11. H

    Replication Data for: The Fading American Dream: Trends in Absolute Income...

    • dataverse.harvard.edu
    • search.dataone.org
    Updated Feb 23, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Raj Chetty; David Grusky; Maximilian Hell; Nathaniel Hendren; Robert Manduca; Jimmy Narang (2022). Replication Data for: The Fading American Dream: Trends in Absolute Income Mobility Since 1940 [Dataset]. http://doi.org/10.7910/DVN/B9TEWM
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 23, 2022
    Dataset provided by
    Harvard Dataverse
    Authors
    Raj Chetty; David Grusky; Maximilian Hell; Nathaniel Hendren; Robert Manduca; Jimmy Narang
    License

    https://dataverse.harvard.edu/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.7910/DVN/B9TEWMhttps://dataverse.harvard.edu/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.7910/DVN/B9TEWM

    Description

    This dataset contains replication files for "The Fading American Dream: Trends in Absolute Income Mobility Since 1940" by Raj Chetty, David Grusky, Maximilian Hell, Nathaniel Hendren, Robert Manduca, and Jimmy Narang. For more information, see https://opportunityinsights.org/paper/the-fading-american-dream/. A summary of the related publication follows. One of the defining features of the “American Dream” is the ideal that children have a higher standard of living than their parents. We assess whether the U.S. is living up to this ideal by estimating rates of “absolute income mobility” – the fraction of children who earn more than their parents – since 1940. We measure absolute mobility by comparing children’s household incomes at age 30 (adjusted for inflation using the Consumer Price Index) with their parents’ household incomes at age 30. We find that rates of absolute mobility have fallen from approximately 90% for children born in 1940 to 50% for children born in the 1980s. Absolute income mobility has fallen across the entire income distribution, with the largest declines for families in the middle class. These findings are unaffected by using alternative price indices to adjust for inflation, accounting for taxes and transfers, measuring income at later ages, and adjusting for changes in household size. Absolute mobility fell in all 50 states, although the rate of decline varied, with the largest declines concentrated in states in the industrial Midwest, such as Michigan and Illinois. The decline in absolute mobility is especially steep – from 95% for children born in 1940 to 41% for children born in 1984 – when we compare the sons’ earnings to their fathers’ earnings. Why have rates of upward income mobility fallen so sharply over the past half-century? There have been two important trends that have affected the incomes of children born in the 1980s relative to those born in the 1940s and 1950s: lower Gross Domestic Product (GDP) growth rates and greater inequality in the distribution of growth. We find that most of the decline in absolute mobility is driven by the more unequal distribution of economic growth rather than the slowdown in aggregate growth rates. When we simulate an economy that restores GDP growth to the levels experienced in the 1940s and 1950s but distributes that growth across income groups as it is distributed today, absolute mobility only increases to 62%. In contrast, maintaining GDP at its current level but distributing it more broadly across income groups – at it was distributed for children born in the 1940s – would increase absolute mobility to 80%, thereby reversing more than two-thirds of the decline in absolute mobility. These findings show that higher growth rates alone are insufficient to restore absolute mobility to the levels experienced in mid-century America. Under the current distribution of GDP, we would need real GDP growth rates above 6% per year to return to rates of absolute mobility in the 1940s. Intuitively, because a large fraction of GDP goes to a small fraction of high-income households today, higher GDP growth does not substantially increase the number of children who earn more than their parents. Of course, this does not mean that GDP growth does not matter: changing the distribution of growth naturally has smaller effects on absolute mobility when there is very little growth to be distributed. The key point is that increasing absolute mobility substantially would require more broad-based economic growth. We conclude that absolute mobility has declined sharply in America over the past half-century primarily because of the growth in inequality. If one wants to revive the “American Dream” of high rates of absolute mobility, one must have an interest in growth that is shared more broadly across the income distribution.

