The National Waterway Network is a comprehensive network database of the nation's navigable waterways. The data set covers the 48 contiguous states plus the District of Columbia, Hawaii, Alaska, Puerto Rico and water links between. The nominal scale of the dataset varies with the source material. The majority of the information is at 1:100,000 with larger scales used in harbor/bay/port areas and smaller scales used in open waters.
© The National Waterway Network was created on behalf of the Bureau of Transportation Statistics, the U.S. Army Corps of Engineers, the U.S. Bureau of Census, and the U.S. Coast Guard by Vanderbilt University and Oak Ridge National Laboratory. Additional agencies with input into network development include Volpe National Transportation Systems Center, Maritime Administration, Military Traffic Management Command, Tennessee Valley Authority, U.S.Environmental Protection Agency, and the Federal Railroad Administration. This layer is sourced from maps.bts.dot.gov.
The National Waterway Network (NTAD 2015) is a comprehensive network database of the nation's navigable waterways. The data set covers the 48 contiguous states plus the District of Columbia, Hawaii, Alaska, Puerto Rico and water links between. The nominal scale of the dataset varies with the source material. The majority of the information is at 1:100,000 with larger scales used in harbor/bay/port areas and smaller scales used in open waters.
© The National Waterway Network was created on behalf of the Bureau of Transportation Statistics, the U.S. Army Corps of Engineers, the U.S. Bureau of Census, and the U.S. Coast Guard by Vanderbilt University and Oak Ridge National Laboratory. Additional agencies with input into network development include Volpe National Transportation Systems Center, Maritime Administration, Military Traffic Management Command, Tennessee Valley Authority, U.S.Environmental Protection Agency, and the Federal Railroad Administration.
The National Waterway Network (NWN) is a geographic database of navigable waterways and channels in and around the United States, for analytical studies of navigation performance, for compiling commodity flow statistics, and for mapping purposes. The NWN is comprised of a link database and a node database. Links are line strings, which consist of beginning and end points (nodes) with intermediate vertices (shape points). Links represent either actual shipping lanes (i.e., channels, Intracoastal Waterways, sea lanes, rivers) or serve as representative paths in open water (where no defined shipping paths exist). Nodes may represent physical entities such as river confluence's, ports/facilities, and intermodal terminals, USACE nodes, or may be inserted for analytical purposes (i.e., to facilitate routing).
The Navigable Waterway Network Lines dataset is periodically updated by the United States Army Corp of Engineers (USACE) and is part of the U.S. Department of Transportation (USDOT)/Bureau of Transportation Statistics (BTS) National Transportation Atlas Database (NTAD). The National Waterway Network (Lines) is a comprehensive network database of the Nation's navigable waterways. The dataset covers the 48 contiguous states plus the District of Columbia, Hawaii, Alaska, Puerto Rico and water links between. It consists of a line feature class of the National Waterway Network (NWN), which is based on a route feature class for the NWN update regions (“1†through “7†, as well as the open ocean region “0†) and route event table with linear referencing system measures for NWN links. This dataset is a feature class with associated measures (in miles) that are used for finding distances, locating features, and displaying route event layers. It was exported from this route event layer. The nominal scale of the dataset varies with the source material. The majority of the information is at 1:100,000 with larger scales used in harbor/bay/port areas and smaller scales used in open waters. These data could be used for analytical studies of waterway performance, for compiling commodity flow statistics, and for mapping purposes. A data dictionary, or other source of attribute information, is accessible at https://doi.org/10.21949/1529053
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
This feature layer provides access to OpenStreetMap (OSM) waterways data for South America, which is updated every 15 minutes with the latest edits. This hosted feature layer view is referencing a hosted feature layer of OSM line (way) data in ArcGIS Online that is updated with minutely diffs from the OSM planet file. This feature layer view includes waterway features defined as a query against the hosted feature layer (i.e. waterway is not blank).In OSM, a waterway describes rivers, streams and ditches with a flow of water from one place to another. These features are identified with a waterway tag. There are hundreds of different tag values for waterway used in the OSM database. In this feature layer, unique symbols are used for several of the most popular waterway types, while lesser used types are grouped in an "other" category.Zoom in to large scales (e.g. City level or 1:80k scale) to see the waterway features display. You can click on a feature to get the name of the waterway (if available). The name of the waterway will display by default at large scales (e.g. Street level of 1:5k scale). Labels can be turned off in your map if you prefer.Create New LayerIf you would like to create a more focused version of this waterway layer displaying just one or two waterway types, you can do that easily! Just add the layer to a map, copy the layer in the content window, add a filter to the new layer (e.g. waterway is dam), rename the layer as appropriate, and save layer. You can also change the layer symbols or popup if you like. Esri may publish a few such layers (e.g. streams and rivers) that are ready to use, but not for every type of waterway.Important Note: if you do create a new layer, it should be provided under the same Terms of Use and include the same Credits as this layer. You can copy and paste the Terms of Use and Credits info below in the new Item page as needed.
