Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Wages in the United States increased 5.35 percent in July of 2025 over the same month in the previous year. This dataset provides the latest reported value for - United States Wages and Salaries Growth - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
In March 2025, inflation amounted to 2.4 percent, while wages grew by 4.3 percent. The inflation rate has not exceeded the rate of wage growth since January 2023. Inflation in 2022 The high rates of inflation in 2022 meant that the real terms value of American wages took a hit. Many Americans report feelings of concern over the economy and a worsening of their financial situation. The inflation situation in the United States is one that was experienced globally in 2022, mainly due to COVID-19 related supply chain constraints and disruption due to the Russian invasion of Ukraine. The monthly inflation rate for the U.S. reached a 40-year high in June 2022 at 9.1 percent, and annual inflation for 2022 reached eight percent. Without appropriate wage increases, Americans will continue to see a decline in their purchasing power. Wages in the U.S. Despite the level of wage growth reaching 6.7 percent in the summer of 2022, it has not been enough to curb the impact of even higher inflation rates. The federally mandated minimum wage in the United States has not increased since 2009, meaning that individuals working minimum wage jobs have taken a real terms pay cut for the last twelve years. There are discrepancies between states - the minimum wage in California can be as high as 15.50 U.S. dollars per hour, while a business in Oklahoma may be as low as two U.S. dollars per hour. However, even the higher wage rates in states like California and Washington may be lacking - one analysis found that if minimum wage had kept up with productivity, the minimum hourly wage in the U.S. should have been 22.88 dollars per hour in 2021. Additionally, the impact of decreased purchasing power due to inflation will impact different parts of society in different ways with stark contrast in average wages due to both gender and race.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Average weekly earnings for the whole economy, for total and regular pay, in real terms (adjusted for consumer price inflation), UK, monthly, seasonally adjusted.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Wages in Italy increased 2.80 percent in July of 2025 over the same month in the previous year. This dataset provides the latest reported value for - Italy Hourly Wage Index - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Average hourly and weekly wage rate, and median hourly and weekly wage rate by North American Industry Classification System (NAICS), type of work, gender, and age group.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for WAGE GROWTH reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
Modeled wage estimates
The table Modeled wage estimates is part of the dataset Bureau of Labor Statistics Unemployment and Inflation, available at https://columbia.redivis.com/datasets/ymdq-1a9mgdxff. It contains 500770 rows across 7 variables.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Great Scott township. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2023
Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Great Scott township, the median income for all workers aged 15 years and older, regardless of work hours, was $57,250 for males and $22,625 for females.
These income figures highlight a substantial gender-based income gap in Great Scott township. Women, regardless of work hours, earn 40 cents for each dollar earned by men. This significant gender pay gap, approximately 60%, underscores concerning gender-based income inequality in the township of Great Scott township.
- Full-time workers, aged 15 years and older: In Great Scott township, among full-time, year-round workers aged 15 years and older, males earned a median income of $90,750, while females earned $47,250, leading to a 48% gender pay gap among full-time workers. This illustrates that women earn 52 cents for each dollar earned by men in full-time roles. This level of income gap emphasizes the urgency to address and rectify this ongoing disparity, where women, despite working full-time, face a more significant wage discrepancy compared to men in the same employment roles.Remarkably, across all roles, including non-full-time employment, women displayed a similar gender pay gap percentage. This indicates a consistent gender pay gap scenario across various employment types in Great Scott township, showcasing a consistent income pattern irrespective of employment status.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Great Scott township median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Morocco. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2023
Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Morocco, the median income for all workers aged 15 years and older, regardless of work hours, was $42,279 for males and $25,066 for females.
These income figures highlight a substantial gender-based income gap in Morocco. Women, regardless of work hours, earn 59 cents for each dollar earned by men. This significant gender pay gap, approximately 41%, underscores concerning gender-based income inequality in the town of Morocco.
