An interactive public crime mapping application providing DC residents and visitors easy-to-understand data visualizations of crime locations, types and trends across all eight wards. Crime Cards was created by the DC Metropolitan Police Department (MPD) and Office of the Chief Technology Officer (OCTO). Special thanks to the community members who participated in reviews with MPD Officers and IT staff, and those who joined us for the #SaferStrongerSmarterDC roundtable design review. All statistics presented in Crime Cards are based on preliminary DC Index crime data reported from 2009 to midnight of today’s date. They are compiled based on the date the offense was reported (Report Date) to MPD. The application displays two main crime categories: Violent Crime and Property Crime. Violent Crimes include homicide, sex abuse, assault with a dangerous weapon (ADW), and robbery. Violent crimes can be further searched by the weapon used. Property Crimes include burglary, motor vehicle theft, theft from vehicle, theft (other), and arson.CrimeCards collaboration between the Metropolitan Police Department (MPD), the Office of the Chief Technology Officer (OCTO), and community members who participated at the #SafterStrongerSmarterDC roundtable design review.
The dataset contains a subset of locations and attributes of incidents reported in the ASAP (Analytical Services Application) crime report database by the District of Columbia Metropolitan Police Department (MPD). Visit https://crimecards.dc.gov for more information. This data is shared via an automated process where addresses are geocoded to the District's Master Address Repository and assigned to the appropriate street block. Block locations for some crime points could not be automatically assigned resulting in 0,0 for x,y coordinates. These can be interactively assigned using the MAR Geocoder.On February 1 2020, the methodology of geography assignments of crime data was modified to increase accuracy. From January 1 2020 going forward, all crime data will have Ward, ANC, SMD, BID, Neighborhood Cluster, Voting Precinct, Block Group and Census Tract values calculated prior to, rather than after, anonymization to the block level. This change impacts approximately one percent of Ward assignments.
The dataset contains a subset of locations and attributes of incidents reported in the ASAP (Analytical Services Application) crime report database by the District of Columbia Metropolitan Police Department (MPD). Visit crimecards.dc.gov for more information. This data is shared via an automated process where addresses are geocoded to the District's Master Address Repository and assigned to the appropriate street block. Block locations for some crime points could not be automatically assigned resulting in 0,0 for x,y coordinates. These can be interactively assigned using the MAR Geocoder.On February 1 2020, the methodology of geography assignments of crime data was modified to increase accuracy. From January 1 2020 going forward, all crime data will have Ward, ANC, SMD, BID, Neighborhood Cluster, Voting Precinct, Block Group and Census Tract values calculated prior to, rather than after, anonymization to the block level. This change impacts approximately one percent of Ward assignments.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Washington by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Washington across both sexes and to determine which sex constitutes the majority.
Key observations
There is a slight majority of female population, with 52.39% of total population being female. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Washington Population by Race & Ethnicity. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Office of Gun Violence Prevention (OGVP) shares real-time gun violence data to increase government transparency, improve the public's awareness, and support community-based gun violence prevention and reduction partners. All District crime data is available through Crime Cards. The dashboards below focus on gun violence only. The data in these dashboards is updated daily at 7:40AM with the incidents from the day before. View data covering 7-Day Look-back of Gun Violence and Year-to-date Gun Violence.All statistics presented here are based on preliminary DC criminal code offense definitions. The data do not represent official statistics submitted to the FBI under the Uniform Crime Reporting program (UCR) or National Incident Based Reporting System (NIBRS). All preliminary offenses are coded based on DC criminal code and not the FBI offense classifications. Please understand that any comparisons between MPD preliminary data as published on this website and the official crime statistics published by the FBI under the Uniform Crime Reporting Program (UCR) are inaccurate and misleading. The MPD does not guarantee (either expressed or implied) the accuracy, completeness, timeliness, or correct sequencing of the information. The MPD will not be responsible for any error or omission, or for the use of, or the results obtained from the use of this information. Read complete data notes at buildingblocks.dc.gov/data.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Historical dataset of population level and growth rate for the Washington DC metro area from 1950 to 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Washington by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Washington. The dataset can be utilized to understand the population distribution of Washington by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Washington. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Washington.
Key observations
Largest age group (population): Male # 30-34 years (37,060) | Female # 25-29 years (40,335). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Washington Population by Gender. You can refer the same here
Employment, Commuting, Occupation, Income, Health Insurance, Poverty, and more. This service is updated annually with American Community Survey (ACS) 5-year data. Contact: District of Columbia, Office of Planning. Email: planning@dc.gov. Geography: District-wide. Current Vintage: 2019-2023. ACS Table(s): DP03. Data downloaded from: Census Bureau's API for American Community Survey. Date of API call: January 2, 2025. National Figures: data.census.gov. Please cite the Census and ACS when using this data. Data Note from the Census: Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables. Data Processing Notes: This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2020 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page. Data processed using R statistical package and ArcGIS Desktop. Margin of Error was not included in this layer but is available from the Census Bureau. Contact the Office of Planning for more information about obtaining Margin of Error values.
In 2023, the District of Columbia had the highest reported violent crime rate in the United States, with 1,150.9 violent crimes per 100,000 of the population. Maine had the lowest reported violent crime rate, with 102.5 offenses per 100,000 of the population. Life in the District The District of Columbia has seen a fluctuating population over the past few decades. Its population decreased throughout the 1990s, when its crime rate was at its peak, but has been steadily recovering since then. While unemployment in the District has also been falling, it still has had a high poverty rate in recent years. The gentrification of certain areas within Washington, D.C. over the past few years has made the contrast between rich and poor even greater and is also pushing crime out into the Maryland and Virginia suburbs around the District. Law enforcement in the U.S. Crime in the U.S. is trending downwards compared to years past, despite Americans feeling that crime is a problem in their country. In addition, the number of full-time law enforcement officers in the U.S. has increased recently, who, in keeping with the lower rate of crime, have also made fewer arrests than in years past.
