Facebook
TwitterComprehensive cost of living breakdown for Washington including housing, food, transportation, and healthcare costs for retirement planning.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Estimated Mean Real Household Wages Adjusted by Cost of Living for Pierce County, WA (MWACL53053) from 2009 to 2023 about Pierce County, WA; Seattle; adjusted; WA; average; wages; real; and USA.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Estimated Mean Real Household Wages Adjusted by Cost of Living for Clark County, WA (MWACL53011) from 2009 to 2023 about Clark County, WA; Portland; adjusted; WA; average; wages; real; and USA.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Estimated Mean Real Household Wages Adjusted by Cost of Living for King County, WA (MWACL53033) from 2009 to 2023 about King County, WA; Seattle; adjusted; WA; average; wages; real; and USA.
Facebook
TwitterIn 2025, the Consumer Price Index (CPI) for medical professional services in the United States was at 432.46, compared to the period from 1982 to 1984 (=100). The CPI for hospital services was at 1,102.12.
Facebook
TwitterThe Consumer Sentiment Index in the United States stood at 51 in November 2025. This reflected a drop of 2.6 point from the previous survey. Furthermore, this was its lowest level measured since June 2022. The index is normalized to a value of 100 in December 1964 and based on a monthly survey of consumers, conducted in the continental United States. It consists of about 50 core questions which cover consumers' assessments of their personal financial situation, their buying attitudes and overall economic conditions.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Estimated Mean Real Household Wages Adjusted by Cost of Living for Spokane County, WA (MWACL53063) from 2009 to 2023 about Spokane County, WA; Spokane; adjusted; WA; average; wages; real; and USA.
Facebook
TwitterD.C.'s median rent for a one bedroom apartment stands at $2,495, significantly higher than the national median rent of approximately $1,567. Click on different U.S. cities to see the median rent for a one bedroom apartment2.The map on the left side shows the percentage of people by census tract that are considered "cost burdened" by housing costs, by paying 30% or more of their household income on rent and utilities3. The map on the right side shows the median household income by census tract4. You can click on the "list" icon in the lower left corner to see the map legend, and meanings of map symbology. Areas that are cost burdened are often areas with the lowest median household incomes. There are also areas in wards where median incomes are high, but the cost of living is also high, leading to a greater cost burden.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Estimated Mean Real Household Wages Adjusted by Cost of Living for Washington County, AR (MWACL05143) from 2009 to 2023 about Washington County, AR; Fayetteville; AR; adjusted; average; wages; real; and USA.
Facebook
TwitterCost comparison table showing 2023 and 2024 median costs by location
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Regional Price Index contrasts the cost of a common basket of goods and services at a number of regional locations to the Perth metropolitan area. The RPIs were commissioned to assist with the calculation of the Western Australian State Government’s regional district allowance, and it has been used to assist in policy decision-making. Show full description
Facebook
TwitterIn 2024, the median monthly cost for senior housing in the U.S. was the highest in Washington, D.C. where it exceeded the national median by about ***** U.S. dollars. The prices refer to independent living facilities, which are targeted toward older adults. These facilities provide a range of amenities, including housekeeping, social activities, and meals, but usually exclude help with personal care. North Dakota was the most affordable state, where the median monthly cost was approximately ***** U.S. dollars. Senior housing is a growing segment of the rental housing market. Despite a slight fluctuation during the COVID-19 pandemic, the average cost of senior housing has increased notably over the past years.
Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
The dataset consists of Price of Houses in King County , Washington from sales between May 2014 and May 2015. Along with house price it consists of information on 18 house features, date of sale and ID of sale.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Estimated Mean Real Household Wages Adjusted by Cost of Living for Whatcom County, WA (MWACL53073) from 2009 to 2023 about Whatcom County, WA; Bellingham; adjusted; WA; average; wages; real; and USA.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Estimated Mean Real Household Wages Adjusted by Cost of Living for Thurston County, WA (MWACL53067) from 2009 to 2023 about Thurston County, WA; Olympia; adjusted; WA; average; wages; real; and USA.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Estimated Mean Real Household Wages Adjusted by Cost of Living for District of Columbia, DC (MWACL11001) from 2009 to 2023 about DC, Washington, and USA.
