Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The main stock market index of United States, the US500, fell to 6236 points on July 4, 2025, losing 0.69% from the previous session. Over the past month, the index has climbed 4.99% and is up 12.01% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from United States. United States Stock Market Index - values, historical data, forecasts and news - updated on July of 2025.
The value of the DJIA index amounted to ********* at the end of March 2025, up from ********* at the end of March 2020. Global panic about the coronavirus epidemic caused the drop in March 2020, which was the worst drop since the collapse of Lehman Brothers in 2008. Dow Jones Industrial Average index – additional information The Dow Jones Industrial Average index is a price-weighted average of 30 of the largest American publicly traded companies on New York Stock Exchange and NASDAQ, and includes companies like Goldman Sachs, IBM and Walt Disney. This index is considered to be a barometer of the state of the American economy. DJIA index was created in 1986 by Charles Dow. Along with the NASDAQ 100 and S&P 500 indices, it is amongst the most well-known and used stock indexes in the world. The year that the 2018 financial crisis unfolded was one of the worst years of the Dow. It was also in 2008 that some of the largest ever recorded losses of the Dow Jones Index based on single-day points were registered. On September 29, 2008, for instance, the Dow had a loss of ****** points, one of the largest single-day losses of all times. The best years in the history of the index still are 1915, when the index value increased by ***** percent in one year, and 1933, year when the index registered a growth of ***** percent.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Series Is Presented Here As Two Variables--(1)--Original Data, 1897-1916 (2)--Original Data, 1914-1958 20 Stocks Are Used Through September, 1928 And 30 Stocks Thereafter. A Detailed Description Of Methods Of Constucting Averages Is Given In "Basis Of Calculation Of Dow-Jones Average" Available From The Wall Street Journal. For A More Detailed Description Of The Series, See Business Cycle Indicators, Vol. Ii, Moore, NBER. This Index Is Based On Daily Closing Prices On The New York Stock Exchange. Through 1948, Averages Of Highest And Lowest Indexes For The Month Are Used. For 1949-1968, Averages Of Daily Closing Indexes Are Used. Source: Data Were Compiled By Dow Jones And Company From Quotations In The Wall Street Journal. Through June, 1952, Data Are From The Dow-Jones Averages, 13Th Edition, 1948, And Supplementary Averages (Barron'S Publishing Company). Thereafter, Through 1968, Data Are From Barron'S National Business And Financial Weekly.
This NBER data series m11009b appears on the NBER website in Chapter 11 at http://www.nber.org/databases/macrohistory/contents/chapter11.html.
NBER Indicator: m11009b
Throughout the 1920s, prices on the U.S. stock exchange rose exponentially, however, by the end of the decade, uncontrolled growth and a stock market propped up by speculation and borrowed money proved unsustainable, resulting in the Wall Street Crash of October 1929. This set a chain of events in motion that led to economic collapse - banks demanded repayment of debts, the property market crashed, and people stopped spending as unemployment rose. Within a year the country was in the midst of an economic depression, and the economy continued on a downward trend until late-1932.
It was during this time where Franklin D. Roosevelt (FDR) was elected president, and he assumed office in March 1933 - through a series of economic reforms and New Deal policies, the economy began to recover. Stock prices fluctuated at more sustainable levels over the next decades, and developments were in line with overall economic development, rather than the uncontrolled growth seen in the 1920s. Overall, it took over 25 years for the Dow Jones value to reach its pre-Crash peak.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Prices for United States Stock Market Index (US30) including live quotes, historical charts and news. United States Stock Market Index (US30) was last updated by Trading Economics this July 4 of 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Interactive chart of the S&P 500 stock market index since 1927. Historical data is inflation-adjusted using the headline CPI and each data point represents the month-end closing value. The current month is updated on an hourly basis with today's latest value.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Interactive chart of the Dow Jones Industrial Average (DJIA) stock market index for the last 100 years. Historical data is inflation-adjusted using the headline CPI and each data point represents the month-end closing value. The current month is updated on an hourly basis with today's latest value.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Kitchener street index wall size map.PDF document updates daily. The date above is the date the document link was created or last updated. Check the date in the pdf for the date it was created.
Kitchener street index with wards wall size map.PDF document updates daily. The date above is the date the document link was created or last updated. Check the date in the pdf for the date it was created.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
South Korea's main stock market index, the KOSPI, rose to 3116 points on July 3, 2025, gaining 1.34% from the previous session. Over the past month, the index has climbed 12.47% and is up 10.31% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from South Korea. South Korea Stock Market - values, historical data, forecasts and news - updated on July of 2025.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
In 2021, the Nasdaq 100 closed at 16,320.08 points, which was the second highest value on record despite the economic effects of the global coronavirus (COVID-19) pandemic. The index value closed at 21,012.17 points in 2024, an increase of more than 4,000 points compared to its closing value for the previous year. What does the NASDAQ tell us? The Nasdaq 100 index is comprised of 100 largest and most actively traded non-financial companies listed on the Nasdaq stock exchange. Financial firms are represented by the NASDAQ Bank Index. A stock market index is a measurement of average performance of companies forming the index. It gives a snapshot of what investors are thinking at that particular moment. Other indices The Dow Jones Industrial Average gets more attention than the NASDAQ 100, though it only represents 30 companies. It’s best and worst days mark some of the major financial events of the past century. This helps to put more meaning behind events like Black Monday, the Wall Street crash of 1929, or the 2008 Financial Crisis, as well as the speed of their recoveries in financial markets.
