16 datasets found
  1. w

    Washington Cities by Population

    • washington-demographics.com
    Updated Jun 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kristen Carney (2024). Washington Cities by Population [Dataset]. https://www.washington-demographics.com/cities_by_population
    Explore at:
    Dataset updated
    Jun 20, 2024
    Dataset provided by
    Cubit Planning, Inc.
    Authors
    Kristen Carney
    License

    https://www.washington-demographics.com/terms_and_conditionshttps://www.washington-demographics.com/terms_and_conditions

    Area covered
    Tacoma, Washington
    Description

    A dataset listing Washington cities by population for 2024.

  2. U.S. most populated cities per capita income 2021

    • statista.com
    Updated Jul 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). U.S. most populated cities per capita income 2021 [Dataset]. https://www.statista.com/statistics/205618/per-capita-income-in-the-top-20-most-populated-cities-in-the-us/
    Explore at:
    Dataset updated
    Jul 5, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2021
    Area covered
    United States
    Description

    In 2021, the per capita income in San Francisco city was at 80,383 U.S. dollars. San Francisco was followed in this regard by Seattle and Washington, D.C. The most populated cities in the U.S. are ranked by per capita income in this statistic. While New York, New York had the highest population, San Francisco had the highest per capita income in 2021. The median household income in San Francisco in 2020 was 119,136 dollars, the highest among the most populated cities in the United States.

  3. Most populated cities in the U.S. - median household income 2022

    • statista.com
    Updated Aug 30, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Most populated cities in the U.S. - median household income 2022 [Dataset]. https://www.statista.com/statistics/205609/median-household-income-in-the-top-20-most-populated-cities-in-the-us/
    Explore at:
    Dataset updated
    Aug 30, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2022
    Area covered
    United States
    Description

    In 2022, San Francisco had the highest median household income of cities ranking within the top 25 in terms of population, with a median household income in of 136,692 U.S. dollars. In that year, San Jose in California was ranked second, and Seattle, Washington third.

    Following a fall after the great recession, median household income in the United States has been increasing in recent years. As of 2022, median household income by state was highest in Maryland, Washington, D.C., Utah, and Massachusetts. It was lowest in Mississippi, West Virginia, and Arkansas. Families with an annual income of 25,000 and 49,999 U.S. dollars made up the largest income bracket in America, with about 25.26 million households.

    Data on median household income can be compared to statistics on personal income in the U.S. released by the Bureau of Economic Analysis. Personal income rose to around 21.8 trillion U.S. dollars in 2022, the highest value recorded. Personal income is a measure of the total income received by persons from all sources, while median household income is “the amount with divides the income distribution into two equal groups,” according to the U.S. Census Bureau. Half of the population in question lives above median income and half lives below. Though total personal income has increased in recent years, this wealth is not distributed throughout the population. In practical terms, income of most households has decreased. One additional statistic illustrates this disparity: for the lowest quintile of workers, mean household income has remained more or less steady for the past decade at about 13 to 16 thousand constant U.S. dollars annually. Meanwhile, income for the top five percent of workers has actually risen from about 285,000 U.S. dollars in 1990 to about 499,900 U.S. dollars in 2020.

  4. Population density in the U.S. 2023, by state

    • statista.com
    Updated Dec 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Population density in the U.S. 2023, by state [Dataset]. https://www.statista.com/statistics/183588/population-density-in-the-federal-states-of-the-us/
    Explore at:
    Dataset updated
    Dec 3, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    In 2023, Washington, D.C. had the highest population density in the United States, with 11,130.69 people per square mile. As a whole, there were about 94.83 residents per square mile in the U.S., and Alaska was the state with the lowest population density, with 1.29 residents per square mile. The problem of population density Simply put, population density is the population of a country divided by the area of the country. While this can be an interesting measure of how many people live in a country and how large the country is, it does not account for the degree of urbanization, or the share of people who live in urban centers. For example, Russia is the largest country in the world and has a comparatively low population, so its population density is very low. However, much of the country is uninhabited, so cities in Russia are much more densely populated than the rest of the country. Urbanization in the United States While the United States is not very densely populated compared to other countries, its population density has increased significantly over the past few decades. The degree of urbanization has also increased, and well over half of the population lives in urban centers.

