53 datasets found
  1. d

    Adult Arrests

    • catalog.data.gov
    • datasets.ai
    • +3more
    Updated Mar 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Washington, DC (2025). Adult Arrests [Dataset]. https://catalog.data.gov/dataset/adult-arrests-28903
    Explore at:
    Dataset updated
    Mar 11, 2025
    Dataset provided by
    City of Washington, DC
    Description

    The Metropolitan Police Department collects race and ethnicity data according to the United States Census Bureau standards (https://www.census.gov/topics/population/race/about.html). Hispanic, which was previously categorized under the Race field prior to August 2015, is now captured under Ethnicity. All records prior to August 2015 have been updated to “Unknown (Race), Hispanic (Ethnicity)”. Race, ethnicity and gender data are based on officer observation, which may or may not be accurate.MPD cannot release exact addresses to the general public unless proof of ownership or subpoena is submitted. The GeoX and GeoY values represent the block location (approximately 232 ft. radius) as of the date of the arrest and offense. Arrest and offense addresses that could not be geocoded are included as an “unknown” value.Arrestee age is calculated based on the number of days between the self-reported or verified date of birth (DOB) of the arrestee and the date of the arrest; DOB data may not be accurate if self-reported, and an arrestee may refuse to provide his or her date of birth. Due to the sensitive nature of juvenile data and to protect the arrestee’s confidentiality, any arrest records for defendants under the age of 18 or with missing age are excluded in this dataset.The Criminal Complaint Number (CCN) and arrest number have also been anonymized.This data may not match other arrest data requests that may have included all law enforcement agencies in the District or all arrest charges. Arrest totals are subject to change and may be different than MPD Annual Report totals or other publications due to inclusion of juvenile arrest summary, expungements, investigation updates, data quality audits, etc.

  2. Crime Incidents in the Last 30 Days

    • catalog.data.gov
    • opendata.dc.gov
    • +4more
    Updated Aug 20, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Metropolitan Police Department (2025). Crime Incidents in the Last 30 Days [Dataset]. https://catalog.data.gov/dataset/crime-incidents-in-the-last-30-days
    Explore at:
    Dataset updated
    Aug 20, 2025
    Dataset provided by
    Metropolitan Police Department of the District of Columbiahttps://mpdc.dc.gov/
    Description

    The dataset contains a subset of locations and attributes of incidents reported in the ASAP (Analytical Services Application) crime report database by the District of Columbia Metropolitan Police Department (MPD). Visit https://crimecards.dc.gov for more information. This data is shared via an automated process where addresses are geocoded to the District's Master Address Repository and assigned to the appropriate street block. Block locations for some crime points could not be automatically assigned resulting in 0,0 for x,y coordinates. These can be interactively assigned using the MAR Geocoder.On February 1 2020, the methodology of geography assignments of crime data was modified to increase accuracy. From January 1 2020 going forward, all crime data will have Ward, ANC, SMD, BID, Neighborhood Cluster, Voting Precinct, Block Group and Census Tract values calculated prior to, rather than after, anonymization to the block level. This change impacts approximately one percent of Ward assignments.

  3. O

    Daily Arrests

    • data.montgomerycountymd.gov
    • datasets.ai
    • +4more
    csv, xlsx, xml
    Updated Aug 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Montgomery County, MD (2025). Daily Arrests [Dataset]. https://data.montgomerycountymd.gov/widgets/xhwt-7h2h
    Explore at:
    xlsx, csv, xmlAvailable download formats
    Dataset updated
    Aug 23, 2025
    Dataset authored and provided by
    Montgomery County, MD
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    This dataset provides the public with arrest information from the Montgomery County Central Processing Unit (CPU) systems. The data presented is derived from every booking; criminal, civil and motor vehicle entered through CPU. The data is compiled by “CRIMS”, a respected jail records-management system used by the Montgomery County Corrections and many other law enforcement agencies. To protect arrestee’s privacy, personal information is redacted. Residential addresses are rounded to the nearest hundred block. All data is refreshed on 2 hour basis to reflect any additions or changes. -Information that may include mechanical or human error -Arrest information [Note: all arrested persons are presumed innocent until proven guilty in a court of law - Records will be removed after 30 days. Update Frequency - every 2 hours

  4. d

    DC Crime Cards

    • catalog.data.gov
    • opendata.dc.gov
    • +1more
    Updated Feb 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Washington, DC (2025). DC Crime Cards [Dataset]. https://catalog.data.gov/dataset/dc-crime-cards
    Explore at:
    Dataset updated
    Feb 5, 2025
    Dataset provided by
    City of Washington, DC
    Area covered
    Washington
    Description

    An interactive public crime mapping application providing DC residents and visitors easy-to-understand data visualizations of crime locations, types and trends across all eight wards. Crime Cards was created by the DC Metropolitan Police Department (MPD) and Office of the Chief Technology Officer (OCTO). Special thanks to the community members who participated in reviews with MPD Officers and IT staff, and those who joined us for the #SaferStrongerSmarterDC roundtable design review. All statistics presented in Crime Cards are based on preliminary DC Index crime data reported from 2009 to midnight of today’s date. They are compiled based on the date the offense was reported (Report Date) to MPD. The application displays two main crime categories: Violent Crime and Property Crime. Violent Crimes include homicide, sex abuse, assault with a dangerous weapon (ADW), and robbery. Violent crimes can be further searched by the weapon used. Property Crimes include burglary, motor vehicle theft, theft from vehicle, theft (other), and arson.CrimeCards collaboration between the Metropolitan Police Department (MPD), the Office of the Chief Technology Officer (OCTO), and community members who participated at the #SafterStrongerSmarterDC roundtable design review.