Four digital water-surface profile maps for a 14-mile reach of the Mississippi River near Prairie Island in Welch, Minnesota from the confluence of the St. Croix River at Prescott, Wisconsin to upstream of the United States Army Corps of Engineers (USACE) Lock and Dam No. 3 in Welch, Minnesota, were created by the U.S. Geological Survey (USGS) in cooperation with the Prairie Island Indian Community. The water-surface profile maps depict estimates of the areal extent and depth of inundation corresponding to selected water levels (stages) at the USGS streamgage Mississippi River at Prescott, Wisconsin (USGS station number 05344500). Current conditions for estimating near-real-time areas of water inundation by use of USGS streamgage information may be obtained on the internet at http://waterdata.usgs.gov/. Water-surface profiles were computed for the stream reach using HEC-GeoRAS software by means of a one-dimensional step-backwater HEC-RAS hydraulic model using the steady-state flow computation option. The hydraulic model used in this study was previously created by the USACE . The original hydraulic model previously created extended beyond the 14-mile reach used in this study. After obtaining the hydraulic model from USACE, the HEC-RAS model was calibrated by using the most current stage-discharge relations at the USGS streamgage Mississippi River at Prescott, Wisconsin (USGS station number 05344500). The hydraulic model was then used to determine four water-surface profiles for flood stages referenced to 37.00, 39.00, 40.00, and 41.00-feet of stage at the USGS streamgage on the Mississippi River at Prescott, Wisconsin (USGS station number 05344500). The simulated water-surface profiles were then combined with a digital elevation model (DEM, derived from light detection and ranging (LiDAR) in Geographic Information System (GIS) data having a 0.35-foot vertical and 1.97-foot root mean square error horizontal resolution) in order to delineate the area inundated at each stage. The calibrated hydraulic model used to produce digital water-surface profile maps near Prairie Island, as part of the associated report, is documented in the U.S. Geological Survey Scientific Investigations Report 2021-5018 (https://doi.org/10.3133/ sir20215018). The data provided in this data release contains three zip files: 1) MissRiverPI_DepthGrids.zip, 2) MissRiverPI_InundationLayers.zip, and 3) ModelArchive.zip. The MissRiverPI_DepthGrids.zip and MissRiverPI_InundationLayers.zip files contain model output water-surface profile maps as shapefiles (.shp) and Keyhole Markup Language files (.kmz) that can be opened using Esri GIS systems (.shp files) or Google Earth (.kmz files), while the ModelArchive.zip contains model inputs, outputs, and calibration data used in creating the water-surface profiles maps.
USA Detailed Water Bodies represents the major lakes, reservoirs, large rivers, lagoons, and estuaries in the United States. To download the data for this layer as a layer package for use in ArcGIS desktop applications, refer to USA Detailed Water Bodies.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
These two data-sets contain potentially navigable rivers for small and medium-sized boats in South-America depending on the topography, rainfall and potential evapotranspiration. Hence, it is an approximation of the location of navigable rivers, not an actual map of hidroways. Navigability is defined by the extent of a river which in this case (1) for small boats accounts to ~5-15 meters minimum extent and (2) for medium-sized boats ~30-40m meters minimum extent. The model data was parametrized and validated with land-cover data from high-resolution satellite images. Please see the full description of how the data-sets was created in the attached PDF File.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Named Waterbody is a 1:24,000-scale, polygon and line feature-based layer that includes all named waterbodies depicted on the U.S. Geological Survey (USGS) 7.5 minute topographic quadrangle maps for the State of Connecticut. This layer only includes features located in Connecticut. Named Waterbody features include water, dams, flow connectors, aqueducts, canals, ditches, shorelines, and islands. The layer does not include the marsh areas, tidal flats, rocks, shoals, or channels typically shown on USGS 7.5 minute topographic quadrangle maps. However, the layer includes linear (flow) connector features that fill in gaps between river and stream features where water passes through marshes or underground through pipelines and tunnels. Note that connectors represent general pathways and do not represent the exact location or orientation of actual underground pipelines, tunnels, aqueducts, etc. The Named Waterbody layer is comprised of polygon and line features. Polygon features represent areas of water for rivers, streams, brooks, reservoirs, lakes, ponds, bays, coves, and harbors. Polygon features also depict related information such as dams and islands. Line features represent single-line rivers and streams, flow connectors, aqueducts, canals, and ditches. Line features also enclose all polygon features in the form of shorelines, dams, and closure lines separating