  5. Urban and Rural Population in US Legislative Districts (2020 Census)

    • data-bgky.hub.arcgis.com
    Updated Jun 8, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2023). Urban and Rural Population in US Legislative Districts (2020 Census) [Dataset]. https://data-bgky.hub.arcgis.com/maps/497d1bb78d98438386fd6721b6c2c3aa
    Explore at:
    Dataset updated
    Jun 8, 2023
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This map's colors indicate which population is larger in each area: urban (green) or rural (yellow). The map's layers contain total population counts by sex, age, and race groups for Nation, State Legislative Districts Upper, State Legislative Districts Lower, Congressional District in the United States and Puerto Rico.The U.S. Census designates each census block as part of an urban area or as rural. Larger geographies in this map such as block group, tract, county and state can therefore have a mix of urban and rural population. This map illustrates the 100% urban areas in dark green, and 100% rural areas in dark yellow. Areas with mixed urban/rural population have softer shades of green or yellow, to give a visual indication of where change may be happening. From the Census:"The Census Bureau’s urban-rural classification is a delineation of geographic areas, identifying both individual urban areas and the rural area of the nation. The Census Bureau’s urban areas represent densely developed territory, and encompass residential, commercial, and other non-residential urban land uses. The Census Bureau delineates urban areas after each decennial census by applying specified criteria to decennial census and other data. Rural encompasses all population, housing, and territory not included within an urban area.For the 2020 Census, an urban area will comprise a densely settled core of census blocks that meet minimum housing unit density and/or population density requirements. This includes adjacent territory containing non-residential urban land uses. To qualify as an urban area, the territory identified according to criteria must encompass at least 2,000 housing units or have a population of at least 5,000." SourceAbout the dataYou can use this map as is and you can also modify it to use other attributes included in its layers. This map's layers contain total population counts by sex, age, and race groups data from the 2020 Census Demographic and Housing Characteristics. This is shown by Nation, State, County, Census Tract, Block Group boundaries. Each geography layer contains a common set of Census counts based on available attributes from the U.S. Census Bureau. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis.Vintage of boundaries and attributes: 2020 Demographic and Housing Characteristics Table(s): P1, H1, H3, P2, P3, P5, P12, P13, P17, PCT12 (Not all lines of these DHC tables are available in this feature layer.)Data downloaded from: U.S. Census Bureau’s data.census.gov siteDate the Data was Downloaded: May 25, 2023Geography Levels included: Nation, State, County, Census Tract, Block GroupNational Figures: included in Nation layer The United States Census Bureau Demographic and Housing Characteristics: 2020 Census Results 2020 Census Data Quality Geography & 2020 Census Technical Documentation Data Table Guide: includes the final list of tables, lowest level of geography by table and table shells for the Demographic Profile and Demographic and Housing Characteristics.News & Updates This map is ready to be used in ArcGIS Pro, ArcGIS Online and its configurable apps, Story Maps, dashboards, Notebooks, Python, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the U.S. Census Bureau when using this data. Data Processing Notes: These 2020 Census boundaries come from the US Census TIGER geodatabases. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For Census tracts and block groups, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract and block group boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are unchanged and available as attributes within the data table (units are square meters).  The layer contains all US states, Washington D.C., and Puerto Rico. Census tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99). Block groups that fall within the same criteria (Block Group denoted as 0 with no area land) have also been removed.Percentages and derived counts, are calculated values (that can be identified by the "_calc_" stub in the field name). Field alias names were created based on the Table Shells file available from the Data Table Guide for the Demographic Profile and Demographic and Housing Characteristics. Not all lines of all tables listed above are included in this layer. Duplicative counts were dropped. For example, P0030001 was dropped, as it is duplicative of P0010001.To protect the privacy and confidentiality of respondents, their data has been protected using differential privacy techniques by the U.S. Census Bureau.

  6. w

    20 Richest Counties in Washington

    • washington-demographics.com
    Updated Jun 20, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kristen Carney (2024). 20 Richest Counties in Washington [Dataset]. https://www.washington-demographics.com/counties_by_population
    Explore at:
    Dataset updated
    Jun 20, 2024
    Dataset provided by
    Cubit Planning, Inc.
    Authors
    Kristen Carney
    License

    https://www.washington-demographics.com/terms_and_conditionshttps://www.washington-demographics.com/terms_and_conditions

    Area covered
    Washington
    Description

    A dataset listing Washington counties by population for 2024.