  5. d

    Felony Arrest Charges in 2016

    • opendata.dc.gov
    • res1catalogd-o-tdatad-o-tgov.vcapture.xyz
    • +4more
    Updated May 11, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Washington, DC (2018). Felony Arrest Charges in 2016 [Dataset]. https://opendata.dc.gov/datasets/felony-arrest-charges-in-2016/api
    Explore at:
    Dataset updated
    May 11, 2018
    Dataset authored and provided by
    City of Washington, DC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    The dataset contains records of felony arrests made by the Metropolitan Police Department (MPD) in 2016. Visit mpdc.dc.gov/page/data-and-statistics for more information.

  6. Data from: Drugs and Crime in Public Housing, 1986-1989: Los Angeles,...

    • s.cnmilf.com
    • icpsr.umich.edu
    • +1more
    Updated Mar 12, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Institute of Justice (2025). Drugs and Crime in Public Housing, 1986-1989: Los Angeles, Phoenix, and Washington, DC [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/drugs-and-crime-in-public-housing-1986-1989-los-angeles-phoenix-and-washington-dc-72d17
    Explore at:
    Dataset updated
    Mar 12, 2025
    Dataset provided by
    National Institute of Justicehttp://nij.ojp.gov/
    Area covered
    Los Angeles, Phoenix, Washington
    Description

    This study investigates rates of serious crime for selected public housing developments in Washington, DC, Phoenix, Arizona, and Los Angeles, California, for the years 1986 to 1989. Offense rates in housing developments were compared to rates in nearby areas of private housing as well as to city-wide rates. In addition, the extent of law enforcement activity in housing developments as represented by arrests was considered and compared to arrest levels in other areas. This process allowed both intra-city and inter-city comparisons to be made. Variables cover study site, origin of data, year of event, offense codes, and _location of event. Los Angeles files also include police division.

  7. Reported violent crime rate U.S. 2023, by state

    • statista.com
    Updated Nov 14, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Reported violent crime rate U.S. 2023, by state [Dataset]. https://www.statista.com/statistics/200445/reported-violent-crime-rate-in-the-us-states/
    Explore at:
    Dataset updated
    Nov 14, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    In 2023, the District of Columbia had the highest reported violent crime rate in the United States, with 1,150.9 violent crimes per 100,000 of the population. Maine had the lowest reported violent crime rate, with 102.5 offenses per 100,000 of the population. Life in the District The District of Columbia has seen a fluctuating population over the past few decades. Its population decreased throughout the 1990s, when its crime rate was at its peak, but has been steadily recovering since then. While unemployment in the District has also been falling, it still has had a high poverty rate in recent years. The gentrification of certain areas within Washington, D.C. over the past few years has made the contrast between rich and poor even greater and is also pushing crime out into the Maryland and Virginia suburbs around the District. Law enforcement in the U.S. Crime in the U.S. is trending downwards compared to years past, despite Americans feeling that crime is a problem in their country. In addition, the number of full-time law enforcement officers in the U.S. has increased recently, who, in keeping with the lower rate of crime, have also made fewer arrests than in years past.

  8. Felony Crime Incidents in 2016

    • res1catalogd-o-tdatad-o-tgov.vcapture.xyz
    • opendata.dc.gov
    • +5more
    Updated Feb 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Metropolitan Police Department (2025). Felony Crime Incidents in 2016 [Dataset]. https://res1catalogd-o-tdatad-o-tgov.vcapture.xyz/dataset/felony-crime-incidents-in-2016-02202
    Explore at:
    Dataset updated
    Feb 5, 2025
    Dataset provided by
    Metropolitan Police Department of the District of Columbiahttps://mpdc.dc.gov/
    Description

    The dataset contains records of felony crime incidents recorded by the District of Columbia Metropolitan Police Department in 2016. Visit mpdc.dc.gov/page/data-and-statistics for more information.

  9. d

    Stop Data 2019 to 2022

    • catalog.data.gov
    • opendata.dc.gov
    • +2more
    Updated Feb 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Washington, DC (2025). Stop Data 2019 to 2022 [Dataset]. https://catalog.data.gov/dataset/stop-data-2019-to-2022
    Explore at:
    Dataset updated
    Feb 5, 2025
    Dataset provided by
    City of Washington, DC
    Description