adjacent water features. The Named Waterbody layer is based on information from USGS topographic quadrangle maps published between 1969 and 1984 so it does not depict conditions at any one particular point in time. Also, the layer does not reflect recent changes with the course of streams or location of shorelines impacted by natural events or changes in development since the time the USGS 7.5 minute topographic quadrangle maps were published. Attribute information is comprised of codes to identify waterbody features by type, cartographically represent (symbolize) waterbody features on a map, select waterbodies appropriate to display at different map scales, identify individual waterbodies on a map by name, and describe waterbody feature area and length. The names assigned to individual waterbodies are based on information published on the USGS 7.5 minute topographic quadrangle maps or other state and local maps. The Named Waterbody layer does not include bathymetric, stream gradient, water flow, water quality, or biological habitat information. Derived from the Hydrography layer, the Named Waterbody layer was originally published in 1999. The 2005 edition includes the same water features published in 1999, however some attribute information has been slightly modified and made easier to use. Also, the 2005 edition corrects previously undetected attribute coding errors and includes the flow connector features. Connecticut Named Waterbody Polygon includes the polygon features of a layer named Named Waterbody. Named Waterbody is a 1:24,000-scale, polygon and line feature-based layer that includes all named waterbodies depicted on the U.S. Geological Survey (USGS) 7.5 minute topographic quadrangle maps for the State of Connecticut. This layer only includes features located in Connecticut. Named Waterbody features include water, dams, flow connectors, aqueducts, canals, ditches, shorelines, and islands. The layer does not include the marsh areas, tidal flats, rocks, shoals, or channels typically shown on USGS 7.5 minute topographic quadrangle maps. However, the layer includes linear (flow) connector features that fill in gaps between river and stream features where water passes through marshes or underground through pipelines and tunnels. Note that connectors represent general pathways and do not represent the exact location or orientation of actual underground pipelines, tunnels, aqueducts, etc. The Named Waterbody layer is comprised of polygon and line features. Polygon features represent areas of water for rivers, streams, brooks, reservoirs, lakes, ponds, bays, coves, and harbors. Polygon features also depict related information such as dams and islands. Line features represent single-line rivers and streams, flow connectors, aqueducts, canals, and ditches. Line features also enclose all polygon features in the form of shorelines, dams, and closure lines separating adjacent water features. The Named Waterbody layer is based on information from USGS topographic quadrangle maps published between 1969 and 1984 so it does not depict conditions at any one particular point in time. Also, the layer does not reflect recent changes with the course of streams or location of shorelines impacted by natural events or changes in development since the time the USGS 7.5 minute topographic quadrangle maps were published. Attribute information is comprised of codes to identify waterbody features by type, cartographically represent (symbolize) waterbody features on a map, select waterbodies appropriate to display at different map scales, identify individual waterbodies on a map by name, and describe waterbody feature area and length. The names assigned to individual waterbodies are based on information published on the USGS 7.5 minute topographic quadrangle maps or other state and local maps. The Named Waterbody layer does not include bathymetric, stream gradient, water flow, water quality, or biological habitat information. Derived from the Hydrography layer, the Named Waterbody layer was originally published in 1999. The 2005 edition includes the same water features published in 1999, however some attribute information has been slightly modified and made easier to use. Also, the 2005 edition corrects previously undetected attribute coding errors and includes the flow connector features.
Heavy rainfall occurred across Louisiana during March 8-19, 2016, as a result of a massive, slow-moving southward dip in the jet stream, which moved eastward across Mexico, then neared the Gulf Coast, funneling deep tropical moisture into parts of the Gulf States and the Mississippi River Valley. The storm caused major flooding in north-central and southeastern Louisiana. Digital flood-inundation maps for a 4.3-mile reach within the community of Monroe near Black Bayou in Ouachita Parish, LA was created by the U.S. Geological Survey (USGS) in cooperation with Federal Emergency Management Agency (FEMA) to support response and recovery operations following a March 8-19, 2016 flood event. The inundation maps depict estimates of the areal extent and depth of flooding corresponding to 4 high-water marks (HWM) identified and surveyed by the USGS following the flood event.