  7. Urban and Regional Migration Estimates

    • openicpsr.org
    Updated Apr 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stephan Whitaker (2024). Urban and Regional Migration Estimates [Dataset]. http://doi.org/10.3886/E201260V1
    Explore at:
    Dataset updated
    Apr 23, 2024
    Dataset provided by
    Federal Reserve Bank of Clevelandhttps://www.clevelandfed.org/
    Authors
    Stephan Whitaker
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2010 - Dec 31, 2023
    Area covered
    Combined Statistical Areas, Metro areas, United States, Metropolitan areas
    Description

    Disclaimer: These data are updated by the author and are not an official product of the Federal Reserve Bank of Cleveland.This project provides two sets of migration estimates for the major US metro areas. The first series measures net migration of people to and from the urban neighborhoods of the metro areas. The second series covers all neighborhoods but breaks down net migration to other regions by four region types: (1) high-cost metros, (2) affordable, large metros, (3) midsized metros, and (4) small metros and rural areas. These series were introduced in a Cleveland Fed District Data Brief entitled “Urban and Regional Migration Estimates: Will Your City Recover from the Pandemic?"The migration estimates in this project are created with data from the Federal Reserve Bank of New York/Equifax Consumer Credit Panel (CCP). The CCP is a 5 percent random sample of the credit histories maintained by Equifax. The CCP reports the census block of residence for over 10 million individuals each quarter. Each month, Equifax receives individuals’ addresses, along with reports of debt balances and payments, from creditors (mortgage lenders, credit card issuers, student loan servicers, etc.). An algorithm maintained by Equifax considers all of the addresses reported for an individual and identifies the individual’s most likely current address. Equifax anonymizes the data before they are added to the CCP, removing names, addresses, and Social Security numbers (SSNs). In lieu of mailing addresses, the census block of the address is added to the CCP. Equifax creates a unique, anonymous identifier to enable researchers to build individuals’ panels. The panel nature of the data allows us to observe when someone has migrated and is living in a census block different from the one they lived in at the end of the preceding quarter. For more details about the CCP and its use in measuring migration, see Lee and Van der Klaauw (2010) and DeWaard, Johnson and Whitaker (2019). DefinitionsMetropolitan areaThe metropolitan areas in these data are combined statistical areas. This is the most aggregate definition of metro areas, and it combines Washington DC with Baltimore, San Jose with San Francisco, Akron with Cleveland, etc. Metro areas are combinations of counties that are tightly linked by worker commutes and other economic activity. All counties outside of metropolitan areas are tracked as parts of a rural commuting zone (CZ). CZs are also groups of counties linked by commuting, but CZ definitions cover all counties, both metropolitan and non-metropolitan. High-cost metropolitan areasHigh-cost metro areas are those where the median list price for a house was more than $200 per square foot on average between April 2017 and April 2022. These areas include San Francisco-San Jose, New York, San Diego, Los Angeles, Seattle, Boston, Miami, Sacramento, Denver, Salt Lake City, Portland, and Washington-Baltimore. Other Types of RegionsMetro areas with populations above 2 million and house price averages below $200 per square foot are categorized as affordable, large metros. Metro areas with populations between 500,000 and 2 million are categorized as mid-sized metros, regardless of house prices. All remaining counties are in the small metro and rural category.To obtain a metro area's total net migration, sum the four net migration values for the the four types of regions.Urban neighborhoodCensus tracts are designated as urban if they have a population density above 7,000 people per square mile. High density neighborhoods can support walkable retail districts and high-frequency public transportation. They are more likely to have the “street life” that people associate with living in an urban rather than a suburban area. The threshold of 7,000 people per square mile was selected because it was the average density in the largest US cities in the 1930 census. Before World War II, workplaces, shopping, schools and parks had to be accessible on foot. Tracts are also designated as urban if more than half of their housing units were built before WWII and they have a population density above 2,000 people per square mile. The lower population density threshold for the pre-war neighborhoods recognizes that many urban tracts have lost population since the 1960s. While the street grids usually remain, the area also needs su

  8. a

    Justice40 Disadvantaged or Partially Disadvantaged Tracts by Race/Ethnicity...