    In July 2019, the Metropolitan Police Department (MPD) implemented new data collection methods that enabled officers to collect more comprehensive information about each police stop in an aggregated manner. More specifically, these changes have allowed for more detailed data collection on stops, protective pat down (PPDs), searches, and arrests. (For a complete list of terms, see the glossary on page 2.) These changes support data collection requirements in the Neighborhood Engagement Achieves Results Amendment Act of 2016 (NEAR Act).The accompanying data cover all MPD stops including vehicle, pedestrian, bicycle, and harbor stops for the period from July 22, 2019 to December 31, 2022. A stop may involve a ticket (actual or warning), investigatory stop, protective pat down, search, or arrest.If the final outcome of a stop results in an actual or warning ticket, the ticket serves as the official documentation for the stop. The information provided in the ticket include the subject’s name, race, gender, reason for the stop, and duration. All stops resulting in additional law enforcement actions (e.g., pat down, search, or arrest) are documented in MPD’s Record Management System (RMS). This dataset includes records pulled from both the ticket (District of Columbia Department of Motor Vehicles [DMV]) and RMS sources. Data variables not applicable to a particular stop are indicated as “NULL.” For example, if the stop type (“stop_type” field) is a “ticket stop,” then the fields: “stop_reason_nonticket” and “stop_reason_harbor” will be “NULL.” Each row in the data represents an individual stop of a single person, and that row reveals any and all recorded outcomes of that stop (including information about any actual or warning tickets issued, searches conducted, arrests made, etc.). A single traffic stop may generate multiple tickets, including actual, warning, and/or voided tickets. Additionally, an individual who is stopped and receives a traffic ticket may also be stopped for investigatory purposes, patted down, searched, and/or arrested. If any of these situations occur, the “stop_type” field would be labeled “Ticket and Non-Ticket Stop.” If an individual is searched, MPD differentiates between person and property searches. The “stop_location_block” field represents the block-level location of the stop and/or a street name. The age of the person being stopped is calculated based on the time between the person’s date ofbirth and the date of the stop.There are certain locations that have a high prevalence of non-ticket stops. These can be attributed to some centralized processing locations. Additionally, there is a time lag for data on some ticket stops as roughly 20 percent of tickets are handwritten. In these instances, the handwritten traffic tickets are delivered by MPD to the DMV, and then entered into data systems by DMV contractors. On August 1, 2021, MPD transitioned to a new version of its current records management system, Mark43 RMS.Due to this transition, the data collection and structures for the period between August 1, 2021 – December 31, 2021 were changed. The list below provides explanatory notes to consider when using this dataset.New fields for data collection resulted in an increase of outliers in stop duration (affecting 0.98% of stops). In order to mitigate the disruption of outliers on any analysis, these values have been set to null as consistent with past practices.Due to changes to the data structure that occurred after August 1, 2021, six attributes pertaining to reasons for searches of property and person are only available for the first seven months of 2021. These attributes are: Individual’s Actions, Information Obtained from Law Enforcement Sources, Information Obtained from Witnesses or Informants, Characteristics of an Armed Individual, Nature of the Alleged Crime, Prior Knowledge. These data structure changes have been updated to include these attributes going forward (as of April 23, 2022).Out of the four attributes for types of property search, warrant property search is only available for the first seven months of 2021. Data structure changes were made to include this type of property search in future datasets.The following chart shows how certain property search fields were aligned prior to and after August 1, 2021. A glossary is also provided following the chart. As of August 2, 2022, these fields have reverted to the original alignment.https://mpdc.dc.gov/sites/default/files/dc/sites/mpdc/publication/attachments/Explanatory%20Notes%202021%20Data.pdfIn October 2022 several fields were added to the dataset to provide additional clarity differentiating NOIs issued to bicycles (including Personal Mobility Devices, aka stand-on scooters), pedestrians, and vehicles as well as stops related specifically to MPD’s Harbor Patrol Unit and stops of an investigative nature where a police report was written. Please refer to the Data Dictionary for field definitions.In March 2023 an indicator was added to the data which reflects stops related to traffic enforcement and/or traffic violations. This indicator will be 1 if a stop originated as a traffic stop (including both stops where only a ticket was issued as well as stops that ultimately resulted in police action such as a search or arrest), involved an arrest for a traffic violation, and/or if the reason for the stop was Response to Crash, Observed Moving Violation, Observed Equipment Violation, or Traffic Violation.Between November 2021 and February 2022 several fields pertaining to items seized during searches of a person were not available for officers to use, leading to the data showing that no objects were seized pursuant to person searches during this time period. Finally, MPD is conducting on-going data audits on all data for thorough and complete information. For more information regarding police stops, please see: https://mpdc.dc.gov/stopdataFigures are subject to change due to delayed reporting, on-going data quality audits, and data improvement processes.

  10. d

    District Gun Violence Dashboards

    • opendata.dc.gov
    • res1catalogd-o-tdatad-o-tgov.vcapture.xyz
    • +1more
    Updated Mar 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Washington, DC (2025). District Gun Violence Dashboards [Dataset]. https://opendata.dc.gov/datasets/DCGIS::district-gun-violence-dashboards
    Explore at:
    Dataset updated
    Mar 17, 2025
    Dataset authored and provided by
    City of Washington, DC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    The Office of Gun Violence Prevention (OGVP) shares real-time gun violence data to increase government transparency, improve the public's awareness, and support community-based gun violence prevention and reduction partners. All District crime data is available through Crime Cards. The dashboards below focus on gun violence only. The data in these dashboards is updated daily at 7:40AM with the incidents from the day before. View data covering 7-Day Look-back of Gun Violence and Year-to-date Gun Violence.All statistics presented here are based on preliminary DC criminal code offense definitions. The data do not represent official statistics submitted to the FBI under the Uniform Crime Reporting program (UCR) or National Incident Based Reporting System (NIBRS). All preliminary offenses are coded based on DC criminal code and not the FBI offense classifications. Please understand that any comparisons between MPD preliminary data as published on this website and the official crime statistics published by the FBI under the Uniform Crime Reporting Program (UCR) are inaccurate and misleading. The MPD does not guarantee (either expressed or implied) the accuracy, completeness, timeliness, or correct sequencing of the information. The MPD will not be responsible for any error or omission, or for the use of, or the results obtained from the use of this information. Read complete data notes at buildingblocks.dc.gov/data.

  11. g

    National Crime Surveys: Reverse Record Check Studies: Washington, DC, San...

