Texas Department of Licensing and Regulation's (TDLR) Submitted Driller's Report Database. This database contains water well reports submitted to TDLR from February 2001 to present.
Geospatial data about Texas SDRDB well locations. Export to CAD, GIS, PDF, CSV and access via API.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The High Plains aquifer extends from approximately 32 to 44 degrees north latitude and from 96 degrees 30 minutes to 106 degrees west longitude. The aquifer underlies about 175,000 square miles in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. This digital data set contains water-level measurements from wells screened in the High Plains aquifer and measured in both predevelopment (about 1950) and for 2017. There were 2,928 wells measured in both predevelopment (about 1950) and 2017 as well as 63 wells located in New Mexico, which were measured in predevelopment and at least once between 2013 and 2016. These water-level measurements were used to map water-level changes, predevelopment (about 1950) to 2017. The map was reviewed for consistency with the relevant data at a scale of 1:1,000,000.
These layers contain Public Water Supply sites in the State of Texas. The locations were obtained by the Water Supply Division as recorded from various sources and built using the best existing location data available from these sources. Although some location errors were found and corrected in the process, some errors still remain. As resources allow, TCEQ intends to improve the accuracy of these locations to meet the standards set forth in the agency's Positional Data Policy.This layer was developed to support the TCEQ's Source Water Assessment and Protection Program (SWAP).
The Gonzales County Underground Water Conservation District (UWCD) Public Map includes a variety of layers containing well, aquifer, water quality, water level, reporting, and boundary information. Moreover, this map provides interactive tools such as the ability to conduct virtual aquifer bores within the district. Contact Email: admin@gcuwcd.org
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The High Plains aquifer extends from about 32 degrees to almost 44 degrees north latitude and from about 96 degrees 30 minutes to 106 degrees west longitude. The aquifer underlies about 175,000 square miles in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. This digital dataset is comprised of water-level measurements from 7,195 wells measured in both 2017 and 2019, which were used to map water-level changes, 2017 to 2019. The map was reviewed for consistency with the relevant data at a scale of 1:1,000,000.
The High Plains aquifer extends from south of about 32 degrees to almost 44 degrees north latitude and from about 96 degrees 30 minutes to 106 degrees west longitude. The aquifer underlies about 175,000 square miles in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. This digital data set is the supplemental water-level measurements from 1,897 wells located in Colorado, Kansas, Nebraska, Oklahoma, South Dakota, or Texas and measured in various time periods, which were used to historical water-level change values for predevelopment to 2011 to 2014 and approximate water-level change values from predevelopment to 2015 to substantiate the map of water-level changes, predevelopment (about 1950) to 2015. The water-level measurements and the calculated historical water-level change values are (1) 219 wells measured in predevelopment and in 2014, but not measured in 2015, which are used to calculate water-level change, predevelopment to 2014, (2) 135 wells measured in predevelopment and in 2013, but not measured in 2014 or 2015, which are used to calculate water-level change, predevelopment to 2013, (3) 94 wells measured in predevelopment and in 2012, but not measured in 2013, 2014, or 2015, which are used to calculate water-level change, predevelopment to 2012, and (4) 57 wells measured in predevelopment and in 2011, but not measured in 2012, 2013, 2014, or 2015, which are used to calculate water-level change, predevelopment to 2011. One of two sets of water-level measurements used to calculate an approximate water-level-change values from predevelopment to 2015 are from 302 wells that are located in the areas where water level declines from predevelopment to 1980 (Luckey and others, 1981; Cederstrand and Becker, 1999) were 50 feet or more and were measured in 1980 and in 2015, but not measured in the predevelopment period. For these wells, approximate water-level change is calculate as the beginning contour interval from the map of water-level change, predevelopment to 1980 plus water-level change from 1980 to 2015. The second set of water-level measurements used to calculate approximate water-level change are from 1,090 wells that were measured on or before 6/15/1978 (termed post-development) and in 2015, but not in the predevelopment period. For these wells, approximate water-level change, predevelopment to 2015, is calculate as the water level, 2015, minus water level, post-development.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This USGS data release consists of two geospatial raster datasets and three geospatial vector data sets of water-level data. The data sets include a raster (A1) representing water-level change from predevelopment (about 1950) to 2015; the primary vector dataset (A2) of water-level-change data of static or near-static water levels in wells measured in predevelopment and 2015 (for wells in Colorado, Kansas, Nebraska, Oklahoma, South Dakota, and Texas) and in wells measured in predevelopment and the latest available static or near-static water level from 2011 to 2015 (for wells in New Mexico and Wyoming), a supplemental vector dataset (A3) of water-level data used to manually substantiate the raster of water-level change from predevelopment (about 1950) to 2015, a raster (B1) representing water-level change from 2013 to 2015; and the vector dataset (B2) of water-level-change data for wells measured in 2013 and 2015. The supplemental vector data sets of water-level-change data used to ...