Heavy rainfall occurred across Louisiana during March 8-19, 2016, as a result of a massive, slow-moving southward dip in the jet stream, which moved eastward across Mexico, then neared the Gulf Coast, funneling deep tropical moisture into parts of the Gulf States and the Mississippi River Valley. The storm caused major flooding in north-central and southeastern Louisiana. Digital flood-inundation maps for a 16-mile reach within the community of Merryville near the Sabine River in Beauregard and Vernon Parishes, LA and along the Texas border was created by the U.S. Geological Survey (USGS) in cooperation with Federal Emergency Management Agency (FEMA) to support response and recovery operations following a March 8-19, 2016 flood event. The inundation maps depict estimates of the areal extent and depth of flooding corresponding to 7 high-water marks (HWM) identified and surveyed by the USGS following the flood event.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The Watershed Boundary Dataset (WBD) from The National Map (TNM) defines the perimeter of drainage areas formed by the terrain and other landscape characteristics. The drainage areas are nested within each other so that a large drainage area, such as the Upper Mississippi River, is composed of multiple smaller drainage areas, such as the Wisconsin River. Each of these smaller areas can further be subdivided into smaller and smaller drainage areas. The WBD uses six different levels in this hierarchy, with the smallest averaging about 30,000 acres. The WBD is made up of polygons nested into six levels of data respectively defined by Regions, Subregions, Basins, Subbasins, Watersheds, and Subwatersheds. For additional information on the WBD, go to https://nhd.usgs.gov/wbd.html. The USGS National Hydrography Dataset (NHD) service is a companion dataset to the WBD. The NHD is a comprehensive set of digital spatial data that encodes information about naturally occurring and constructed bodies of surface water (lakes, ponds, and reservoirs), paths through which water flows (canals, ditches, streams, and rivers), and related entities such as point features (springs, wells, stream gages, and dams). The information encoded about these features includes classification and other characteristics, delineation, geographic name, position and related measures, a "reach code" through which other information can be related to the NHD, and the direction of water flow. The network of reach codes delineating water and transported material flow allows users to trace movement in upstream and downstream directions. In addition to this geographic information, the dataset contains metadata that supports the exchange of future updates and improvements to the data. The NHD is available nationwide in two seamless datasets, one based on 1:24,000-scale maps and referred to as high resolution NHD, and the other based on 1:100,000-scale maps and referred to as medium resolution NHD. Additional selected areas in the United States are available based on larger scales, such as 1:5,000-scale or greater, and referred to as local resolution NHD. For more information on the NHD, go to https://nhd.usgs.gov/index.html. Hydrography data from The National Map supports many applications, such as making maps, geocoding observations, flow modeling, data maintenance, and stewardship. Hydrography data is commonly combined with other data themes, such as boundaries, elevation, structures, and transportation, to produce general reference base maps. The National Map viewer allows free downloads of public domain WBD and NHD data in either Esri File or Personal Geodatabase, or Shapefile formats. The Watershed Boundary Dataset is being developed under the leadership of the Subcommittee on Spatial Water Data, which is part of the Advisory Committee on Water Information (ACWI) and the Federal Geographic Data Committee (FGDC). The USDA Natural Resources Conservation Service (NRCS), along with many other federal agencies and national associations, have representatives on the Subcommittee on Spatial Water Data. As watershed boundary geographic information systems (GIS) coverages are completed, statewide and national data layers will be made available via the Geospatial Data Gateway to everyone, including federal, state, local government agencies, researchers, private companies, utilities, environmental groups, and concerned citizens. The database will assist in planning and describing water use and related land use activities. Resources in this dataset:Resource Title: Watershed Boundary Dataset (WBD). File Name: Web Page, url: https://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/water/watersheds/dataset/?cid=nrcs143_021630 Web site for the Watershed Boundary Dataset (WBD), including links to:
Review Data Availability (Status Maps)
Obtain Data by State, County, or Other Area
Obtain Seamless National Data offsite link image
Geospatial Data Tools
National Technical and State Coordinators
Information about WBD dataset
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Heavy rainfall occurred across Louisiana during March 8-19, 2016, as a result of a massive, slow-moving southward dip in the jet stream, which moved eastward across Mexico, then neared the Gulf Coast, funneling deep tropical moisture into parts of the Gulf States and the Mississippi River Valley. The storm caused major flooding in north-central and southeastern Louisiana. Digital flood-inundation maps for a 28-mile reach within the communities of Port Vincent, French Settlement, and Maurepas near the Amite River in Livingston and Ascension Parishes, LA was created by the U.S. Geological Survey (USGS) in cooperation with Federal Emergency Management Agency (FEMA) to support response and recovery operations following a March 8-19, 2016 flood event. The inundation maps depict estimates of the areal extent and depth of flooding corresponding to 7 high-water marks (HWM) identified and surveyed by the USGS following the flood event.