    • search.gesis.org
    Updated May 1, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Department of Justice. Office of Justice Programs. Bureau of Justice Statistics (2021). National Crime Surveys: Reverse Record Check Studies: Washington, DC, San Jose, and Baltimore, 1970-1971 - Archival Version [Dataset]. http://doi.org/10.3886/ICPSR08693
    Explore at:
    Dataset updated
    May 1, 2021
    Dataset provided by
    GESIS search
    ICPSR - Interuniversity Consortium for Political and Social Research
    Authors
    United States Department of Justice. Office of Justice Programs. Bureau of Justice Statistics
    License

    https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de443659https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de443659

    Area covered
    San Jose, Washington, Baltimore
    Description

    Abstract (en): These surveys were part of a series of pretests conducted during the early 1970s to reveal problems associated with doing a nationwide study on victimization. They were done to determine the most effective reference period to use when questioning respondents in order to gain the fullest and most reliable information, to measure the degree to which respondents move incidents occurring outside the reference period into that period when questioned, and to explore the possibility of identifying incidents by a few broad general questions as opposed to a series of more specific probing questions. Part 1: All crime victims in San Jose during 1970. Part 2: All crime victims in Baltimore in 1970. Part 3: All crime victims in Washington, DC in 1970. Part 1: A probability sample of personal victims of crimes was selected from official police reports. Victims were chosen to provide uniform representation over 12 months on robbery, burglary, rape, assault, and larceny. Part 2: Five hundred victims were identified from official police records and represented four crimes: assault, robbery, larceny, and burglary, from five recall time periods. Part 3: Six hundred victims were identified from official police records and represented four crimes: assault, robbery, larceny, and burglary. 2006-01-18 File CB8693.PDF was removed from any previous datasets and flagged as a study-level file, so that it will accompany all downloads. Funding insitution(s): United States Department of Justice. Office of Justice Programs. Bureau of Justice Statistics.

  12. d

    Marijuana Arrests

    • opendata.dc.gov
    • catalog.data.gov
    • +1more
    Updated Jul 2, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Washington, DC (2024). Marijuana Arrests [Dataset]. https://opendata.dc.gov/datasets/marijuana-arrests/api
    Explore at:
    Dataset updated
    Jul 2, 2024
    Dataset authored and provided by
    City of Washington, DC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    The data represents individuals arrested with a marijuana charge, regardless of whether there was a more serious secondary charge. If an arrestee was charged with multiple marijuana charges, the arrest is only counted once under the more serious charge type (Manufacture/Cultivation > Distribution > Possession with Intent to Distribute > Possession > Public Consumption). The category of “Manufacture or Cultivation” was added in the 2019 data and for future years, but is not utilized in prior years.MPD collects race and ethnicity data according to the United States Census Bureau standards (https://www.census.gov/topics/population/race/about.html). Hispanic, which was previously categorized under the Race field prior to August 2015, is now captured under Ethnicity. All records prior to August 2015 have been updated to “Unknown (Race), Hispanic (Ethnicity).” Data on race and ethnicity prior to November 9, 2018 was based on officer observation; on and after November 9, 2018, the data is based on the arrestee’s response.MPD cannot release exact addresses to the general public unless proof of ownership or subpoena is submitted. The GeoX and GeoY values represent the block location (approximately 232 ft. radius) as of the date of the arrest. Due to the Department’s redistricting efforts in 2012 and 2019, data may not be comparable in some years.Arrestee age is calculated based on the number of days between the self-reported or verified date of birth (DOB) of the arrestee and the date of the arrest; DOB data may not be accurate if self-reported or if the arrestee refused to provide it.Due to the sensitive nature of juvenile data and to protect the arrestee’s confidentiality, any arrest records for defendants under the age of 18 have been coded as “NA” for the following fields:• Arrest Hour• CCN• Age• Offense Location Block GeoX/Y• Defendant Race• Defendant Ethnicity• Defendant Sex• Arrest Location Block Address• Arrest Location Block GeoX/YThis data may not match other marijuana data requests that may have included all law enforcement agencies in the District, or only the most serious charge. Figures are subject to change due to record sealing, expungements, and data quality audits.

  13. UCI Communities and Crime Unnormalized Data Set

    • kaggle.com
    Updated Feb 21, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kavitha (2018). UCI Communities and Crime Unnormalized Data Set [Dataset]. https://www.kaggle.com/kkanda/communities%20and%20crime%20unnormalized%20data%20set/notebooks
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 21, 2018
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Kavitha
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    Context

    Introduction: The dataset used for this experiment is real and authentic. The dataset is acquired from UCI machine learning repository website [13]. The title of the dataset is ‘Crime and Communities’. It is prepared using real data from socio-economic data from 1990 US Census, law enforcement data from the 1990 US LEMAS survey, and crimedata from the 1995 FBI UCR [13]. This dataset contains a total number of 147 attributes and 2216 instances.

    The per capita crimes variables were calculated using population values included in the 1995 FBI data (which differ from the 1990 Census values).