description: The High Plains aquifer extends from south of about 32 degrees to almost 44 degrees north latitude and from about 96 degrees 30 minutes to 106 degrees west longitude. The aquifer underlies about 175,000 square miles in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. This digital data set is the water-level measurements from 7,526 wells measured in both 2013 and 2015, which was used to map water-level changes, 2013 to 2015. The map was reviewed for consistency with the relevant data at a scale of 1:1,000,000.; abstract: The High Plains aquifer extends from south of about 32 degrees to almost 44 degrees north latitude and from about 96 degrees 30 minutes to 106 degrees west longitude. The aquifer underlies about 175,000 square miles in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. This digital data set is the water-level measurements from 7,526 wells measured in both 2013 and 2015, which was used to map water-level changes, 2013 to 2015. The map was reviewed for consistency with the relevant data at a scale of 1:1,000,000.
The Digital Geologic-GIS Map of San Antonio Missions National Historical Park and Vicinity, Texas is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (saan_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (saan_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (saan_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (saan_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (saan_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (saan_geology_metadata_faq.pdf). Please read the saan_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Texas Bureau of Economic Geology, University of Texas at Austin and Texas Water Development Board. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (saan_geology_metadata.txt or saan_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:250,000 and United States National Map Accuracy Standards features are within (horizontally) 127 meters or 416.7 feet of their actual _location as presented by this dataset. Users of this data should thus not assume the _location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Link to the ScienceBase Item Summary page for the item described by this metadata record. Service Protocol: Link to the ScienceBase Item Summary page for the item described by this metadata record. Application Profile: Web Browser. Link Function: information
This resource links to the Texas Address and Base Layers Story Map (Esri ArcGIS Online web app) [1] that provides a graphical overview and set of interactive maps to download Texas statewide address points, as well as contextual map layers including roads, rail, bridges, rivers, dams, low water crossings, stream gauges, and others. The addresses were compiled over the period from June 2016 to December 2017 by the Center for Water and the Environment (CWE) at the University of Texas at Austin, with guidance and funding from the Texas Division of Emergency Management (TDEM). These addresses are used by TDEM to help anticipate potential impacts of serious weather and flooding events statewide.
For detailed compilation notes, see [2]. Contextual map layers will be found at [3] and [4].
References [1] Texas Address and Base Layers story map [https://arcg.is/19PWu1] [2] Texas-Harvey Basemap - Addresses and Boundaries [https://www.hydroshare.org/resource/d2bab32e7c1d4d55b8cba7221e51b02d/] [3] Texas Basemap - Hydrology Map Data [https://www.hydroshare.org/resource/5efdb83e96da49c5aafe5159791e0ecc/] [4] Texas Basemap - Transportation Map Data [https://www.hydroshare.org/resource/106b38ab28b54f09a2c7a11b91269192/]
The High Plains aquifer extends from south of about 32 degrees to almost 44 degrees north latitude and from about 96 degrees 30 minutes to 106 degrees west longitude. The aquifer underlies about 175,000 square miles in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. This digital data set is the water-level measurements from 7,526 wells measured in both 2013 and 2015, which was used to map water-level changes, 2013 to 2015. The map was reviewed for consistency with the relevant data at a scale of 1:1,000,000.
This resource contains statewide networks of roadways, railroads, bridges, and low-water crossings, for Texas only.
Roadways detail: The Transportation Planning and Programming (TPP) Division of the Texas Department of Transportation (TxDOT) maintains a spatial dataset of roadway polylines for planning and asset inventory purposes, as well as for visualization and general mapping. M values are stored in the lines as DFOs (Distance From Origin), and provide the framework for managing roadway assets using linear referencing. This dataset covers the state of Texas and includes on-systems routes (those that TxDOT maintains), such as interstate highways, U.S. highways, state highways, and farm and ranch roads, as well as off-system routes, such as county roads and local streets. Date valid as of: 12/31/2014. Publish Date: 05/01/2015. Update Frequency: Quarterly.
Bridges detail: As with the roadways, both on-system and off-system bridges are maintained in separate datasets (54,844 total bridges, 36,007 on-system and 18,837 off-system). Bridges have numerous useful attributes, see coding guide [1] for documentation. One such attribute identifies structures that cross water: the second digit of Item 42 “Type of Service”. If the second digit is between 5 and 9 (inclusive) then the structure is over water. The bridges datasets are valid as of December 2016.
The roadways and bridges datasets contained here were obtained directly from TxDOT through personal correspondence. An additional transportation data resource is the Texas Natural Resources Information System (TNRIS) [3]. The railroads and low-water crossings were obtained through TNRIS.