Facebook
TwitterIn March 2025, inflation amounted to 2.4 percent, while wages grew by 4.3 percent. The inflation rate has not exceeded the rate of wage growth since January 2023. Inflation in 2022 The high rates of inflation in 2022 meant that the real terms value of American wages took a hit. Many Americans report feelings of concern over the economy and a worsening of their financial situation. The inflation situation in the United States is one that was experienced globally in 2022, mainly due to COVID-19 related supply chain constraints and disruption due to the Russian invasion of Ukraine. The monthly inflation rate for the U.S. reached a 40-year high in June 2022 at 9.1 percent, and annual inflation for 2022 reached eight percent. Without appropriate wage increases, Americans will continue to see a decline in their purchasing power. Wages in the U.S. Despite the level of wage growth reaching 6.7 percent in the summer of 2022, it has not been enough to curb the impact of even higher inflation rates. The federally mandated minimum wage in the United States has not increased since 2009, meaning that individuals working minimum wage jobs have taken a real terms pay cut for the last twelve years. There are discrepancies between states - the minimum wage in California can be as high as 15.50 U.S. dollars per hour, while a business in Oklahoma may be as low as two U.S. dollars per hour. However, even the higher wage rates in states like California and Washington may be lacking - one analysis found that if minimum wage had kept up with productivity, the minimum hourly wage in the U.S. should have been 22.88 dollars per hour in 2021. Additionally, the impact of decreased purchasing power due to inflation will impact different parts of society in different ways with stark contrast in average wages due to both gender and race.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Estimated Mean Real Household Wages Adjusted by Cost of Living for Lewis County, WA (MWACL53041) from 2016 to 2023 about Lewis County, WA; adjusted; WA; average; wages; real; and USA.
Facebook
TwitterOver the past decade, Albania has been seeking to develop the framework for a market economy and more open society. It has faced severe internal and external challenges in the interim – extremely low income levels and a lack of basic infrastructure, the rapid collapse of output and inflation rise after the shift in regime in 1991, the turmoil during the 1997 pyramid crisis, and the social and economic shocks accompanying the 1999 Kosovo crisis. In the face of these challenges, Albania has made notable progress in creating conditions conducive to growth and poverty reduction.
In the process leading to its first Poverty Reduction Strategy (that is the National Strategy for Socioeconomic Development, now renamed the National Strategy for Development and Integration), the Government of Albania reinforced its commitment to strengthening its own capacity to collect and analyze on a regular basis the information it needs to inform policy-making.
Multi-purpose household surveys are one of the main sources of information to determine living conditions and measure the poverty situation of a country. They provide an indispensable tool to assist policy-makers in monitoring and targeting social programs. In its first phase (2001-2006), this monitoring system included the following data collection instruments: (i) Population and Housing Census; (ii) Living Standards Measurement Surveys every 3 years, and (iii) annual panel surveys.
The Population and Housing Census (PHC) conducted in April 2001, provided the country with a much needed updated sampling frame which is one of the building blocks for the household survey structure. The focus during this first phase of the monitoring system is on a periodic LSMS (in 2002 and 2005), followed by panel surveys on a subsample of LSMS households (in 2003, and 2004), drawing heavily on the 2001 census information.
A poverty profile based on 2002 data showed that some 25 percent of the population are poor, with many others vulnerable to poverty due to their incomes being close to the poverty threshold. Income related poverty is compounded by poor access to basic infrastructure (regular supply of electricity, clean water), education and health services, housing, etc.
The 2005 LSMS was in the field between May and early July, with an additional visit to agricultural households in October, 2005. The survey work was undertaken by the Living Standards unit of INSTAT, with the technical assistance of the World Bank.
National coverage. Domains: Tirana, other urban, rural; Agro-ecological areas (coastal, central, mountain)
Sample survey data [ssd]
The Republic of Albania is divided geographically into 12 Prefectures (Prefekturat). The latter are divided into Districts (Rrethet) which are, in turn, divided into Cities (Qyteti) and Communes (Komunat). The Communes contain all the rural villages and the very small cities. For census purposes, the cities and the villages have been divided into enumeration areas (EAs).
The Enumeration Areas (EA) that make up the sampling frame come from the April 2001 General Census of Population and Housing. The EAs in the frame are classified by Prefecture, District, City or Commune. The frame also contains, for every EA, the number of Housing Units (HU), the number of occupied HUs, the number of unoccupied HUs, the number of households, and the population. We are using occupied dwellings and not total number of dwellings since many EAs contain a large number of empty dwellings.