    Content

    The variables included in the dataset involve the community, such as the percent of the population considered urban, and the median family income, and involving law enforcement, such as per capita number of police officers, and percent of officers assigned to drug units. The crime attributes (N=18) that could be predicted are the 8 crimes considered 'Index Crimes' by the FBI)(Murders, Rape, Robbery, .... ), per capita (actually per 100,000 population) versions of each, and Per Capita Violent Crimes and Per Capita Nonviolent Crimes)

    predictive variables : 125 non-predictive variables : 4 potential goal/response variables : 18

    Acknowledgements

    http://archive.ics.uci.edu/ml/datasets/Communities%20and%20Crime%20Unnormalized

    U. S. Department of Commerce, Bureau of the Census, Census Of Population And Housing 1990 United States: Summary Tape File 1a & 3a (Computer Files),

    U.S. Department Of Commerce, Bureau Of The Census Producer, Washington, DC and Inter-university Consortium for Political and Social Research Ann Arbor, Michigan. (1992)

    U.S. Department of Justice, Bureau of Justice Statistics, Law Enforcement Management And Administrative Statistics (Computer File) U.S. Department Of Commerce, Bureau Of The Census Producer, Washington, DC and Inter-university Consortium for Political and Social Research Ann Arbor, Michigan. (1992)

    U.S. Department of Justice, Federal Bureau of Investigation, Crime in the United States (Computer File) (1995)

    Inspiration

    Your data will be in front of the world's largest data science community. What questions do you want to see answered?

    Data available in the dataset may not act as a complete source of information for identifying factors that contribute to more violent and non-violent crimes as many relevant factors may still be missing.

    However, I would like to try and answer the following questions answered.

    1. Analyze if number of vacant and occupied houses and the period of time the houses were vacant had contributed to any significant change in violent and non-violent crime rates in communities

    2. How has unemployment changed crime rate(violent and non-violent) in the communities?

    3. Were people from a particular age group more vulnerable to crime?

    4. Does ethnicity play a role in crime rate?

    5. Has education played a role in bringing down the crime rate?

  14. d

    Crime Mapper: Elliston (DC) Local Government Area

    • data.gov.au
    • data.wu.ac.at
    html
    Updated Jul 13, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Attorney-General's Department (2016). Crime Mapper: Elliston (DC) Local Government Area [Dataset]. https://data.gov.au/dataset/772ca66b-236f-4205-b7d2-0c31b1a394f9
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Jul 13, 2016
    Dataset provided by
    Attorney-General's Departmenthttp://www.ag.gov.au/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Crime Mapper is an online application that provides the geographic distribution of recorded crime across South Australia. Two units of measurement are reported: Number of offences - provides a count of all offences listed on all incident reports recorded by South Australia Police . Rate per 1,000 estimated resident population - provides the number of offences as a rate per 1,000 population residing in each given location. Offences are categorised as follows: • Offences against the person …Show full descriptionCrime Mapper is an online application that provides the geographic distribution of recorded crime across South Australia. Two units of measurement are reported: Number of offences - provides a count of all offences listed on all incident reports recorded by South Australia Police . Rate per 1,000 estimated resident population - provides the number of offences as a rate per 1,000 population residing in each given location. Offences are categorised as follows: • Offences against the person (homicide; major assault; other); • Sexual offences (rape; indecent assault; unlawful sexual intercourse; other); • Robbery and extortion offences (armed robbery; unarmed robbery; extortion); • Offences against property (serious criminal trespass/break and enter; fraud and misappropriation; receiving/illegal possession of stolen goods; larceny/illegal use of a motor vehicle; other larceny; larceny from shops; larceny from a motor vehicle; arson/explosives; property damage and environmental offences); • Offences against good order; • Drug offences (possess/use drugs; sell/trade drugs; produce/manufacture drugs; possess implement for drug use; other); • Driving offences (driving under the influence of alcohol/drugs; dangerous driving; driving licence offences; traffic offences; motor vehicle registration offences; other); or • Other offences. When using Crime Mapper it is important to understand that the statistics it contains may not provide an accurate measure of the true prevalence or incidence of crime in a community. Crime Mapper statistics represent only those offences reported to police or which come to the attention of police. They can, therefore, be influenced by a number of factors, including victim reporting rates, the identification or detection of offences by police (in the case of ‘victimless’ crimes) and police interpretation and decision as to whether a crime has occurred. In addition, Crime Mapper does not include offences that are dealt with by way of expiation (e.g., speeding, littering, etc.). Please also see explanatory notes: http://www.ocsar.sa.gov.au/about2.html

  15. w

    Crime Mapper: Wakefield (DC) Local Government Area

    • data.wu.ac.at
    • data.gov.au
    html
    Updated Oct 27, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    South Australian Governments (2016). Crime Mapper: Wakefield (DC) Local Government Area [Dataset]. https://data.wu.ac.at/schema/data_gov_au/Yjc0OGUyMjMtYzQxYy00ZmQ5LWExMDItNGFhMGJmNjE2YTEx
    Explore at:
    html(77868.0)Available download formats
    Dataset updated
    Oct 27, 2016
    Dataset provided by
    South Australian Governments
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Description

    Crime Mapper is an online application that provides the geographic distribution of recorded crime across South Australia. Two units of measurement are reported: 1. Number of offences - provides a count of all offences listed on all incident reports recorded by South Australia Police . 2. Rate per 1,000 estimated resident population - provides the number of offences as a rate per 1,000 population residing in each given location. Offences are categorised as follows: • Offences against the person (homicide; major assault; other); • Sexual offences (rape; indecent assault; unlawful sexual intercourse; other); • Robbery and extortion offences (armed robbery; unarmed robbery; extortion); • Offences against property (serious criminal trespass/break and enter; fraud and misappropriation; receiving/illegal possession of stolen goods; larceny/illegal use of a motor vehicle; other larceny; larceny from shops; larceny from a motor vehicle; arson/explosives; property damage and environmental offences); • Offences against good order; • Drug offences (possess/use drugs; sell/trade drugs; produce/manufacture drugs; possess implement for drug use; other); • Driving offences (driving under the influence of alcohol/drugs; dangerous driving; driving licence offences; traffic offences; motor vehicle registration offences; other); or • Other offences. When using Crime Mapper it is important to understand that the statistics it contains may not provide an accurate measure of the true prevalence or incidence of crime in a community. Crime Mapper statistics represent only those offences reported to police or which come to the attention of police. They can, therefore, be influenced by a number of factors, including victim reporting rates, the identification or detection of offences by police (in the case of ‘victimless’ crimes) and police interpretation and decision as to whether a crime has occurred. In addition, Crime Mapper does not include offences that are dealt with by way of expiation (e.g., speeding, littering, etc.). Please also see explanatory notes: http://www.ocsar.sa.gov.au/about2.html

  16. o

    Uniform Crime Reporting Program Data: Offenses Known and Clearances by...