District of Columbia boundary. The dataset is a polygon representing the District of Columbia boundary, created as part of the DC Geographic Information System (DC GIS) for the D.C. Office of the Chief Technology Officer (OCTO) and participating D.C. government agencies. The boundary was identified from public records and heads-up digitized using a combination of the 1995 orthophotographs, planimetric roads features, and the USGS digital raster graphic quad sheets, and 1999 planimetrics for the Potomac River boundary.Also see the District's Boundary Stone markers.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Age, Sex, Race, Ethnicity, Total Housing Units, and Voting Age Population. This service is updated annually with American Community Survey (ACS) 1-year data. Contact: District of Columbia, Office of Planning. Email: planning@dc.gov. Geography: District-wide. Current Vintage: 2023. ACS Table(s): DP05. Data downloaded from: Census Bureau's API for American Community Survey. Date of API call: January 3, 2025. National Figures: data.census.gov. Please cite the Census and ACS when using this data. Data Note from the Census: Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables. Data Processing Notes: This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2020 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page. Data processed using R statistical package and ArcGIS Desktop. Margin of Error was not included in this layer but is available from the Census Bureau. Contact the Office of Planning for more information about obtaining Margin of Error values.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Resident Population in Washington-Arlington-Alexandria, DC-VA-MD-WV (MSA) (WSHPOP) from 2000 to 2024 about DC, WV, Washington, MD, VA, residents, population, and USA.
Age, Sex, Race, Ethnicity, Total Housing Units, and Voting Age Population. This service is updated annually with American Community Survey (ACS) 5-year data. Contact: District of Columbia, Office of Planning. Email: planning@dc.gov. Geography: 2022 Wards (State Legislative Districts [Upper Chamber]). Current Vintage: 2019-2023. ACS Table(s): DP05. Data downloaded from: Census Bureau's API for American Community Survey. Date of API call: January 2, 2025. National Figures: data.census.gov. Please cite the Census and ACS when using this data. Data Note from the Census: Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables. Data Processing Notes: This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2020 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page. Data processed using R statistical package and ArcGIS Desktop. Margin of Error was not included in this layer but is available from the Census Bureau. Contact the Office of Planning for more information about obtaining Margin of Error values.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Washington population by age. The dataset can be utilized to understand the age distribution and demographics of Washington.
The dataset constitues the following three datasets
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Washington by race. It includes the population of Washington across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to understand the population distribution of Washington across relevant racial categories.
Key observations
The percent distribution of Washington population by race (across all racial categories recognized by the U.S. Census Bureau): 40.46% are white, 44.66% are Black or African American, 0.29% are American Indian and Alaska Native, 4.10% are Asian, 0.05% are Native Hawaiian and other Pacific Islander, 4.76% are some other race and 5.69% are multiracial.
https://i.neilsberg.com/ch/washington-dc-population-by-race.jpeg" alt="Washington population by race">
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Washington Population by Race & Ethnicity. You can refer the same here
In 2023, the population of the Washington-Arlington-Alexandria metropolitan area was about 6.3 million people. This was a slight increase from the previous year, when the population was about 6.26 million people.
Dashboard featuring statistics regarding race as a percentage of the overall population in Washington, DC. Data derived from ACS Race and Hispanic Origin Variables - Boundaries, which is a layer by Esri and is available on Living Atlas.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Resident Population in the District of Columbia (DCDIST5POP) from 1970 to 2024 about District of Columbia (county), DC, residents, population, and USA.
The District of Columbia offers several interactive online visualizations highlighting data and information from various fields of interest such as crime statistics, public school profiles, detailed property information and more. The web visualizations in this group present data coming from agencies across the Government of the District of Columbia. Click each to read a brief introduction and to access the site. This app is embedded in https://opendata.dc.gov/pages/dashboards.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Employed Persons in Washington-Arlington-Alexandria, DC-VA-MD-WV (MSA) (LAUMT114790000000005) from Jan 1990 to Jul 2025 about DC, Washington, WV, MD, VA, persons, household survey, employment, and USA.
An interactive public crime mapping application providing DC residents and visitors easy-to-understand data visualizations of crime locations, types and trends across all eight wards. Crime Cards was created by the DC Metropolitan Police Department (MPD) and Office of the Chief Technology Officer (OCTO). Special thanks to the community members who participated in reviews with MPD Officers and IT staff, and those who joined us for the #SaferStrongerSmarterDC roundtable design review. All statistics presented in Crime Cards are based on preliminary DC Index crime data reported from 2009 to midnight of today’s date. They are compiled based on the date the offense was reported (Report Date) to MPD. The application displays two main crime categories: Violent Crime and Property Crime. Violent Crimes include homicide, sex abuse, assault with a dangerous weapon (ADW), and robbery. Violent crimes can be further searched by the weapon used. Property Crimes include burglary, motor vehicle theft, theft from vehicle, theft (other), and arson.CrimeCards collaboration between the Metropolitan Police Department (MPD), the Office of the Chief Technology Officer (OCTO), and community members who participated at the #SafterStrongerSmarterDC roundtable design review.