The National Waterway Network is a comprehensive network database of the nation's navigable waterways. The data set covers the 48 contiguous states plus the District of Columbia, Hawaii, Alaska, Puerto Rico and water links between. The nominal scale of the dataset varies with the source material. The majority of the information is at 1:100,000 with larger scales used in harbor/bay/port areas and smaller scales used in open waters.
© The National Waterway Network was created on behalf of the Office of the Assistant Secretary for Research and Technology/Bureau of Transportation Statistics, the U.S. Army Corps of Engineers, the U.S. Bureau of Census, and the U.S. Coast Guard by Vanderbilt University and Oak Ridge National Laboratory. Additional agencies with input into network development include Volpe National Transportation Systems Center, Maritime Administration, Military Traffic Management Command, Tennessee Valley Authority, U.S. Environmental Protection Agency, and the Federal Railroad Administration. This layer is sourced from maps.bts.dot.gov.
The National Waterway Network (NTAD 2015) is a comprehensive network database of the nation's navigable waterways. The data set covers the 48 contiguous states plus the District of Columbia, Hawaii, Alaska, Puerto Rico and water links between. The nominal scale of the dataset varies with the source material. The majority of the information is at 1:100,000 with larger scales used in harbor/bay/port areas and smaller scales used in open waters.
© The National Waterway Network was created on behalf of the Bureau of Transportation Statistics, the U.S. Army Corps of Engineers, the U.S. Bureau of Census, and the U.S. Coast Guard by Vanderbilt University and Oak Ridge National Laboratory. Additional agencies with input into network development include Volpe National Transportation Systems Center, Maritime Administration, Military Traffic Management Command, Tennessee Valley Authority, U.S.Environmental Protection Agency, and the Federal Railroad Administration.
The National Waterway Network (NWN) is a geographic database of navigable waterways and channels in and around the United States, for analytical studies of navigation performance, for compiling commodity flow statistics, and for mapping purposes. The NWN is comprised of a link database and a node database. Links are line strings, which consist of beginning and end points (nodes) with intermediate vertices (shape points). Links represent either actual shipping lanes (i.e., channels, Intracoastal Waterways, sea lanes, rivers) or serve as representative paths in open water (where no defined shipping paths exist). Nodes may represent physical entities such as river confluence's, ports/facilities, and intermodal terminals, USACE nodes, or may be inserted for analytical purposes (i.e., to facilitate routing).
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
This feature layer provides access to OpenStreetMap (OSM) waterways data for South America, which is updated every 15 minutes with the latest edits. This hosted feature layer view is referencing a hosted feature layer of OSM line (way) data in ArcGIS Online that is updated with minutely diffs from the OSM planet file. This feature layer view includes waterway features defined as a query against the hosted feature layer (i.e. waterway is not blank).In OSM, a waterway describes rivers, streams and ditches with a flow of water from one place to another. These features are identified with a waterway tag. There are hundreds of different tag values for waterway used in the OSM database. In this feature layer, unique symbols are used for several of the most popular waterway types, while lesser used types are grouped in an "other" category.Zoom in to large scales (e.g. City level or 1:80k scale) to see the waterway features display. You can click on a feature to get the name of the waterway (if available). The name of the waterway will display by default at large scales (e.g. Street level of 1:5k scale). Labels can be turned off in your map if you prefer.Create New LayerIf you would like to create a more focused version of this waterway layer displaying just one or two waterway types, you can do that easily! Just add the layer to a map, copy the layer in the content window, add a filter to the new layer (e.g. waterway is dam), rename the layer as appropriate, and save layer. You can also change the layer symbols or popup if you like. Esri may publish a few such layers (e.g. streams and rivers) that are ready to use, but not for every type of waterway.Important Note: if you do create a new layer, it should be provided under the same Terms of Use and include the same Credits as this layer. You can copy and paste the Terms of Use and Credits info below in the new Item page as needed.
The Navigation Data Center had several objectives in developing the U.S. Waterway Data. These objectives support the concept of a National Spatial Data Provide public access to national waterway data. Foster interagency and intra-agency cooperation through data sharing. Provide a mechanism to integrate waterway data (U.S. Army Corps of Engineers Port/Facility and U.S. Coast Guard Accident Data, for example) Provide a basis for intermodal analysis. Assist standardization of waterway entity definitions (Ports/Facilities, Locks, etc.). Provide public access to the National Waterway Network, which can be used as a basemap to support graphical overlays and analysis with other spatial data (waterway and modal network/facility databases, for example). Provide reliable data to support future waterway and intermodal applications. Source of Data The data included in these files are based upon the Annual Summary of Lock Statistics published by the U.S. Army Corps of Engineers/CEIWR, Navigation Data Center. The data are collected at each Corps owned and/or operated Lock by Corps personnel and towing industry vessel operators. This data was collected from the US Army Corps of Engineers and distributed on the National Transportation Atlas Database (NTAD).