    • openicpsr.org
    Updated Jun 5, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jacob Kaplan (2017). Uniform Crime Reporting Program Data: Offenses Known and Clearances by Arrest, 1960-2016 [Dataset]. http://doi.org/10.3886/E100707V6
    Explore at:
    Dataset updated
    Jun 5, 2017
    Dataset provided by
    University of Pennsylvania
    Authors
    Jacob Kaplan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    1960 - 2016
    Area covered
    United States
    Description

    V6 release notes: Fix bug where Philadelphia Police Department had incorrect FIPS county code. V5 release notes: Changes the word "larceny" to "theft" in column names - eg. from "act_larceny" to "act_theft."Fixes bug where state abbrebation was NA for Washington D.C., Puerto Rico, Guam, and the Canal Zone.Fixes bug where officers_killed_by_accident was not appearing in yearly data. Note that 1979 does not have any officers killed (by felony or accident) or officers assaulted data.Adds aggravated assault columns to the monthly data. Aggravated assault is the sum of all assaults other than simple assault (assaults using gun, knife, hand/feet, and other weapon). Note that summing all crime columns to get a total crime count will double count aggravated assault as it is already the sum of existing columns. Reorder columns to put all month descriptors (e.g. "jan_month_included", "jan_card_1_type") before any crime data.Due to extremely irregular data in the unfounded columns for New Orleans (ORI = LANPD00) for years 2014-2016, I have change all unfounded column data for New Orleans for these years to NA. As an example, New Orleans reported about 45,000 unfounded total burglaries in 2016 (the 3rd highest they ever reported). This is 18 times largest than the number of actual total burglaries they reported that year (2,561) and nearly 8 times larger than the next largest reported unfounded total burglaries in any agency or year. Prior to 2014 there were no more than 10 unfounded total burglaries reported in New Orleans in any year. There were 10 obvious data entry errors in officers killed by felony/accident that I changed to NA.In 1974 the agency "Boston" (ORI = MA01301) reported 23 officers killed by accident during November.In 1978 the agency "Pittsburgh" (ORI = PAPPD00) reported 576 officers killed by accident during March.In 1978 the agency "Bronx Transit Authority" (ORI = NY06240) reported 56 officers killed by accident during April.In 1978 the agency "Bronx Transit Authority" (ORI = NY06240) reported 56 officers killed by accident during June.In 1978 the agency "Bronx Transit Authority" (ORI = NY06240) reported 56 officers killed by felony during April.In 1978 the agency "Bronx Transit Authority" (ORI = NY06240) reported 56 officers killed by felony during June.In 1978 the agency "Queens Transit Authority" (ORI = NY04040) reported 56 officers killed by accident during May.In 1978 the agency "Queens Transit Authority" (ORI = NY04040) reported 56 officers killed by felony during May.In 1996 the agency "Ruston" in Louisiana (ORI = LA03102) reported 30 officers killed by felony during September.In 1997 the agency "Washington University" in Missouri (ORI = MO0950E) reported 26 officers killed by felony during March.V4 release notes: Merges data with LEAIC data to add FIPS codes, census codes, agency type variables, and ORI9 variable.Makes all column names lowercase.Change some variable namesMakes values in character columns lowercase.Adds months_reported variable to yearly data.Combines monthly and yearly files into a single zip file (per data type).V3 release notes: fixes a bug in Version 2 where 1993 data did not properly deal with missing values, leading to enormous counts of crime being reported. Summary: This is a collection of Offenses Known and Clearances By Arrest data from 1960 to 2016. Each zip file contains monthly and yearly data files. The monthly files contain one data file per year (57 total, 1960-2016) as well as a codebook for each year. These files have been read into R using the ASCII and setup files from ICPSR (or from the FBI for 2016 data) using the package asciiSetupReader. The end of the zip folder's name says what data type (R, SPSS, SAS, Microsoft Excel CSV, Stata) the data is in. The files are lightly cleaned. What this means specifically is that column names and value labels are standardized. In the original data column names were different between years (e.g. the December burglaries cleared column is "DEC_TOT_CLR_BRGLRY_TOT" in 1975 and "DEC_TOT_CLR_BURG_TOTAL" in 1977). The data here have standardized columns so you can compare between years and combine years together. The same thing is done for values inside of columns. For example, the state column gave state names in some years, abbreviations in others. For the code uses to clean and read the data, please see my GitHub file h