  12. k

    Average Salary in Germany 2025

    • kummuni.com
    html
    Updated Apr 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KUMMUNI (2025). Average Salary in Germany 2025 [Dataset]. https://kummuni.com/whats-the-average-salary-in-germany
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Apr 30, 2025
    Dataset authored and provided by
    KUMMUNI
    License

    https://kummuni.com/terms/https://kummuni.com/terms/

    Area covered
    Germany
    Variables measured
    Minimum wage, Median salary, Average net salary, Average gross salary (with bonuses), Average gross salary (without bonuses)
    Description

    A structured overview of the average, net, median, and minimum wage in Germany for 2025. This dataset combines original market research conducted by KUMMUNI GmbH with publicly available data from the German Federal Statistical Office. It includes values with and without bonuses, hourly minimum wage, and take-home pay after tax.

  13. l

    Supplementary information files for "Spatial inequality in prices and wages...

    • repository.lboro.ac.uk
    pdf
    Updated Jan 20, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stefan Nikolic (2025). Supplementary information files for "Spatial inequality in prices and wages within a late-developing economy: Serbia, 1863–1910" [Dataset]. http://doi.org/10.17028/rd.lboro.28238696.v1
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jan 20, 2025
    Dataset provided by
    Loughborough University
    Authors
    Stefan Nikolic
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Serbia
    Description

    Supplementary files for article "Spatial inequality in prices and wages within a late-developing economy: Serbia, 1863–1910"Serbia emerged as a small independent nation-state in the economic periphery of nineteenth-century Europe. This article leverages uniquely abundant town-level data to examine spatial inequality in prices and wages within this late-developing economy. I first build a new dataset on prices of traded and household goods, and wages of skilled and unskilled workers for a panel of 42 urban settlements in Serbia in the period from 1863 to 1910. I apply the welfare ratio approach to calculate real wages of day labourers and masons. Second, I find strong spatial convergence in grain prices and costs of living, but divergence in wages, both nominal and real. Lastly, I investigate the determinants of price convergence and wage divergence with panel-data models. The results suggest that falling transport costs decreased price gaps between locations, whereas rising population differences increased inter-urban wage gaps.© The Authors, CC BY 4.0

  14. Average monthly salary After Taxes by Country

    • kaggle.com
    Updated Dec 1, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Adrian Zinovei (2019). Average monthly salary After Taxes by Country [Dataset]. https://www.kaggle.com/datasets/zinovadr/average-monthly-salary-after-taxes-by-country/versions/3
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 1, 2019
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Adrian Zinovei
    Description

    Average monthly disposable salary Years: 2013-2014 DEFINITION: Average Monthly Disposable Salary (After Tax). Based on 0-50 contributions for Afghanistan, Aland Islands, Andorra and 81 more countries and 50-100 contributions for Albania, Algeria, Armenia and 19 more countries and over 100 contributions for Argentina, Australia, Austria and 82 more countries. The surveys were conducted by numbeo.com from May, 2011 to February, 2014. See this sample survey for the United States, respondents were asked "Average Monthly Disposable Salary (After Tax)". Prices in current USD.

    Source: https://www.nationmaster.com/country-info/stats/Cost-of-living/Average-monthly-disposable-salary/After-tax#

  15. Family Resources Survey, 2005/06-2023/24: Secure Access

    • datacatalogue.cessda.eu
    Updated May 29, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics; NatCen Social Research (2025). Family Resources Survey, 2005/06-2023/24: Secure Access [Dataset]. http://doi.org/10.5255/UKDA-SN-9256-3
    Explore at:
    Dataset updated
    May 29, 2025
    Dataset provided by
    Department for Work and Pensionshttps://gov.uk/dwp
    Social and Vital Statistics Division
    Authors
    Office for National Statistics; NatCen Social Research
    Area covered
    United Kingdom
    Variables measured
    Families/households, Individuals, National
    Measurement technique
    Telephone interview: Computer-assisted (CATI), Face-to-face interview: Computer-assisted (CAPI/CAMI)
    Description

    Abstract copyright UK Data Service and data collection copyright owner.

    The Family Resources Survey (FRS) has been running continuously since 1992 to meet the information needs of the Department for Work and Pensions (DWP). It is almost wholly funded by DWP.