© The U.S. Army Corps of Engineers/CEIWR, Navigation Data Center This layer is sourced from maps.bts.dot.gov.
Monthly summary statistics are based on data from the Lock Performance Monitoring System (LPMS). The LPMS was developed to collect a 100% sample of data on the locks that are owned and/or operated by the US Army Corps of Engineers. Each record contains data summarized monthly by lock chamber, and direction (upbound and number and types of vessels and lockages (recreation, commercial, tows, other), cuts, hardware operations, delay and processing times, number of tows and all vessels delayed, total tons, commodity tonnages, and number of barges. The data are by waterway and by calendar year. The waterway files contain 5 years of data for one waterway. The calendar year files contain 1 year of data for all waterways.
The Navigation Data Center had several objectives in developing the U.S. Waterway Data. These objectives support the concept of a National Spatial Data Provide public access to national waterway data. Foster interagency and intra-agency cooperation through data sharing. Provide a mechanism to integrate waterway data (U.S. Army Corps of Engineers Port/Facility and U.S. Coast Guard Accident Data, for example) Provide a basis for intermodal analysis. Assist standardization of waterway entity definitions (Ports/Facilities, Locks, etc.). Provide public access to the National Waterway Network, which can be used as a basemap to support graphical overlays and analysis with other spatial data (waterway and modal network/facility databases, for example). Provide reliable data to support future waterway and intermodal applications. Source of Data The data included in these files are based upon the Annual Summary of Lock Statistics published by the U.S. Army Corps of Engineers/CEIWR, Navigation Data Center. The data are collected at each Corps owned and/or operated Lock by Corps personnel and towing industry vessel operators. This data was collected from the US Army Corps of Engineers and distributed on the National Transportation Atlas Database (NTAD).
© The U.S. Army Corps of Engineers/CEIWR, Navigation Data Center
This dataset represents the Navigable Waterways data as of October 24, 2018, and is part of the U.S. Department of Transportation (USDOT)/Bureau of Transportation Statistics's (BTS's) National Transportation Atlas Database (NTAD). The National Waterway Network is a comprehensive network database of the nation's navigable waterways. The data set covers the 48 contiguous states plus the District of Columbia, Hawaii, Alaska, Puerto Rico and water links between. The nominal scale of the dataset varies with the source material. The majority of the information is at 1:100,000 with larger scales used in harbor/bay/port areas and smaller scales used in open waters. These data could be used for analytical studies of waterway performance, for compiling commodity flow statistics, and for mapping purposes.
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
Note: This content was created by OpenStreetMap, not the City of Rochester. You can find more about them here.This feature layer provides access to OpenStreetMap (OSM) waterways data for North America, which is updated every 1-2 minutes with the latest edits. In the context of this map, the term "waterway" describes rivers, streams, and ditches with a flow of water from one place to another. These features are identified with a waterway tag. There are hundreds of different tag values for waterway used in the OSM database. In this map, unique symbols are used for several of the most popular waterway types, while lesser used types are grouped in an "other" category.The map is zoomed in to the Rochester area, but users can use the minus (-) sign to zoom out. If you would like to see a specific location, you can enter it into the search bar at the top right section of the map interface.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This North American Environmental Atlas data are standardized geospatial data sets at 1:10,000,000 scale. A variety of basic data layers (e.g. roads, railroads, populated places, political boundaries, hydrography, bathymetry, sea ice and glaciers) have been integrated so that their relative positions are correct. This collection of data sets forms a base with which other North American thematic data may be integrated. Any data outside of Canada, Mexico, and the United States of America included in the North American Environmental Atlas data sets is strictly to complete the context of the data.The North American Environmental Atlas – Lakes and Rivers dataset displays the coastline, linear hydrographic features (major rivers, streams, and canals), and area hydrographic features (major lakes and reservoirs) of North America at a reference spatial scale of 1:1,000,000.This map offers a seamless integration of hydrographic features derived from cartographic products generated by Natural Resources Canada (NRCan), United States Geological Survey (USGS), National Institute of Statistics and Geography, (Instituto Nacional de Estadística y Geografía-Inegi), National Water Commission (Comisión Nacional del Agua-Conagua).This current version of the North America Lakes and Rivers dataset supersedes the version published by the Commission for Environmental Cooperation in 2011.Files Download
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Four digital water-surface profile maps for a 14-mile reach of the Mississippi River near Prairie Island in Welch, Minnesota from the confluence of the St. Croix River at Prescott, Wisconsin to upstream of the United States Army Corps of Engineers (USACE) Lock and Dam No. 3 in Welch, Minnesota, were created by the U.S. Geological Survey (USGS) in cooperation with the Prairie Island Indian Community. The water-surface profile maps depict estimates of the areal extent and depth of inundation corresponding to selected water levels (stages) at the USGS streamgage Mississippi River at Prescott, Wisconsin (USGS station number 05344500). Current conditions for estimating near-real-time areas of water inundation by use of USGS streamgage information may be obtained on the internet at http://waterdata.usgs.gov/. Water-surface profiles were computed for the stream reach using HEC-GeoRAS software by means of a one-dimensional step-backwater HEC-RAS hydraulic model using the steady-state flow ...