  17. Data from: Uniform Crime Reports: Monthly Weapon-Specific Crime and Arrest...

    • catalog.data.gov
    • icpsr.umich.edu
    Updated Mar 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bureau of Justice Statistics (2025). Uniform Crime Reports: Monthly Weapon-Specific Crime and Arrest Time Series, 1975-1993 [National, State, and 12-City Data] [Dataset]. https://catalog.data.gov/dataset/uniform-crime-reports-monthly-weapon-specific-crime-and-arrest-time-series-1975-1993-natio-09efd
    Explore at:
    Dataset updated
    Mar 12, 2025
    Dataset provided by
    Bureau of Justice Statisticshttp://bjs.ojp.gov/
    Description

    These data were prepared in conjunction with a project using Bureau of Labor Statistics data (not provided with this collection) and the Federal Bureau of Investigation's Uniform Crime Reporting (UCR) Program data to examine the relationship between unemployment and violent crime. Three separate time-series data files were created as part of this project: a national time series (Part 1), a state time series (Part 2), and a time series of data for 12 selected cities: Baltimore, Buffalo, Chicago, Columbus, Detroit, Houston, Los Angeles, Newark, New York City, Paterson (New Jersey), and Philadelphia (Part 3). Each data file was constructed to include 82 monthly time series: 26 series containing the number of Part I (crime index) offenses known to police (excluding arson) by weapon used, 26 series of the number of offenses cleared by arrest or other exceptional means by weapon used in the offense, 26 series of the number of offenses cleared by arrest or other exceptional means for persons under 18 years of age by weapon used in the offense, a population estimate series, and three date indicator series. For the national and state data, agencies from the 50 states and Washington, DC, were included in the aggregated data file if they reported at least one month of information during the year. In addition, agencies that did not report their own data (and thus had no monthly observations on crime or arrests) were included to make the aggregated population estimate as close to Census estimates as possible. For the city time series, law enforcement agencies with jurisdiction over the 12 central cities were identified and the monthly data were extracted from each UCR annual file for each of the 12 agencies. The national time-series file contains 82 time series, the state file contains 4,083 time series, and the city file contains 963 time series, each with 228 monthly observations per time series. The unit of analysis is the month of observation. Monthly crime and clearance totals are provided for homicide, negligent manslaughter, total rape, forcible rape, attempted forcible rape, total robbery, firearm robbery, knife/cutting instrument robbery, other dangerous weapon robbery, strong-arm robbery, total assault, firearm assault, knife/cutting instrument assault, other dangerous weapon assault, simple nonaggravated assault, assaults with hands/fists/feet, total burglary, burglary with forcible entry, unlawful entry-no force, attempted forcible entry, larceny-theft, motor vehicle theft, auto theft, truck and bus theft, other vehicle theft, and grand total of all actual offenses.

  18. w

    Crime Mapper: Kingston (DC) Local Government Area

    • data.wu.ac.at
    • data.gov.au
    html
    Updated Oct 27, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    South Australian Governments (2016). Crime Mapper: Kingston (DC) Local Government Area [Dataset]. https://data.wu.ac.at/odso/data_gov_au/ZjdkMDNmY2MtNzJlMS00ZTJkLWEzYjAtMGViZGU5MjAxNzQx
    Explore at:
    html(77162.0)Available download formats
    Dataset updated
    Oct 27, 2016
    Dataset provided by
    South Australian Governments
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Description

    Crime Mapper is an online application that provides the geographic distribution of recorded crime across South Australia. Two units of measurement are reported: 1. Number of offences - provides a count of all offences listed on all incident reports recorded by South Australia Police . 2. Rate per 1,000 estimated resident population - provides the number of offences as a rate per 1,000 population residing in each given location. Offences are categorised as follows: • Offences against the person (homicide; major assault; other); • Sexual offences (rape; indecent assault; unlawful sexual intercourse; other); • Robbery and extortion offences (armed robbery; unarmed robbery; extortion); • Offences against property (serious criminal trespass/break and enter; fraud and misappropriation; receiving/illegal possession of stolen goods; larceny/illegal use of a motor vehicle; other larceny; larceny from shops; larceny from a motor vehicle; arson/explosives; property damage and environmental offences); • Offences against good order; • Drug offences (possess/use drugs; sell/trade drugs; produce/manufacture drugs; possess implement for drug use; other); • Driving offences (driving under the influence of alcohol/drugs; dangerous driving; driving licence offences; traffic offences; motor vehicle registration offences; other); or • Other offences. When using Crime Mapper it is important to understand that the statistics it contains may not provide an accurate measure of the true prevalence or incidence of crime in a community. Crime Mapper statistics represent only those offences reported to police or which come to the attention of police. They can, therefore, be influenced by a number of factors, including victim reporting rates, the identification or detection of offences by police (in the case of ‘victimless’ crimes) and police interpretation and decision as to whether a crime has occurred. In addition, Crime Mapper does not include offences that are dealt with by way of expiation (e.g., speeding, littering, etc.). Please also see explanatory notes: http://www.ocsar.sa.gov.au/about2.html