- Full-time workers, aged 15 years and older: In Morocco, among full-time, year-round workers aged 15 years and older, males earned a median income of $51,016, while females earned $42,566, leading to a 17% gender pay gap among full-time workers. This illustrates that women earn 83 cents for each dollar earned by men in full-time roles. This analysis indicates a widening gender pay gap, showing a substantial income disparity where women, despite working full-time, face a more significant wage discrepancy compared to men in the same roles.Surprisingly, the gender pay gap percentage was higher across all roles, including non-full-time employment, for women compared to men. This suggests that full-time employment offers a more equitable income scenario for women compared to other employment patterns in Morocco.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Morocco median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Wages In the Euro Area increased 3.70 percent in June of 2025 over the same month in the previous year. This dataset provides the latest reported value for - Euro Area Wage Growth - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Wages in Germany increased 1.90 percent in June of 2025 over the same month in the previous year. This dataset provides the latest reported value for - Germany Wage Growth - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Gifford. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2023
Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Gifford, the median income for all workers aged 15 years and older, regardless of work hours, was $51,016 for males and $38,558 for females.
These income figures indicate a substantial gender-based pay disparity, showcasing a gap of approximately 24% between the median incomes of males and females in Gifford. With women, regardless of work hours, earning 76 cents to each dollar earned by men, this income disparity reveals a concerning trend toward wage inequality that demands attention in thevillage of Gifford.
- Full-time workers, aged 15 years and older: In Gifford, among full-time, year-round workers aged 15 years and older, males earned a median income of $70,227, while females earned $52,083, leading to a 26% gender pay gap among full-time workers. This illustrates that women earn 74 cents for each dollar earned by men in full-time roles. This analysis indicates a widening gender pay gap, showing a substantial income disparity where women, despite working full-time, face a more significant wage discrepancy compared to men in the same roles.Remarkably, across all roles, including non-full-time employment, women displayed a similar gender pay gap percentage. This indicates a consistent gender pay gap scenario across various employment types in Gifford, showcasing a consistent income pattern irrespective of employment status.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Gifford median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Argentina AR: Wages Index data was reported at 379.409 2010=100 in Oct 2015. This records an increase from the previous number of 374.839 2010=100 for Sep 2015. Argentina AR: Wages Index data is updated monthly, averaging 74.034 2010=100 from Oct 2001 (Median) to Oct 2015, with 169 observations. The data reached an all-time high of 379.409 2010=100 in Oct 2015 and a record low of 26.475 2010=100 in Apr 2002. Argentina AR: Wages Index data remains active status in CEIC and is reported by International Monetary Fund. The data is categorized under Global Database’s Argentina – Table AR.IMF.IFS: Wages, Labour Cost and Employment Index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Wages in China increased to 120698 CNY/Year in 2023 from 114029 CNY/Year in 2022. This dataset provides - China Average Yearly Wages - actual values, historical data, forecast, chart, statistics, economic calendar and news.
In April 2025, the UK minimum wage for adults over the age of 21 in will be 12.21 pounds per hour. For the 2025/26 financial year, there will be four minimum wage categories, three of which are based on age and one for apprentice workers. Apprentices, and workers under the age of 18 will have a minimum wage of 7.55 pounds an hour, increasing to ten pounds for those aged 18 to 20. When the minimum wage was first introduced in 1999, there were just two age categories; 18 to 21, and 22 and over. This increased to three categories in 2004, four in 2010, and five between 2016 and 2023, before being reduced down to four in the most recent year. The living wage The living wage is an alternative minimum wage amount that employers in the UK can voluntarily pay their employees. It is calculated independently of the legal minimum wage and results in a higher value figure. In 2023/24, for example, the living wage was twelve pounds an hour for the UK as a whole and 13.15 for workers in London, where the cost of living is typically higher. This living wage is different from what the UK government has named the national living wage, which was 10.42 in the same financial year. Between 2011/12 and 2023/24, the living wage has increased by 4.80 pounds, while the London living wage has grown by 4.85 pounds. Wage growth cancelled-out by high inflation 2021-2023 For a long period between the middle of 2021 and late 2023, average wage growth in the UK was unable to keep up with record inflation levels, resulting in the biggest fall in disposable income since 1956. Although the UK government attempted to mitigate the impact of falling living standards through a series of cost of living payments, the situation has still been very difficult for households. After peaking at 11.1 percent in October 2022, the UK's inflation rate remained in double figures until March 2023, and did not fall to the preferred rate of two percent until May 2024. As of November 2024, regular weekly pay in the UK was growing by 5.6 percent in nominal terms, and 2.5 percent when adjusted for inflation.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Bell. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2023
Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Bell, the median income for all workers aged 15 years and older, regardless of work hours, was $45,625 for males and $33,250 for females.