CoinAPI's comprehensive set of crypto market indices gives traders and institutions the reliable price benchmarks they need. Our system tracks VWAP and PRIMKT indices data across more than 350 exchanges, updating every 100ms to ensure you always have the latest market information.
The VWAP (Volume-Weighted Average Price) index shows you what's happening across the entire market by combining prices and trading volumes from multiple exchanges. By weighting each trade by its size, VWAP reveals the true market consensus price, filtering out noise from low-liquidity venues. This makes it perfect for making informed trading decisions or valuing your crypto holdings accurately.
Meanwhile, our PRIMKT (Principal Market Price) index focuses specifically on the exchanges with the highest trading volumes for each cryptocurrency pair. This approach meets important accounting standards like IFRS 13 and FASB ASC 820, making it especially valuable for companies that need to report crypto assets on their financial statements.
Both real-time and historical crypto index data are available, giving you the complete picture of market movements over time. Whether you're trading actively, conducting research, or preparing financial reports, our crypto market indices provide the accurate price discovery tools you need.
Why work with us?
Market Coverage & Data Types: - Real-time and historical data since 2010 (for chosen assets) - Market indexes (VWAP, PRIMKT) - 13 Data Sources - +7k indexes tracked - +2k assets covered - Full order book depth (L2/L3) - Tick-by-tick data - OHLCV across multiple timeframes - Exchange rates with fiat pairs - Spot, futures, options, and perpetual contracts - Coverage of 90%+ global trading volume
Technical Excellence: - 99,9% uptime guarantee - 100ms update frequency - Multiple delivery methods: REST, WebSocket, FIX, S3 - Standardized data format across exchanges - Ultra-low latency data streaming - Detailed documentation - Custom integration assistance
From Wall Street trading desks to Silicon Valley analytics firms, financial professionals worldwide rely on our indices when accuracy matters most. We've built our reputation on delivering clean, consistent market benchmarks that stand up to scrutiny. When organizations need to know the true price of digital assets - not just what's displayed on a single exchange - they turn to CoinAPI. Join the community of professionals who've made our crypto market indices their gold standard for price discovery.
Over the course of their first terms in office, no U.S. president in the past 100 years saw as much of a decline in stock prices as Herbert Hoover, and none saw as much of an increase as Franklin D. Roosevelt (FDR) - these were the two presidents in office during the Great Depression. While Hoover is not generally considered to have caused the Wall Street Crash in 1929, less than a year into his term in office, he is viewed as having contributed to its fall, and exacerbating the economic collapse that followed. In contrast, Roosevelt is viewed as overseeing the economic recovery and restoring faith in the stock market played an important role in this.
By the end of Hoover's time in office, stock prices were 82 percent lower than when he entered the White House, whereas prices had risen by 237 percent by the end of Roosevelt's first term. While this is the largest price gain of any president within just one term, it is important to note that stock prices were valued at 317 on the Dow Jones index when Hoover took office, but just 51 when FDR took office four years later - stock prices had peaked in August 1929 at 380 on the Dow Jones index, but the highest they ever reached under FDR was 187, and it was not until late 1954 that they reached pre-Crash levels once more.
The Dow Jones Industrial Average is (DJIA) is possibly the most well-known and commonly used stock index in the United States. It is a price-weighted index that assesses the stock prices of 30 prominent companies, whose combined prices are then divided by a regularly-updated divisor (0.15199 in February 2021), which gives the index value. The companies included are rotated in and out on a regular basis; as of mid-2022, the longest mainstay on the list is Procter & Gamble, which was added in 1932; whereas Amgen, Salesforce, and Honeywell were all added in 2020. As one of the oldest indices for stock market analysis, the impact of major events, recessions, and economic shocks or booms can be tracked and contextualized over longer periods of time.
Due to inflation, unadjusted figures appear to be more sporadic in recent years, however the greatest fluctuations came in the earliest years of the index. In the given period, the greatest decline came in the wake of the Wall Street Crash in 1929; by 1932 average values had fallen to just one fifth of their 1929 average, from roughly 314 to 65.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
New Zealand's main stock market index, the NZX 50, rose to 12767 points on July 4, 2025, gaining 0.49% from the previous session. Over the past month, the index has climbed 1.51% and is up 8.24% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from New Zealand. New Zealand Stock Market (NZX 50) - values, historical data, forecasts and news - updated on July of 2025.
The BEL20, the index of the 20 biggest stocks on Euronext Brussels, saw a loss roughly 40 percent within four weeks in early 2020 due to economic uncertainties following the coronavirus pandemic. On February 17th, 2020, the index reached its highest point in over 13 years. One month after, however, this had all but evaporated. In the middle of March, a correction followed in the wake of a bear rally in Wall Street and rumors of the use of helicopter money (tax-free money handed out by the government to consumers). As of July 17, 2023 the BEL20 index stood at 3,685.24 point.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The main stock market index of United States, the US500, fell to 6236 points on July 4, 2025, losing 0.69% from the previous session. Over the past month, the index has climbed 4.99% and is up 12.01% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from United States. United States Stock Market Index - values, historical data, forecasts and news - updated on July of 2025.