    • regionaldatahub-brag.hub.arcgis.com
    Updated Jun 10, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS Living Atlas Team (2022). Justice40 Disadvantaged or Partially Disadvantaged Tracts by Race/Ethnicity (Archive) [Dataset]. https://regionaldatahub-brag.hub.arcgis.com/items/945b3f2e39a64569ab2d0700a527361b
    Explore at:
    Dataset updated
    Jun 10, 2022
    Dataset authored and provided by
    ArcGIS Living Atlas Team
    Area covered
    Description

    This map uses an archive of Version 1.0 of the CEJST data as a fully functional GIS layer. See an archive of the latest version of the CEJST tool using Version 2.0 of the data released in December 2024 here.This map shows Census tracts throughout the US based on if they are considered disadvantaged or partially disadvantaged according to Justice40 Initiative criteria. This is overlaid with the most recent American Community Survey (ACS) figures from the U.S. Census Bureau to communicate the predominant race that lives within these disadvantaged or partially disadvantaged tracts. Predominance helps us understand the group of population which has the largest count within an area. Colors are more transparent if the predominant race has a similar count to another race/ethnicity group. The colors on the map help us better understand the predominant race or ethnicity:Hispanic or LatinoWhite Alone, not HispanicBlack or African American Alone, not HispanicAsian Alone, not HispanicAmerican Indian and Alaska Native Alone, not HispanicTwo or more races, not HispanicNative Hawaiian and Other Pacific Islander, not HispanicSome other race, not HispanicSearch for any region, city, or neighborhood throughout the US, DC, and Puerto Rico to learn more about the population in the disadvantaged tracts. Click on any tract to learn more. Zoom to your area, filter to your county or state, and save this web map focused on your area to share the pattern with others. You can also use this web map within an ArcGIS app such as a dashboard, instant app, or story. This map uses these hosted feature layers containing the most recent American Community Survey data. These layers are part of the ArcGIS Living Atlas, and are updated every year when the American Community Survey releases new estimates, so values in the map always reflect the newest data available.Note: Justice40 tracts use 2010-based boundaries, while the most recent ACS figures are offered on 2020-based boundaries. When you click on an area, there will be multiple pop-ups returned due to the differences in these boundaries. From Justice40 data source:"Census tract geographical boundaries are determined by the U.S. Census Bureau once every ten years. This tool utilizes the census tract boundaries from 2010 because they match the datasets used in the tool. The U.S. Census Bureau will update these tract boundaries in 2020.Under the current formula, a census tract will be identified as disadvantaged in one or more categories of criteria:IF the tract is above the threshold for one or more environmental or climate indicators AND the tract is above the threshold for the socioeconomic indicatorsCommunities are identified as disadvantaged by the current version of the tool for the purposes of the Justice40 Initiative if they are located in census tracts that are at or above the combined thresholds in one or more of eight categories of criteria.The goal of the Justice40 Initiative is to provide 40 percent of the overall benefits of certain Federal investments in [eight] key areas to disadvantaged communities. These [eight] key areas are: climate change, clean energy and energy efficiency, clean transit, affordable and sustainable housing, training and workforce development, the remediation and reduction of legacy pollution, [health burdens] and the development of critical clean water infrastructure." Source: Climate and Economic Justice Screening toolPurpose"Sec. 219. Policy. To secure an equitable economic future, the United States must ensure that environmental and economic justice are key considerations in how we govern. That means investing and building a clean energy economy that creates well‑paying union jobs, turning disadvantaged communities — historically marginalized and overburdened — into healthy, thriving communities, and undertaking robust actions to mitigate climate change while preparing for the impacts of climate change across rural, urban, and Tribal areas. Agencies shall make achieving environmental justice part of their missions by developing programs, policies, and activities to address the disproportionately high and adverse human health, environmental, climate-related and other cumulative impacts on disadvantaged communities, as well as the accompanying economic challenges of such impacts. It is therefore the policy of my Administration to secure environmental justice and spur economic opportunity for disadvantaged communities that have been historically marginalized and overburdened by pollution and underinvestment in housing, transportation, water and wastewater infrastructure, and health care." Source: Executive Order on Tackling the Climate Crisis at Home and AbroadUse of this Data"The pilot identifies 21 priority programs to immediately begin enhancing benefits for disadvantaged communities. These priority programs will provide a blueprint for other agencies to help inform their work to implement the Justice40 Initiative across government." Source: The Path to Achieving Justice 40