These income figures indicate a substantial gender-based pay disparity, showcasing a gap of approximately 27% between the median incomes of males and females in Bell. With women, regardless of work hours, earning 73 cents to each dollar earned by men, this income disparity reveals a concerning trend toward wage inequality that demands attention in thetown of Bell.
- Full-time workers, aged 15 years and older: In Bell, among full-time, year-round workers aged 15 years and older, males earned a median income of $50,417, while females earned $37,400, leading to a 26% gender pay gap among full-time workers. This illustrates that women earn 74 cents for each dollar earned by men in full-time roles. This analysis indicates a widening gender pay gap, showing a substantial income disparity where women, despite working full-time, face a more significant wage discrepancy compared to men in the same roles.Remarkably, across all roles, including non-full-time employment, women displayed a similar gender pay gap percentage. This indicates a consistent gender pay gap scenario across various employment types in Bell, showcasing a consistent income pattern irrespective of employment status.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Bell median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Draper. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2023
Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Draper, the median income for all workers aged 15 years and older, regardless of work hours, was $77,562 for males and $36,752 for females.
These income figures highlight a substantial gender-based income gap in Draper. Women, regardless of work hours, earn 47 cents for each dollar earned by men. This significant gender pay gap, approximately 53%, underscores concerning gender-based income inequality in the city of Draper.
- Full-time workers, aged 15 years and older: In Draper, among full-time, year-round workers aged 15 years and older, males earned a median income of $107,277, while females earned $65,027, leading to a 39% gender pay gap among full-time workers. This illustrates that women earn 61 cents for each dollar earned by men in full-time roles. This level of income gap emphasizes the urgency to address and rectify this ongoing disparity, where women, despite working full-time, face a more significant wage discrepancy compared to men in the same employment roles.Remarkably, across all roles, including non-full-time employment, women displayed a similar gender pay gap percentage. This indicates a consistent gender pay gap scenario across various employment types in Draper, showcasing a consistent income pattern irrespective of employment status.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Draper median household income by race. You can refer the same here
Introduction This note summarises trends in pay in London and the UK since 2010 and compares them to inflation trends. The focus is on median gross weekly earnings for all employees (full- and part-time) working in London. The counterfactual analysis is based on annual pay estimates. Notes on the data The employee pay estimates in this note do not cover self-employed jobs and come from a survey of UK businesses. There are, moreover, several discontinuities in the ONS ASHE series (e.g. in 2004, 2006, 2011 and 2021). The growth rates calculated over these periods are illustrative, not precise figures. During the pandemic earnings estimates were affected by compositional changes and the furlough scheme, making interpretation more difficult. Data collection disruption and lower response rates also mean that estimates for 2020 and 2021 are subject to greater uncertainty. Real earnings (earnings adjusted for inflation) have been calculated by adjusting nominal (unadjusted) earnings using the Consumer Prices Index including owner occupiers’ housing costs (CPIH). The CPIH is the most comprehensive measure of inflation in the UK.