November 2023 updates: in the years since this data archive was first published, TxDOT has developed an open data portal for downloading their roadway inventory and other datasets. Also, in 2023 TNRIS was renamed as the Texas Geographic Information Office (TxGIO). Their datahub [3] is continually evolving, but still has the tnris.org domain for now. We are not updating any of the basemap data in the contents list below, which was current at the time of Hurricane Harvey.
References [1] TxDOT Bridges Coding Guide (download below) [2] TxDOT Open Data Portal [https://gis-txdot.opendata.arcgis.com/] [3] TNRIS/TxGIO data downloads [https://data.tnris.org/]
The High Plains aquifer extends from approximately 32 to 44 degrees north latitude and 96 degrees 30 minutes to 106 degrees west longitude. The aquifer underlies about 175,000 square miles in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. This dataset consists of a raster of estimated water-level changes for the High Plains aquifer from pre-irritation season, 2015 to pre-irritation season 2017. This digital dataset was created using water-level measurements from 7,699 wells measured in both 2015 and 2017. The map was reviewed for consistency with the relevant data at a scale of 1:1,000,000.
Link to the ScienceBase Item Summary page for the item described by this metadata record. Service Protocol: Link to the ScienceBase Item Summary page for the item described by this metadata record. Application Profile: Web Browser. Link Function: information
The agricultural economy of Union County in northeastern New Mexico is highly dependent on groundwater. Ongoing drought, large new groundwater appropriations both within the county and in adjacent parts of Texas, and large water level declines in wells have led to concern amongst county residents over groundwater supplies. This report documents the finding of a hydrogeology study begun in 2010 to better understand the aquifers utilized in east-central Union County. The study covers 650 square miles and extends from north of Clayton to south of Sedan, and east to the state line. The study was jointly sponsored by Northeastern Soil and Water Conservation District (NESWCD) and the Aquifer Mapping Program of the New Mexico Bureau of Geology and Mineral Resources.
The goals of the study were to refine the existing geologic map of the area, describe the geologic framework of the aquifers that are utilized, describe present and historic water levels and trends over time, and utilize these data with geochemistry and age-dating techniques to understand the occurrence, age, and flowpaths of groundwater, and to identify the locations and processes of groundwater recharge.
A natural consequence of groundwater withdrawals is the removal of water from subsurface storage, but the overall rates and magnitude of groundwater depletion in the United States are not well characterized. This study evaluates long-term cumulative depletion volumes in 40 separate aquifers or areas and one land use category in the United States, bringing together information from the literature and from new analyses. Depletion is directly calculated using calibrated groundwater models, analytical approaches, or volumetric budget analyses for multiple aquifer systems. Estimated groundwater depletion in the United States during 1900–2008 totals approximately 1,000 cubic kilometers (km3). Furthermore, the rate of groundwater depletion has increased markedly since about 1950, with maximum rates occurring during the most recent period (2000–2008) when the depletion rate averaged almost 25 km3 per year (compared to 9.2 km3 per year averaged over the 1900–2008 timeframe).
This data set consists of digitized water-level elevation contours for the Antlers aquifer in southeastern Oklahoma. The Early Cretaceous-age Antlers Sandstone is an important source of water in an area that underlies about 4,400-square miles of all or part of Atoka, Bryan, Carter, Choctaw, Johnston, Love, Marshall, McCurtain, and Pushmataha Counties. The Antlers aquifer consists of sand, clay, conglomerate, and limestone in the outcrop area. The upper part of the Antlers aquifer consists of beds of sand, poorly cemented sandstone, sandy shale, silt, and clay. The Antlers aquifer is unconfined where it outcrops in about an 1,800-square-mile area. The water-level elevation contours were digitized from a mylar map at a scale of 1:250,000 that was used to prepare a final map published at a scale of 1:500,000 in a ground-water modeling report. Water levels measured in wells in 1970 were used to construct the map. The water-level elevation contours for the Antlers aquifer in Texas are not included in this data set. The digital data set contains water-level elevations that range from 300 feet (in the east) to 900 feet (in the west) above sea level or the National Geodetic Vertical Datum of 1929.
The Edwards and Trinity aquifers are major sources of water in south-central Texas and are both classified as major aquifers by the State of Texas. The population in Hays and Comal Counties is rapidly growing, increasing demands on the area's water resources. To help effectively manage the water resources in the area, refined maps and descriptions of the geologic structures and hydrostratigraphic units (HSUs) of the aquifers are needed. This digital map database presents the detailed 1:24,000-scale bedrock hydrostratigraphic map as well as names and descriptions of the geologic and hydrostratigraphic units of the Driftwood and Wimberley 7.5-minute quadrangles in Hays and Comal Counties, Tex.
Texas Department of Licensing and Regulation's (TDLR) Submitted Driller's Report Database. This database contains water well reports submitted to TDLR from February 2001 to present.