  9. c

    Census ACS Poverty Status Map - By Census Tract, County, and State

    • data.cityofrochester.gov
    Updated Mar 3, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Open_Data_Admin (2020). Census ACS Poverty Status Map - By Census Tract, County, and State [Dataset]. https://data.cityofrochester.gov/maps/49093605a9234236998175f4be79ff51
    Explore at:
    Dataset updated
    Mar 3, 2020
    Dataset authored and provided by
    Open_Data_Admin
    Area covered
    Description

    Note: These layers were compiled by Esri's Demographics Team using data from the Census Bureau's American Community Survey. These data sets are not owned by the City of Rochester.Overview of the map/data: This map shows the percentage of the population living below the federal poverty level over the previous 12 months, shown by tract, county, and state boundaries. Estimates are from the 2018 ACS 5-year samples. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Current Vintage: 2019-2023ACS Table(s): B17020, C17002Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer will be updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2010 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto Rico.Census tracts with no population are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -555555...) have been set to null. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small. NOTE: any calculated percentages or counts that contain estimates that have null margins of error yield null margins of error for the calculated fields.

  10. w

    Living Standards Measurement Survey 2005 - Albania

    • microdata.worldbank.org
    • datacatalog.ihsn.org
    • +2more
    Updated Jan 30, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Institute of Statistics of Albania (2020). Living Standards Measurement Survey 2005 - Albania [Dataset]. https://microdata.worldbank.org/index.php/catalog/64
    Explore at:
    Dataset updated
    Jan 30, 2020
    Dataset authored and provided by
    Institute of Statistics of Albania
    Time period covered
    2005
    Area covered
    Albania
    Description

    Abstract

    Over the past decade, Albania has been seeking to develop the framework for a market economy and more open society. It has faced severe internal and external challenges in the interim – extremely low income levels and a lack of basic infrastructure, the rapid collapse of output and inflation rise after the shift in regime in 1991, the turmoil during the 1997 pyramid crisis, and the social and economic shocks accompanying the 1999 Kosovo crisis. In the face of these challenges, Albania has made notable progress in creating conditions conducive to growth and poverty reduction.

    In the process leading to its first Poverty Reduction Strategy (that is the National Strategy for Socioeconomic Development, now renamed the National Strategy for Development and Integration), the Government of Albania reinforced its commitment to strengthening its own capacity to collect and analyze on a regular basis the information it needs to inform policy-making.

    Multi-purpose household surveys are one of the main sources of information to determine living conditions and measure the poverty situation of a country. They provide an indispensable tool to assist policy-makers in monitoring and targeting social programs. In its first phase (2001-2006), this monitoring system included the following data collection instruments: (i) Population and Housing Census; (ii) Living Standards Measurement Surveys every 3 years, and (iii) annual panel surveys.

    The Population and Housing Census (PHC) conducted in April 2001, provided the country with a much needed updated sampling frame which is one of the building blocks for the household survey structure. The focus during this first phase of the monitoring system is on a periodic LSMS (in 2002 and 2005), followed by panel surveys on a subsample of LSMS households (in 2003, and 2004), drawing heavily on the 2001 census information.

    A poverty profile based on 2002 data showed that some 25 percent of the population are poor, with many others vulnerable to poverty due to their incomes being close to the poverty threshold. Income related poverty is compounded by poor access to basic infrastructure (regular supply of electricity, clean water), education and health services, housing, etc.

    The 2005 LSMS was in the field between May and early July, with an additional visit to agricultural households in October, 2005. The survey work was undertaken by the Living Standards unit of INSTAT, with the technical assistance of the World Bank.

    Geographic coverage

    National coverage. Domains: Tirana, other urban, rural; Agro-ecological areas (coastal, central, mountain)

    Analysis unit

    • Households
    • Individuals

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The Republic of Albania is divided geographically into 12 Prefectures (Prefekturat). The latter are divided into Districts (Rrethet) which are, in turn, divided into Cities (Qyteti) and Communes (Komunat). The Communes contain all the rural villages and the very small cities. For census purposes, the cities and the villages have been divided into enumeration areas (EAs).