A detailed study of the list of census EAs shows that many have zero population. In order to obtain EAs with the minimum of 50 and the maximum of 120 occupied housing units, the EAs with zero population have been taken off the sampling frame. Since the sizes of the EAs varied from 0 to 395 HUs, the smaller EAs (with less than 50 HU) have been collapsed with geographically adjacent ones and the largest EAs (with more than 120 HU) have been split into two or more EAs. Subsequently, maps identifying the boundaries of every split and collapsed EA were prepared. Given that the 2002 LSMS has been conducted less than a year after the April 2001 census, a listing operation to update the sample EAs was not conducted in the field. However, since the level of construction is very high in the city of Tirana and its suburbs, a quick count of the 75 sample EAs selected in Tirana was carried out followed by a listing operation. The check of the listing based on the Census data revealed two types of discrepancies: - HUs had become invalid, i.e. vacant, nonresidential, demolished, seasonally occupied, etc. - Instead of one small building (with one or two HU), a new one with 15 HUs was identified.
During of the listing update process, HUs identified as invalid were taken off the frame. In the case of a new building, these new HUs were entered with a new sequential code. The listing sheets prepared during the listing operation in Tirana, become the sampling frame for the final stage of selection of 12 HU which has to be interviewed. The unit of analysis and the unit of observation is the household. The universe under study consists of all the households in the Republic of Albania. We have used the Housing Unit (defined as the space occupied by one household) as the sampling unit, instead of the household, because the HU is more permanent and easier to identify in the field.
In the LSMS the sample size is 450 EA and in each EA 8 households were selected. So the total sample size of the LSMS is 3600 households. In addition, since a certain level of nonresponse is expected, 4 reserve units were selected in each sample EA.
The sampling frame has been divided in three regions (strata) 1. Coastal Area 2. Central Area 3. Mountain Area and Tirana (urban and other urban) is consider as a separate strata.
The first three strata were divided into major cities (the most important cities in the region), other urban (the rest of cities in the region), and rural. In each more importance was given to the major cities and rural areas. We have selected 10 EA for each major city and 65 EAs (75 EAs for Mountain Area) for each region. In the city of Tirana and its suburbs, implicit stratification was used to improve the efficiency of the sample design.
A fixed number of valid dwelling units (12) was selected systematically and with equal probability from the Listing Form pertaining to Tirana and from the Census forms for the other areas. Once the 12 HUs were selected, 4 of them were chosen at random and kept as reserve units. The selected HUs were numbered within the EA and identified with a circle around the number in the listing form, as well as a circle on the maps. The reserve sample (units 9 to 12) were identified from R1 to R4 during data collection to emphasize the fact that they were reserve units.
Two copies of the sample listing sheets and two copies of maps for each EA were printed. The first copy of the listing sheet and the map were given to the supervisor and included the 12 HU, the second copy was given to the enumerator. The enumerator only received the 8 dwelling units, not the reserve ones. Each time the enumerator needed a reserve HU, he/she had to ask the supervisor and explain the reason why a reserve unit was needed. This process helped determine the reason why reserve units were used and provided more control on their use.
In the field the enumerator registered the occupancy status of every unit: - occupied as principal residence - vacant - under construction (not occupied) - demolished or abandoned (not occupied) - seasonally occupied
In the case that one HU was found to be invalid, the enumerator used the first reserve unit (identified with the code R1). In the case that in one EA more than 4 DU selected were invalid, other units from that EA chosen at random by headquarter (in Tirana) were selected as replacement units to keep the enumerator load constant and maintain a uniform sample size in each EA. Before identifying the invalid HUs, the interviewer had to note the interview status of each visit for all the units for which an interview was attempted, whether these are original units or reserve units. This was done to determine the interview status: interview completed, nonresponse, refusal, etc. In other words, this will allow identifying: the completed interviews (responses obtained), the incomplete but usable ones (responses obtained), the incomplete ones but not usable (nonresponse), the refusals (nonresponse) and the "not at home" (nonresponse). Subsequently, the invalid units identified were substituted with the available reserves, always maintaining the sample of 8 HUs.