Replication files for "Job-to-Job Mobility and Inflation" Authors: Renato Faccini and Leonardo Melosi Review of Economics and Statistics Date: February 2, 2023 -------------------------------------------------------------------------------------------- ORDERS OF TOPICS .Section 1. We explain the code to replicate all the figures in the paper (except Figure 6) .Section 2. We explain how Figure 6 is constructed .Section 3. We explain how the data are constructed SECTION 1 Replication_Main.m is used to reproduce all the figures of the paper except Figure 6. All the primitive variables are defined in the code and all the steps are commented in code to facilitate the replication of our results. Replication_Main.m, should be run in Matlab. The authors tested it on a DELL XPS 15 7590 laptop wih the follwoing characteristics: -------------------------------------------------------------------------------------------- Processor Intel(R) Core(TM) i9-9980HK CPU @ 2.40GHz 2.40 GHz Installed RAM 64.0 GB System type 64-bit operating system, x64-based processor -------------------------------------------------------------------------------------------- It took 2 minutes and 57 seconds for this machine to construct Figures 1, 2, 3, 4a, 4b, 5, 7a, and 7b. The following version of Matlab and Matlab toolboxes has been used for the test: -------------------------------------------------------------------------------------------- MATLAB Version: 9.7.0.1190202 (R2019b) MATLAB License Number: 363305 Operating System: Microsoft Windows 10 Enterprise Version 10.0 (Build 19045) Java Version: Java 1.8.0_202-b08 with Oracle Corporation Java HotSpot(TM) 64-Bit Server VM mixed mode -------------------------------------------------------------------------------------------- MATLAB Version 9.7 (R2019b) Financial Toolbox Version 5.14 (R2019b) Optimization Toolbox Version 8.4 (R2019b) Statistics and Machine Learning Toolbox Version 11.6 (R2019b) Symbolic Math Toolbox Version 8.4 (R2019b) -------------------------------------------------------------------------------------------- The replication code uses auxiliary files and save the pictures in various subfolders: \JL_models: It contains the equations describing the model including the observation equations and routine used to solve the model. To do so, the routine in this folder calls other routines located in some fo the subfolders below. \gensystoama: It contains a set of codes that allow us to solve linear rational expectations models. We use the AMA solver. More information are provided in the file AMASOLVE.m. The codes in this subfolder have been developed by Alejandro Justiniano. \filters: it contains the Kalman filter augmented with a routine to make sure that the zero lower bound constraint for the nominal interest rate is satisfied in every period in our sample. \SteadyStateSolver: It contains a set of routines that are used to solved the steady state of the model numerically. \NLEquations: It contains some of the equations of the model that are log-linearized using the symbolic toolbox of matlab. \NberDates: It contains a set of routines that allows to add shaded area to graphs to denote NBER recessions. \Graphics: It contains useful codes enabling features to construct some of the graphs in the paper. \Data: it contains the data set used in the paper. \Params: It contains a spreadsheet with the values attributes to the model parameters. \VAR_Estimation: It contains the forecasts implied by the Bayesian VAR model of Section 2. The output of Replication_Main.m are the figures of the paper that are stored in the subfolder \Figures SECTION 2 The Excel file "Figure-6.xlsx" is used to create the charts in Figure 6. All three panels of the charts (A, B, and C) plot a measure of unexpected wage inflation against the unemployment rate, then fits separate linear regressions for the periods 1960-1985,1986-2007, and 2008-2009. Unexpected wage inflation is given by the difference between wage growth and a measure of expected wage growth. In all three panels, the unemployment rate used is the civilian unemployment rate (UNRATE), seasonally adjusted, from the BLS. The sheet "Panel A" uses quarterly manufacturing sector average hourly earnings growth data, seasonally adjusted (CES3000000008), from the Bureau of Labor Statistics (BLS) Employment Situation report as the measure of wage inflation. The unexpected wage inflation is given by the difference between earnings growth at time t and the average of earnings growth across the previous four months. Growth rates are annualized quarterly values. The sheet "Panel B" uses quarterly Nonfarm Business Sector Compensation Per Hour, seasonally adjusted (COMPNFB), from the BLS Productivity and Costs report as its measure of wage inflation. As in Panel A, expected wage inflation is given by the... Visit https://dataone.org/datasets/sha256%3A44c88fe82380bfff217866cac93f85483766eb9364f66cfa03f1ebdaa0408335 for complete metadata about this dataset.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Wages in Russia increased 5.10 percent in June of 2025 over the same month in the previous year. This dataset provides - Russia Wage Growth- actual values, historical data, forecast, chart, statistics, economic calendar and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Wages in the United States increased 5.35 percent in July of 2025 over the same month in the previous year. This dataset provides the latest reported value for - United States Wages and Salaries Growth - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.