    1. Sampling frame

    The Enumeration Areas (EA) that make up the sampling frame come from the April 2001 General Census of Population and Housing. The EAs in the frame are classified by Prefecture, District, City or Commune. The frame also contains, for every EA, the number of Housing Units (HU), the number of occupied HUs, the number of unoccupied HUs, the number of households, and the population. We are using occupied dwellings and not total number of dwellings since many EAs contain a large number of empty dwellings.

    A detailed study of the list of census EAs shows that many have zero population. In order to obtain EAs with the minimum of 50 and the maximum of 120 occupied housing units, the EAs with zero population have been taken off the sampling frame. Since the sizes of the EAs varied from 0 to 395 HUs, the smaller EAs (with less than 50 HU) have been collapsed with geographically adjacent ones and the largest EAs (with more than 120 HU) have been split into two or more EAs. Subsequently, maps identifying the boundaries of every split and collapsed EA were prepared. Given that the 2002 LSMS has been conducted less than a year after the April 2001 census, a listing operation to update the sample EAs was not conducted in the field. However, since the level of construction is very high in the city of Tirana and its suburbs, a quick count of the 75 sample EAs selected in Tirana was carried out followed by a listing operation. The check of the listing based on the Census data revealed two types of discrepancies: - HUs had become invalid, i.e. vacant, nonresidential, demolished, seasonally occupied, etc. - Instead of one small building (with one or two HU), a new one with 15 HUs was identified.

    During of the listing update process, HUs identified as invalid were taken off the frame. In the case of a new building, these new HUs were entered with a new sequential code. The listing sheets prepared during the listing operation in Tirana, become the sampling frame for the final stage of selection of 12 HU which has to be interviewed. The unit of analysis and the unit of observation is the household. The universe under study consists of all the households in the Republic of Albania. We have used the Housing Unit (defined as the space occupied by one household) as the sampling unit, instead of the household, because the HU is more permanent and easier to identify in the field.

    1. Sample Size

    In the LSMS the sample size is 450 EA and in each EA 8 households were selected. So the total sample size of the LSMS is 3600 households. In addition, since a certain level of nonresponse is expected, 4 reserve units were selected in each sample EA.

    1. Stratification

    The sampling frame has been divided in three regions (strata) 1. Coastal Area 2. Central Area 3. Mountain Area and Tirana (urban and other urban) is consider as a separate strata.

    The first three strata were divided into major cities (the most important cities in the region), other urban (the rest of cities in the region), and rural. In each more importance was given to the major cities and rural areas. We have selected 10 EA for each major city and 65 EAs (75 EAs for Mountain Area) for each region. In the city of Tirana and its suburbs, implicit stratification was used to improve the efficiency of the sample design.

    1. Procedure for the Selection of Housing Units

    A fixed number of valid dwelling units (12) was selected systematically and with equal probability from the Listing Form pertaining to Tirana and from the Census forms for the other areas. Once the 12 HUs were selected, 4 of them were chosen at random and kept as reserve units. The selected HUs were numbered within the EA and identified with a circle around the number in the listing form, as well as a circle on the maps. The reserve sample (units 9 to 12) were identified from R1 to R4 during data collection to emphasize the fact that they were reserve units.

    Two copies of the sample listing sheets and two copies of maps for each EA were printed. The first copy of the listing sheet and the map were given to the supervisor and included the 12 HU, the second copy was given to the enumerator. The enumerator only received the 8 dwelling units, not the reserve ones. Each time the enumerator needed a reserve HU, he/she had to ask the supervisor and explain the reason why a reserve unit was needed. This process helped determine the reason why reserve units were used and provided more control on their use.

    In the field the enumerator registered the occupancy status of every unit: - occupied as principal residence - vacant - under construction (not occupied) - demolished or abandoned (not occupied) - seasonally occupied

    In the case that one HU was found to be invalid, the enumerator used the first reserve unit (identified with the code R1). In the case that in one EA more than 4 DU selected were invalid, other units from that EA chosen at random by headquarter (in Tirana) were selected as replacement units to keep the enumerator load constant and maintain a uniform sample size in each EA. Before identifying the invalid HUs, the interviewer had to note the interview status of each visit for all the units for which an interview was attempted, whether these are original units or reserve units. This was done to determine the interview status: interview completed, nonresponse, refusal, etc. In other words, this will allow identifying: the completed interviews (responses obtained), the incomplete but usable ones (responses obtained), the incomplete ones but not usable (nonresponse), the refusals (nonresponse) and the "not at home" (nonresponse). Subsequently, the invalid units identified were substituted with the available reserves, always maintaining the sample of 8 HUs.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Four survey instruments were used to collect information for the 2005 Albania LSMS: a household questionnaire, a diary for recording household food consumption, a community questionnaire, and a price questionnaire.