    The FRS collects information from a large, and representative sample of private households in the United Kingdom (prior to 2002, it covered Great Britain only). The interview year runs from April to March.

    The focus of the survey is on income, and how much comes from the many possible sources (such as employee earnings, self-employed earnings or profits from businesses, and dividends; individual pensions; state benefits, including Universal Credit and the State Pension; and other sources such as savings and investments). Specific items of expenditure, such as rent or mortgage, Council Tax and water bills, are also covered.

    Many other topics are covered and the dataset has a very wide range of personal characteristics, at the adult or child, family and then household levels. These include education, caring, childcare and disability. The dataset also captures material deprivation, household food security and (new for 2021/22) household food bank usage.

    The FRS is a national statistic whose results are published on the gov.uk website. It is also possible to create your own tables from FRS data, using DWP’s Stat Xplore tool. Further information can be found on the gov.uk Family Resources Survey webpage.

    Secure Access FRS data
    The Secure Access version of the FRS contains unrounded data and additional variables, and is available from 2005/06 onwards. Prospective users of the Secure Access version of the FRS must fulfil additional requirements beyond those associated with the EUL datasets.

    FRS, HBAI and PI
    The FRS underpins the related Households Below Average Income (HBAI) dataset, which focuses on poverty in the UK, and the related Pensioners' Incomes (PI) dataset. The Secure Access versions are held under SNs 7196 and 9257. The EUL versions of HBAI and PI are held under SNs 5828 and 8503.


    Secure Access FRS contents
    The Secure Access version of the FRS contains unrounded data and a small number of extra variables that are not available on the standard EUL versions. A full listing of additional variables for the current year is available in the document '9256_frs_variable_listing_saf.xlsx', and in the UKDA Data Dictionaries in the Documentation section. Users should note that the variables listed may not be included for all FRS years. The file '9252_changes_.xlsx' lists a summary of variable changes since the previous year.

    Documentation
    The Documentation section includes files for the latest year of the FRS only, due to available space. Documentation for previous years is provided alongside the data for access and is also available upon request.

    Latest edition information

    For the second edition (April 2025), data and documentation for 2023/24 were added to the study. LSOA variables for 2013/14 to 2019/20 have also been added to the household ('househol') files for those years.

    For the third edition (May 2025), the 2022/23 data files were replaced, and the Excel metadata documentation updated accordingly. The following changes have been made:

    • An ONS-delivered fix to the highest level of qualification (EDUCQUAL) which for several adults had been erroneously recorded.
    • For ESA (benefit 16 on the BENEFITS table) the associated VAR3 has now been populated using ESA admin data, to show whether cases are Support Group etc.
    • For Pension Credit recipients (benefit 4 on the BENEFITS table) adding the low-income benefits and tax credits Cost of Living Payment as benefit 124; with its flag CLPAYIRB set on the ADULT table.
    Further information can be found on the Family Resources Survey - GOV.UK webpage.
    Main Topics:

    Household characteristics (age, family composition, tenure); some spending, with housing (rent or details of mortgage); household bills including Council Tax, buildings and contents insurance, water and sewerage rates.

    Receipt of state support from all state benefits, including Universal Credit and Tax Credits; educational level and grants and loans; children in education; care, both those receiving care and those caring for others; childcare; occupation, employment, self-employment and earnings/wage details, including director dividend if received; income tax payments and refunds; National Insurance contributions; pension contributions; earnings from odd jobs. Doctors and dentists are separately identified from 2021-22.

    Health and disability, restrictions on work, children's health; income from personal or...