No comments recorded for comment period (April 17 to May 16, 2023)Currently, the Lolo National Forest is looking for public input to help inform the preliminary draft wild and scenic river inventory. The Forest is using the Talking Points Collaborative Map to facilitate this effort.The Lolo National Forest is seeking input on (Step 1) the preliminary inventory of all named, free-flowing rivers1. Are there any named, free-flowing rivers or streams missing from the inventory? Help us make sure that this comprehensive inventory is complete!2. Is there a stream included in the inventory that has impoundments, diversions, or other impediments to its natural flow? Describe the location and type of the structure that impacts the stream’s free-flowing nature.3. Is there a stream included in the inventory that has impoundments, diversions, or other impediments to its natural flow that should be excluded from moving into the eligibility evaluation? Describe the location and type of the structure that impacts the stream’s free-flowing nature.The Forest is also looking for input on the draft Evaluation Framework and Outstandingly Remarkable Criteria (Step 2).1. Are there modifications needed to specific ORV criteria currently included in the evaluation framework?2. Should the region of comparison be expanded or compressed or modified for a specific ORV category?3. Are there any additional ORV criteria that should be included in the “Other Resources” section? If so, WhyThis input will be used as the foundation for the next steps in the process.
The map consists of ESRI Shapefiles of the Usa River basin, Russia, including Lek-Vorkuta and Bolshaya Rogovaya. There are four data layers in the data set: a base map layer, a permafrost layer, and two key (permafrost) areas. Each data layer comprises several sub-layers. The map is based on a UTM 41 projection with the WGS 1984 spheroid. Parameters include permafrost temperature and degree of continuity; permafrost temperature classes, lithology, and stratigraphy; thermokarst, pingos, mass ground ice, and topography, lakes, large rivers (in streams), rivers, and watershed boundary. Data are available via ftp.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Waterway Network This National Geospatial Data Asset (NGDA) dataset, shared as a United States Army Corps of Engineers (USACE) feature layer, displays national navigable waterway routes. Per USACE, “The National Waterway Network (NWN) is a geographic database of navigable waterways and channels in and around the United States, for analytical studies of navigation performance, for compiling commodity flow statistics, and for mapping purposes.” St Croix River Data currency: Current federal service (Waterway Network)NGDAID: 153 (Navigable Waterway Routes (National) - National Geospatial Data Asset (NGDA) Waterway Lines)For more information, please visit: Definition of Navigable Waters of the USSupport documentation: Navigable Waterway Network LinesFor feedback, please contact: Esri_US_Federal_Data@esri.com NGDA Theme Community This data set is part of the NGDA Transportation Theme Community. Per the Federal Geospatial Data Committee (FGDC), Transportation is defined as the "means and aids for conveying persons and/or goods. The transportation system includes both physical and non-physical components related to all modes of travel that allow the movement of goods and people between locations". For other NGDA Content: Esri Federal Datasets
A point feature class representing the random site selections within high order streams, and large rivers, comprising the high order stream and large river sample frames from the earliest to the most recent Status Network monitoring cycle. Refer to https://floridadep.gov/DEAR/Watershed-Monitoring-Section for more information on the Status monitoring network.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Since its formation, the Colorado River Basin Salinity Control Forum and its partners have completed a substantial amount of work in an ongoing effort to reduce salinity concentrations and loads in the Colorado River. These efforts and related monitoring have generated a large volume of data and information. This U.S. Geological Survey data release includes geospatial datasets that provide information on salinity-related topics and research in the Colorado River Basin. The datasets include background information and study-specific information. These datasets can be viewed in the accompanying interactive map, available at https://usgs.maps.arcgis.com/apps/webappviewer/index.html?id=a9728bc71f854e7da3e79632441b48a7.