    The household questionnaire included all the core LSMS modules as defined in Grosh and Glewwe (2000)1, plus additional modules on migration, fertility, subjective poverty, agriculture, non-farm enterprises, and social capital. Geographical referencing data on the longitude and latitude of each household were also recorded using portable GPS devices. Geo-referencing will enable a more efficient spatial link among the different surveys of the system, as well as between the survey households and other geo-referenced information.

    The choice of the modules was aimed at matching as much as

  11. Most popular cities among Gen Z in the U.S. 2021

    • statista.com
    Updated Jun 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Most popular cities among Gen Z in the U.S. 2021 [Dataset]. https://www.statista.com/statistics/1200740/most-popular-gen-z-cities-usa/
    Explore at:
    Dataset updated
    Jun 20, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2021
    Area covered
    United States
    Description

    Washington, D.C. had the highest net migration for 18 to 24-year-olds in 2021, making it the most attractive city among the generation Z population. The number of Zoomers who moved in less the number of Zoomers who moved out of Washington stood at ******. Columbia, SC, and Boston, MA, were the two other cities where this figure where the net migration exceeded 10,000.

  12. Reported violent crime rate U.S. 2023, by state

    • statista.com
    Updated Nov 14, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Reported violent crime rate U.S. 2023, by state [Dataset]. https://www.statista.com/statistics/200445/reported-violent-crime-rate-in-the-us-states/
    Explore at:
    Dataset updated
    Nov 14, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    In 2023, the District of Columbia had the highest reported violent crime rate in the United States, with 1,150.9 violent crimes per 100,000 of the population. Maine had the lowest reported violent crime rate, with 102.5 offenses per 100,000 of the population. Life in the District The District of Columbia has seen a fluctuating population over the past few decades. Its population decreased throughout the 1990s, when its crime rate was at its peak, but has been steadily recovering since then. While unemployment in the District has also been falling, it still has had a high poverty rate in recent years. The gentrification of certain areas within Washington, D.C. over the past few years has made the contrast between rich and poor even greater and is also pushing crime out into the Maryland and Virginia suburbs around the District. Law enforcement in the U.S. Crime in the U.S. is trending downwards compared to years past, despite Americans feeling that crime is a problem in their country. In addition, the number of full-time law enforcement officers in the U.S. has increased recently, who, in keeping with the lower rate of crime, have also made fewer arrests than in years past.

  13. Ranking of the largest U.S. metropolitan areas by median household income...

    • statista.com
    Updated Jul 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Ranking of the largest U.S. metropolitan areas by median household income 2019 [Dataset]. https://www.statista.com/statistics/234251/median-household-income-by-largest-metro-area-us/
    Explore at:
    Dataset updated
    Jul 5, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2019
    Area covered
    United States
    Description

    This statistic shows annual median household incomes in the United States in the largest metropolitan areas (measured by population). In 2019, the annual median household income in the metropolitan area of New York-Newark-Jersey City was 83,160 U.S. dollars.

  14. Rate of homelessness in the U.S. 2023, by state

    • statista.com
    Updated Jun 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Rate of homelessness in the U.S. 2023, by state [Dataset]. https://www.statista.com/statistics/727847/homelessness-rate-in-the-us-by-state/
    Explore at:
    Dataset updated
    Jun 23, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    When analyzing the ratio of homelessness to state population, New York, Vermont, and Oregon had the highest rates in 2023. However, Washington, D.C. had an estimated ** homeless individuals per 10,000 people, which was significantly higher than any of the 50 states. Homeless people by race The U.S. Department of Housing and Urban Development performs homeless counts at the end of January each year, which includes people in both sheltered and unsheltered locations. The estimated number of homeless people increased to ******* in 2023 – the highest level since 2007. However, the true figure is likely to be much higher, as some individuals prefer to stay with family or friends - making it challenging to count the actual number of homeless people living in the country. In 2023, nearly half of the people experiencing homelessness were white, while the number of Black homeless people exceeded *******. How many veterans are homeless in America? The  number of homeless veterans in the United States has halved since 2010. The state of California, which is currently suffering a homeless crisis, accounted for the highest number of homeless veterans in 2022. There are many causes of homelessness among veterans of the U.S. military, including post-traumatic stress disorder (PTSD), substance abuse problems, and a lack of affordable housing.