  16. Consumer Price Index, 1913-1990

    • archive.ciser.cornell.edu
    Updated Jan 31, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bureau of Labor Statistics (2020). Consumer Price Index, 1913-1990 [Dataset]. http://doi.org/10.6077/t8k2-xc29
    Explore at:
    Dataset updated
    Jan 31, 2020
    Dataset authored and provided by
    Bureau of Labor Statisticshttp://www.bls.gov/
    Variables measured
    Other
    Description

    The Consumer Price Index (CPI) measures over time the prices of goods and services in major expenditure categories typically purchased by urban consumers. The expenditure categories include food, housing, apparel, transportation, and medical care. Essentially, the Index measures consumer purchasing power by comparing the cost of a fixed set of goods and services (called a market basket) in a specific month relative to the cost of the same market basket in an earlier reference period, designated as the base period. The CPI is calculated for two population groups: urban wage earners and clerical workers (CPI-W) and all urban consumers (CPI-U). The CPI-W population includes those urban families with clerical workers, sales workers, craft workers, operatives, service workers, or laborers in the family unit and is representative of the prices paid by about 40 percent of the United States population. The CPI-U population consists of all urban households (including professional and salaried workers, part-time workers, the self-employed, the unemployed, and retired persons) and is representative of the prices paid by about 80 percent of the United States population. Both populations specifically exclude persons in the military, in institutions, and all persons living outside of urban areas (such as farm families). National indexes for both populations are available for about 350 consumer items and groups of items. In addition, over 100 of the indexes have been adjusted for seasonality. The indexes are monthly with some beginning in 1913. Area indexes are available for 27 urban places. For each area, indexes are presented for about 65 items and groups. The area indexes are produced monthly for 5 areas, bimonthly for 10 areas, and semiannually for 12 urban areas. Regional indexes are available for four regions with about 95 items and groups per region. Beginning with January 1987, regional indexes are monthly, with some beginning as early as 1966. City-size indexes are available for four size classes with about 95 items and groups per class. Beginning with January 1987, these indexes are monthly and most begin in 1977. Regional and city-size indexes are available cross-classified by region and city-size class. For each of the 13 cross-classifications, about 60 items and groups are available. Beginning with January 1987, these indexes are monthly and most begin in 1977. Each index record includes a series identification code that specifies the sample (either all urban consumers or urban wage earners and clerical workers), seasonality (either seasonally adjusted or unadjusted), periodicity (either semiannual or regular), geographic area, index base period, and item number of the index. (Source: downloaded from ICPSR 7/13/10)

    Please Note: This dataset is part of the historical CISER Data Archive Collection and is also available at ICPSR at https://doi.org/10.3886/ICPSR08166.v3. We highly recommend using the ICPSR version as they may make this dataset available in multiple data formats in the future and includes additional years of data.

  17. Family Resources Survey, 2022-2023

    • beta.ukdataservice.ac.uk
    • datacatalogue.cessda.eu
    Updated 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department For Work And Pensions (2025). Family Resources Survey, 2022-2023 [Dataset]. http://doi.org/10.5255/ukda-sn-9252-2
    Explore at:
    Dataset updated
    2025
    Dataset provided by
    UK Data Servicehttps://ukdataservice.ac.uk/
    datacite
    Authors
    Department For Work And Pensions
    Description

    The Family Resources Survey (FRS) has been running continuously since 1992 to meet the information needs of the Department for Work and Pensions (DWP). It is almost wholly funded by DWP.

    The FRS collects information from a large, and representative sample of private households in the United Kingdom (prior to 2002, it covered Great Britain only). The interview year runs from April to March.

    The focus of the survey is on income, and how much comes from the many possible sources (such as employee earnings, self-employed earnings or profits from businesses, and dividends; individual pensions; state benefits, including Universal Credit and the State Pension; and other sources such as savings and investments). Specific items of expenditure, such as rent or mortgage, Council Tax and water bills, are also covered.

    Many other topics are covered and the dataset has a very wide range of personal characteristics, at the adult or child, family and then household levels. These include education, caring, childcare and disability. The dataset also captures material deprivation, household food security and (new for 2021/22) household food bank usage.

    The FRS is a national statistic whose results are published on the gov.uk website. It is also possible to create your own tables from FRS data, using DWP’s Stat Xplore tool. Further information can be found on the gov.uk Family Resources Survey webpage.

    Secure Access FRS data
    In addition to the standard End User Licence (EUL) version, Secure Access datasets, containing unrounded data and additional variables, are also available for FRS from 2005/06 onwards - see SN 9256. Prospective users of the Secure Access version of the FRS will need to fulfil additional requirements beyond those associated with the EUL datasets. Full details of the application requirements are available from http://ukdataservice.ac.uk/media/178323/secure_frs_application_guidance.pdf" style="background-color: rgb(255, 255, 255);">Guidance on applying for the Family Resources Survey: Secure Access.