Face-to-face [f2f]
Four survey instruments were used to collect information for the 2005 Albania LSMS: a household questionnaire, a diary for recording household food consumption, a community questionnaire, and a price questionnaire.
The household questionnaire included all the core LSMS modules as defined in Grosh and Glewwe (2000)1, plus additional modules on migration, fertility, subjective poverty, agriculture, non-farm enterprises, and social capital. Geographical referencing data on the longitude and latitude of each household were also recorded using portable GPS devices. Geo-referencing will enable a more efficient spatial link among the different surveys of the system, as well as between the survey households and other geo-referenced information.
The choice of the modules was aimed at matching as much as
Facebook
TwitterAttribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Disclaimer: These data are updated by the author and are not an official product of the Federal Reserve Bank of Cleveland.This project provides two sets of migration estimates for the major US metro areas. The first series measures net migration of people to and from the urban neighborhoods of the metro areas. The second series covers all neighborhoods but breaks down net migration to other regions by four region types: (1) high-cost metros, (2) affordable, large metros, (3) midsized metros, and (4) small metros and rural areas. These series were introduced in a Cleveland Fed District Data Brief entitled “Urban and Regional Migration Estimates: Will Your City Recover from the Pandemic?"The migration estimates in this project are created with data from the Federal Reserve Bank of New York/Equifax Consumer Credit Panel (CCP). The CCP is a 5 percent random sample of the credit histories maintained by Equifax. The CCP reports the census block of residence for over 10 million individuals each quarter. Each month, Equifax receives individuals’ addresses, along with reports of debt balances and payments, from creditors (mortgage lenders, credit card issuers, student loan servicers, etc.). An algorithm maintained by Equifax considers all of the addresses reported for an individual and identifies the individual’s most likely current address. Equifax anonymizes the data before they are added to the CCP, removing names, addresses, and Social Security numbers (SSNs). In lieu of mailing addresses, the census block of the address is added to the CCP. Equifax creates a unique, anonymous identifier to enable researchers to build individuals’ panels. The panel nature of the data allows us to observe when someone has migrated and is living in a census block different from the one they lived in at the end of the preceding quarter. For more details about the CCP and its use in measuring migration, see Lee and Van der Klaauw (2010) and DeWaard, Johnson and Whitaker (2019). DefinitionsMetropolitan areaThe metropolitan areas in these data are combined statistical areas. This is the most aggregate definition of metro areas, and it combines Washington DC with Baltimore, San Jose with San Francisco, Akron with Cleveland, etc. Metro areas are combinations of counties that are tightly linked by worker commutes and other economic activity. All counties outside of metropolitan areas are tracked as parts of a rural commuting zone (CZ). CZs are also groups of counties linked by commuting, but CZ definitions cover all counties, both metropolitan and non-metropolitan. High-cost metropolitan areasHigh-cost metro areas are those where the median list price for a house was more than $200 per square foot on average between April 2017 and April 2022. These areas include San Francisco-San Jose, New York, San Diego, Los Angeles, Seattle, Boston, Miami, Sacramento, Denver, Salt Lake City, Portland, and Washington-Baltimore. Other Types of RegionsMetro areas with populations above 2 million and house price averages below $200 per square foot are categorized as affordable, large metros. Metro areas with populations between 500,000 and 2 million are categorized as mid-sized metros, regardless of house prices. All remaining counties are in the small metro and rural category.To obtain a metro area's total net migration, sum the four net migration values for the the four types of regions.Urban neighborhoodCensus tracts are designated as urban if they have a population density above 7,000 people per square mile. High density neighborhoods can support walkable retail districts and high-frequency public transportation. They are more likely to have the “street life” that people associate with living in an urban rather than a suburban area. The threshold of 7,000 people per square mile was selected because it was the average density in the largest US cities in the 1930 census. Before World War II, workplaces, shopping, schools and parks had to be accessible on foot. Tracts are also designated as urban if more than half of their housing units were built before WWII and they have a population density above 2,000 people per square mile. The lower population density threshold for the pre-war neighborhoods recognizes that many urban tracts have lost population since the 1960s. While the street grids usually remain, the area also needs su
Facebook
TwitterComprehensive cost of living breakdown for Washington including housing, food, transportation, and healthcare costs for retirement planning.