  15. U.S. population: male to female ratio, by state 2020

    • statista.com
    Updated Jun 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). U.S. population: male to female ratio, by state 2020 [Dataset]. https://www.statista.com/statistics/301946/us-population-males-per-100-females-by-state/
    Explore at:
    Dataset updated
    Jun 23, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2020
    Area covered
    United States
    Description

    Alaska had the highest male to female ratio in the United States in 2020, with ***** men for every 100 women. The male to female ratio was lowest in the District of Columbia, with **** men for every 100 women. The final frontier Alaska, which was purchased from the Russian Empire in 1867, is the largest state in the U.S. and one of the newest states, having been admitted to the U.S. in 1959. Although oil production dominates the economy, Alaska has a very high poverty rate and consistently has the highest unemployment rate in the country. It’s a man’s world Alaska is one of 10 states in the U.S. that has more men than women. The male to female ratio in the United States as a whole is about even, but as the population ages, there tend to be more females than males. Even though the sex ratio in the U.S. is almost one to one, a little more than ** percent of all females participated in the labor force in 2021, compared with **** percent of men.

  16. Number of US states by year since 1776

    • statista.com
    Updated Aug 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Number of US states by year since 1776 [Dataset]. https://www.statista.com/statistics/1043617/number-us-states-by-year/
    Explore at:
    Dataset updated
    Aug 9, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    Although the founding fathers declared American independence in 1776, and the subsequent Revolutionary War ended in 1783, individual states did not officially join the union until 1787. The first states to ratify the U.S. Constitution were Delaware, Pennsylvania and New Jersey, in December 1787, and they were joined by the remainder of the thirteen ex-British colonies by 1790. Another three states joined before the turn of the nineteenth century, and there were 45 states by 1900. The final states, Alaska and Hawaii, were admitted to the union in 1959, almost 172 years after the first colonies became federal states. Secession in the American Civil War The issues of slavery and territorial expansion in the mid nineteenth century eventually led to the American Civil War, which lasted from 1861 until 1865. As the U.S. expanded westwards, a moral and economic argument developed about the legality of slavery in these new states; northern states were generally opposed to the expansion of slavery, whereas the southern states (who were economically dependent on slavery) saw this lack of extension as a stepping stone towards nationwide abolition. In 1861, eleven southern states seceded from the Union, and formed the Confederate States of America. When President Lincoln refused to relinquish federal property in the south, the Confederacy attacked, setting in motion the American Civil War. After four years, the Union emerged victorious, and the Confederate States of America was disbanded, and each individual state was readmitted to Congress gradually, between 1866 and 1870. Expansion of other territories Along with the fifty U.S. states, there is one federal district (Washington D.C., the capital city), and fourteen overseas territories, five of which with a resident population (American Samoa, Guam, the Northern Mariana Islands, Puerto Rico, and the U.S. Virgin Islands). In 2019, President Trump inquired about the U.S. purchasing the territory of Greenland from Denmark, and, although Denmark's response indicated that this would be unlikely, this does suggest that the US may be open to further expansion of it's states and territories in the future. There is also a movement to make Washington D.C. the 51st state to be admitted to the union, as citizens of the nation's capital (over 700,000 people) do not have voting representation in the houses of Congress nor control over many local affairs; as of 2020, the U.S. public appears to be divided on the issue, and politicians are split along party lines, as D.C. votes overwhelmingly for the Democratic nominee in presidential elections.

  17. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Kristen Carney (2024). Washington Cities by Population [Dataset]. https://www.washington-demographics.com/cities_by_population

Washington Cities by Population

Explore at:
Dataset updated
Jun 20, 2024
Dataset provided by
Cubit Planning, Inc.
Authors
Kristen Carney
License

https://www.washington-demographics.com/terms_and_conditionshttps://www.washington-demographics.com/terms_and_conditions

Area covered
Tacoma, Washington
Description

A dataset listing Washington cities by population for 2024.

Search
Clear search
Close search
Google apps
Main menu