    FRS, HBAI and PI
    The FRS underpins the related Households Below Average Income (HBAI) dataset, which focuses on poverty in the UK, and the related Pensioners' Incomes (PI) dataset. The EUL versions of HBAI and PI are held under SNs 5828 and 8503, respectively. The Secure Access versions are held under SN 7196 and 9257 (see above).

    FRS 2022-23

    The impact of the coronavirus (COVID-19) pandemic on the FRS 2022-23 survey was much reduced when compared with the two previous survey years. Throughout the year, there was a gradual return to pre-pandemic fieldwork practices, with the majority of interviews being conducted in face-to-face mode. The achieved sample was just over 25,000 households. Users are advised to consult the FRS 2022-23 Background Information and Methodology document for detailed information on changes, developments and issues related to the 2022-23 FRS data set and publication. Alongside the usual topics covered, the 2022-2023 FRS also includes variables for Cost of Living support, including those on certain state benefits; energy bill support; and Council Tax support. See documentation for further details.

    FRS 2021-22 and 2020-21 and the coronavirus (COVID-19) pandemic

    The coronavirus (COVID-19) pandemic has impacted the FRS 2021-22 and 2020-21 data collection in the following ways:

    • In 2020-21, fieldwork operations for the FRS were rapidly changed in response to the coronavirus (COVID-19) pandemic and the introduction of national lockdown restrictions. The established face-to-face interviewing approach employed on the FRS was suspended and replaced with telephone interviewing for the whole of the 2020-21 survey year.
    • This change impacted both the size and composition of the achieved sample. This shift in mode of interview has been accompanied by a substantial reduction in the number of interviews achieved: just over 10,000 interviews were achieved this year, compared with 19,000 to 20,000 in a typical FRS year. While we made every effort to address additional biases identified (e.g. by altering our weighting regime), some residual bias remains. Please see the FRS 2020-21 Background Information and Methodology document for more information.
    • The FRS team have published a technical report for the 2020-21 survey, which provides a full assessment of the impact of the pandemic on the statistics. In line with the Statistics Code of Practice, this is designed to assist users with interpreting the data and to aid transparency over decisions and data quality issues.
    • In 2021-22, the interview mode was largely telephone, with partial return to face-to-face interviews towards end of survey year. The achieved sample was over 16,000 households. This is a return towards the number expected in a normal survey year (around 20,000 households).
    • In both survey years, there remain areas where users are advised to exercise caution when making comparisons to other survey years. More details on how the results for the 2020 to 2021 and 2021-22 survey years were affected by the coronavirus (COVID-19) pandemic can be found in the FRS 2020 to 2021 Background Information and Methodology and FRS 2021 to 2022 Background Information and Methodology.

    The FRS team are seeking users' feedback on the 2020-21 and 2021-22 FRS. Given the breadth of groups covered by the FRS data, it has not been possible for DWP statisticians to assess or validate every breakdown which is of interest to external researchers and users. Therefore, the FRS team are inviting users to let them know of any insights you may have relating to data quality or trends when analysing these data for your area of interest. Please send any feedback directly to the FRS Team Inbox: team.frs@dwp.gov.uk

    Latest edition information

    For the second edition (May 2025), the data were redeposited. The following changes have been made:

    • An ONS-delivered fix to the highest level of qualification (EDUCQUAL) which for several adults had been erroneously recorded.
    • For ESA (benefit 16 on the BENEFITS table) the associated VAR3 has now been populated using ESA admin data, to show whether cases are Support Group etc.
    • For Pension Credit recipients (benefit 4 on the BENEFITS table) adding the low-income benefits and tax credits Cost of Living Payment as benefit 124; with its flag CLPAYIRB set on the ADULT table.
    Further information can be found on the Family Resources Survey - GOV.UK webpage.