  19. d

    Crime Mapper: Robe (DC) Local Government Area

    • data.gov.au
    • data.wu.ac.at
    html
    Updated Jul 13, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Attorney-General's Department (2016). Crime Mapper: Robe (DC) Local Government Area [Dataset]. https://data.gov.au/dataset/a521bbf5-e65b-4b86-8047-fc2424c18f88
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Jul 13, 2016
    Dataset provided by
    Attorney-General's Departmenthttp://www.ag.gov.au/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Crime Mapper is an online application that provides the geographic distribution of recorded crime across South Australia. Two units of measurement are reported: 1. Number of offences - provides a …Show full descriptionCrime Mapper is an online application that provides the geographic distribution of recorded crime across South Australia. Two units of measurement are reported: 1. Number of offences - provides a count of all offences listed on all incident reports recorded by South Australia Police . 2. Rate per 1,000 estimated resident population - provides the number of offences as a rate per 1,000 population residing in each given location. Offences are categorised as follows: • Offences against the person (homicide; major assault; other); • Sexual offences (rape; indecent assault; unlawful sexual intercourse; other); • Robbery and extortion offences (armed robbery; unarmed robbery; extortion); • Offences against property (serious criminal trespass/break and enter; fraud and misappropriation; receiving/illegal possession of stolen goods; larceny/illegal use of a motor vehicle; other larceny; larceny from shops; larceny from a motor vehicle; arson/explosives; property damage and environmental offences); • Offences against good order; • Drug offences (possess/use drugs; sell/trade drugs; produce/manufacture drugs; possess implement for drug use; other); • Driving offences (driving under the influence of alcohol/drugs; dangerous driving; driving licence offences; traffic offences; motor vehicle registration offences; other); or • Other offences. When using Crime Mapper it is important to understand that the statistics it contains may not provide an accurate measure of the true prevalence or incidence of crime in a community. Crime Mapper statistics represent only those offences reported to police or which come to the attention of police. They can, therefore, be influenced by a number of factors, including victim reporting rates, the identification or detection of offences by police (in the case of ‘victimless’ crimes) and police interpretation and decision as to whether a crime has occurred. In addition, Crime Mapper does not include offences that are dealt with by way of expiation (e.g., speeding, littering, etc.). Please also see explanatory notes: http://www.ocsar.sa.gov.au/about2.html

  20. w

    Crime Mapper: Kimba (DC) Local Government Area

    • data.wu.ac.at
    html
    Updated Jul 14, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Attorney-General's Dept (2016). Crime Mapper: Kimba (DC) Local Government Area [Dataset]. https://data.wu.ac.at/schema/data_sa_gov_au/NzYyMzAwODAtMWI2Zi00MTlhLWFkYmEtOTljYzcyM2EyMzE0
    Explore at:
    html(76340.0)Available download formats
    Dataset updated
    Jul 14, 2016
    Dataset provided by
    Attorney-General's Dept
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Crime Mapper is an online application that provides the geographic distribution of recorded crime across South Australia. Two units of measurement are reported: 1. Number of offences - provides a count of all offences listed on all incident reports recorded by South Australia Police . 2. Rate per 1,000 estimated resident population - provides the number of offences as a rate per 1,000 population residing in each given location. Offences are categorised as follows: • Offences against the person (homicide; major assault; other); • Sexual offences (rape; indecent assault; unlawful sexual intercourse; other); • Robbery and extortion offences (armed robbery; unarmed robbery; extortion); • Offences against property (serious criminal trespass/break and enter; fraud and misappropriation; receiving/illegal possession of stolen goods; larceny/illegal use of a motor vehicle; other larceny; larceny from shops; larceny from a motor vehicle; arson/explosives; property damage and environmental offences); • Offences against good order; • Drug offences (possess/use drugs; sell/trade drugs; produce/manufacture drugs; possess implement for drug use; other); • Driving offences (driving under the influence of alcohol/drugs; dangerous driving; driving licence offences; traffic offences; motor vehicle registration offences; other); or • Other offences. When using Crime Mapper it is important to understand that the statistics it contains may not provide an accurate measure of the true prevalence or incidence of crime in a community. Crime Mapper statistics represent only those offences reported to police or which come to the attention of police. They can, therefore, be influenced by a number of factors, including victim reporting rates, the identification or detection of offences by police (in the case of ‘victimless’ crimes) and police interpretation and decision as to whether a crime has occurred. In addition, Crime Mapper does not include offences that are dealt with by way of expiation (e.g., speeding, littering, etc.). Please also see explanatory notes: http://www.ocsar.sa.gov.au/about2.html

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
City of Washington, DC (2025). Adult Arrests [Dataset]. https://catalog.data.gov/dataset/adult-arrests-28903

Adult Arrests

Explore at:
Dataset updated
Mar 11, 2025
Dataset provided by
City of Washington, DC
Description

The Metropolitan Police Department collects race and ethnicity data according to the United States Census Bureau standards (https://www.census.gov/topics/population/race/about.html). Hispanic, which was previously categorized under the Race field prior to August 2015, is now captured under Ethnicity. All records prior to August 2015 have been updated to “Unknown (Race), Hispanic (Ethnicity)”. Race, ethnicity and gender data are based on officer observation, which may or may not be accurate.MPD cannot release exact addresses to the general public unless proof of ownership or subpoena is submitted. The GeoX and GeoY values represent the block location (approximately 232 ft. radius) as of the date of the arrest and offense. Arrest and offense addresses that could not be geocoded are included as an “unknown” value.Arrestee age is calculated based on the number of days between the self-reported or verified date of birth (DOB) of the arrestee and the date of the arrest; DOB data may not be accurate if self-reported, and an arrestee may refuse to provide his or her date of birth. Due to the sensitive nature of juvenile data and to protect the arrestee’s confidentiality, any arrest records for defendants under the age of 18 or with missing age are excluded in this dataset.The Criminal Complaint Number (CCN) and arrest number have also been anonymized.This data may not match other arrest data requests that may have included all law enforcement agencies in the District or all arrest charges. Arrest totals are subject to change and may be different than MPD Annual Report totals or other publications due to inclusion of juvenile arrest summary, expungements, investigation updates, data quality audits, etc.

Search
Clear search
Close search
Google apps
Main menu