As part of a High Flow Event protocol, the Bureau of Reclamation conducts periodic, and relatively high, water releases. This map highlights modeled flows created by the U.S. Geological Survey (Magirl and others, 2008) to help visualize the stage-discharge relationship in conjunction with other map layers such as river miles and river campsites.Modeling Water-Surface Elevations and Virtual Shorelines for the Colorado River in Grand Canyon, ArizonaScientific Investigations Report 2008-5075Citation:Magirl. Christopher, F.N., Webb Robert, Griffiths Peter, 2008, Modeling Water-Surface Elevations and Virtual Shorelines for the Colorado River in Grand Canyon, Arizona, U.S.Geological Survey Scientific Investigations Report 2008-5075, 32p
The physical location of Locks and Dams maintained by the US Army Corp of Engineers along Navigable Waterways (Mississippi River) in the State of Minnesota.
Navigable water, Minnesota represents Navigable waterway centerlines for all navigable waterways within the state of Minnesota. It originated as an arc coverage with the U. S. Army Corps of Engineers. Then MnDOT extracted the arcs that lay within the state boundary. A description of the Navigable water layer is included in Section 5 of this document - Entity and Attribute Overview.
Check other metadata records in this package for more information on Locks, Dams, and navigable water.
Links to ESRI Feature Services:
Locks And Dams in Minnesota: Locks And Dams
Navigable Waterways in Minnesota: Navigable Waterways
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The Mississippi River is North America’s largest river, flowing over 2,300 miles through America’s heartland to the Gulf of Mexico. The watershed not only provides drinking water, food, industry, and recreation for millions of people, it also hosts a globally significant migratory flyway and home for over 325 bird species. Leading the world in agricultural production, a healthy agricultural sector in the Mississippi River Basin is essential for maintaining the nation’s and the world’s food and fiber supply. USDA Conservation Effects Assessment Project (CEAP) cropland models show that conservation on cropland throughout the entire Mississippi River Basin has reduced nitrogen and sediment loading to the Gulf of Mexico by 28 percent and 45 percent, respectively, over what would be lost without conservation systems in place. With the CCA designation, USDA will build on existing strong partnerships in the basin to accelerate conservation in the 13-state area to continue to reduce nutrient and sediment loading to local and regional water bodies and to improve efficiency in using water supplies, particularly in the southern states. The CCA boundary was identified to harness the partnerships and momentum already established by NRCS’s Mississippi River Basin Healthy Watersheds Initiative (MRBI). With more than 600 partners engaged throughout the initiative area, MRBI has treated over 800,000 acres of agricultural land with systems of practices intended to avoid, control, and trap nutrient and sediment run-off and improve irrigation efficiency. This dataset includes a printer-friendly CCA map and shapefiles for GIS. Resources in this dataset:Resource Title: Mississippi River Basin. File Name: Web Page, url: https://www.nrcs.usda.gov/programs-initiatives/rcpp-regional-conservation-partnership-program/critical-conservation-areas Information about the project and links to a printer-friendly CCA map (PDF, 1.2MB) and shapefiles for GIS (ZIP, 218KB).
The National Waterway Network is a comprehensive network database of the nation's navigable waterways. The data set covers the 48 contiguous states plus the District of Columbia, Hawaii, Alaska, Puerto Rico and water links between. The nominal scale of the dataset varies with the source material. The majority of the information is at 1:100,000 with larger scales used in harbor/bay/port areas and smaller scales used in open waters.
© The National Waterway Network was created on behalf of the Bureau of Transportation Statistics, the U.S. Army Corps of Engineers, the U.S. Bureau of Census, and the U.S. Coast Guard by Vanderbilt University and Oak Ridge National Laboratory. Additional agencies with input into network development include Volpe National Transportation Systems Center, Maritime Administration, Military Traffic Management Command, Tennessee Valley Authority, U.S.Environmental Protection Agency, and the Federal Railroad Administration. This layer is sourced from maps.bts.dot.gov.
The National Waterway Network (NTAD 2015) is a comprehensive network database of the nation's navigable waterways. The data set covers the 48 contiguous states plus the District of Columbia, Hawaii, Alaska, Puerto Rico and water links between. The nominal scale of the dataset varies with the source material. The majority of the information is at 1:100,000 with larger scales used in harbor/bay/port areas and smaller scales used in open waters.
© The National Waterway Network was created on behalf of the Bureau of Transportation Statistics, the U.S. Army Corps of Engineers, the U.S. Bureau of Census, and the U.S. Coast Guard by Vanderbilt University and Oak Ridge National Laboratory. Additional agencies with input into network development include Volpe National Transportation Systems Center, Maritime Administration, Military Traffic Management Command, Tennessee Valley Authority, U.S.Environmental Protection Agency, and the Federal Railroad Administration.