  18. T

    Thailand Inflation Rate

    • tradingeconomics.com
    • zh.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jul 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Thailand Inflation Rate [Dataset]. https://tradingeconomics.com/thailand/inflation-cpi
    Explore at:
    csv, json, excel, xmlAvailable download formats
    Dataset updated
    Jul 7, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1977 - Jun 30, 2025
    Area covered
    Thailand
    Description

    Inflation Rate in Thailand decreased by 0.25 percent in June from -0.57 percent in May of 2025. This dataset provides the latest reported value for - Thailand Inflation Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  19. T

    Mexico Inflation Rate

    • tradingeconomics.com
    • fr.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jun 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Mexico Inflation Rate [Dataset]. https://tradingeconomics.com/mexico/inflation-cpi
    Explore at:
    xml, json, csv, excelAvailable download formats
    Dataset updated
    Jun 9, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1974 - Jun 30, 2025
    Area covered
    Mexico
    Description

    Inflation Rate in Mexico decreased to 4.32 percent in June from 4.42 percent in May of 2025. This dataset provides - Mexico Inflation Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  20. Distribution Regression with Sample Selection and UK Wage Decomposition,...

    • beta.ukdataservice.ac.uk
    • datacatalogue.cessda.eu
    Updated 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    V. Chernozhukov; Fernandez-Val, I., Boston University (United States); Luo, S., Boston University (United States) (2025). Distribution Regression with Sample Selection and UK Wage Decomposition, 1978-2013 [Dataset]. http://doi.org/10.5255/ukda-sn-9355-1
    Explore at:
    Dataset updated
    2025
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    DataCitehttps://www.datacite.org/
    Authors
    V. Chernozhukov; Fernandez-Val, I., Boston University (United States); Luo, S., Boston University (United States)
    Area covered
    United Kingdom
    Description

    This study contains the final dataset used in 'Distribution regression with sample selection and UK wage decomposition, by Victor Chernozhukov, Ivan Fernandez-Val and Siyi Luo.*

    The data come from the UK Family Expenditure Survey (FES) for the years 1978 to 2001, Expenditure and Food Survey (EFS) for the years 2002 to 2007, and Living Costs and Food Survey (LCFS) for 2008-2013, supplemented with variables constructed with the tax and welfare-benefit model (TAXBEN) by the Institute for Fiscal Studies (IFS).

    *(See: Chernozhukov, V., Fernández-Val, I. and Luo, S. (2023) 'Distribution regression with sample selection and UK wage decomposition', CEMMAP working paper CWP09/23, Institute for Fiscal Studies/Department of Economics, UCL.)

    The data are available to download in Stata format only, with an accompanying Stata .do file and supplementary documentation.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Cost of living index in the U.S. 2024, by state [Dataset]. https://www.statista.com/statistics/1240947/cost-of-living-index-usa-by-state/
Organization logo

Cost of living index in the U.S. 2024, by state

Explore at:
2 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
May 27, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
2024
Area covered
United States
Description

West Virginia and Kansas had the lowest cost of living across all U.S. states, with composite costs being half of those found in Hawaii. This was according to a composite index that compares prices for various goods and services on a state-by-state basis. In West Virginia, the cost of living index amounted to **** — well below the national benchmark of 100. Virginia— which had an index value of ***** — was only slightly above that benchmark. Expensive places to live included Hawaii, Massachusetts, and California. Housing costs in the U.S. Housing is usually the highest expense in a household’s budget. In 2023, the average house sold for approximately ******* U.S. dollars, but house prices in the Northeast and West regions were significantly higher. Conversely, the South had some of the least expensive housing. In West Virginia, Mississippi, and Louisiana, the median price of the typical single-family home was less than ******* U.S. dollars. That makes living expenses in these states significantly lower than in states such as Hawaii and California, where housing is much pricier. What other expenses affect the cost of living? Utility costs such as electricity, natural gas, water, and internet also influence the cost of living. In Alaska, Hawaii, and Connecticut, the average monthly utility cost exceeded *** U.S. dollars. That was because of the significantly higher prices for electricity and natural gas in these states.

Search
Clear search
Close search
Google apps
Main menu