The physical location of Locks and Dams maintained by the US Army Corp of Engineers along Navigable Waterways (Mississippi River) in the State of Minnesota.
Navigable water, Minnesota represents Navigable waterway centerlines for all navigable waterways within the state of Minnesota. It originated as an arc coverage with the U. S. Army Corps of Engineers. Then MnDOT extracted the arcs that lay within the state boundary. A description of the Navigable water layer is included in Section 5 of this document - Entity and Attribute Overview.
Check other metadata records in this package for more information on Locks, Dams, and navigable water.
Links to ESRI Feature Services:
Locks And Dams in Minnesota: Locks And Dams
Navigable Waterways in Minnesota: Navigable Waterways
A slow-moving area of low pressure and a high amount of atmospheric moisture produced heavy rainfall across Louisiana and southwest Mississippi in August 2016. Over 31 inches of rain was reported in Watson, 30 miles northeast of Baton Rouge, over the duration of the event. The result was major flooding that occurred in the southern portions of Louisiana and included areas surrounding Baton Rouge and Lafayette along rivers such as the Amite, Comite, Tangipahoa, Tickfaw, Vermilion, and Mermentau. The U.S. Geological Survey (USGS) Lower Mississippi-Gulf Water Science Center operates many continuous, streamflow-gaging stations in the impacted area. Peak streamflows of record were measured at 10 locations, and seven other locations experienced peak streamflows ranking in the top 5 for the duration of the period of record. In August 2016, USGS personnel made fifty streamflow measurements at 21 locations on streams in Louisiana. Many of those streamflow measurements were made for the purpose of verifying the accuracy of the stage-streamflow relation at the associated gaging station. USGS personnel also recovered and documented 590 high-water marks after the storm event by noting the location and height of the water above land surface. Many of these high water marks were used to create twelve flood-inundation maps for selected communities of Louisiana that experienced flooding in August 2016. This data release provides the actual flood-depth measurements made in selected river basins of Louisiana that were used to produce the flood-inundation maps published in the companion product (Watson and others, 2017). Reference Watson, K.M., Storm, J.B., Breaker, B.K., and Rose, C.E., 2017, Characterization of peak streamflows and flood inundation of selected areas in Louisiana from the August 2016 flood: U.S. Geological Survey Scientific Investigations Report 2017–5005, 26 p., https://doi.org/10.3133/sir20175005.
These two data-sets contain potentially navigable rivers for small and medium-sized boats in South-America depending on the topography, rainfall and potential evapotranspiration. Hence, it is an approximation of the location of navigable rivers, not an actual map of hidroways. Navigability is defined by the extent of a river which in this case (1) for small boats accounts to ~5-15 meters minimum extent and (2) for medium-sized boats ~30-40m meters minimum extent. The model data was parametrized and validated with land-cover data from high-resolution satellite images. Please see the full description of how the data-sets was created in the attached PDF File.
These data provide an accurate high-resolution shoreline compiled from lidar and imagery of Intracoastal Waterway, Highland Beach to Lake Park, FL . This vector shoreline data is based on an office interpretation of imagery that may be suitable as a geographic information system (GIS) data layer. This metadata describes information for both the line and point shapefiles. The NGS attribution s...
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
This feature layer provides access to OpenStreetMap (OSM) waterways data for North America, which is updated every 15 minutes with the latest edits. This hosted feature layer view is referencing a hosted feature layer of OSM line (way) data in ArcGIS Online that is updated with minutely diffs from the OSM planet file. This feature layer view includes waterway features defined as a query against the hosted feature layer (i.e. waterway is not blank).In OSM, a waterway describes rivers, streams and ditches with a flow of water from one place to another. These features are identified with a waterway tag. There are hundreds of different tag values for waterway used in the OSM database. In this feature layer, unique symbols are used for several of the most popular waterway types, while lesser used types are grouped in an "other" category.Zoom in to large scales (e.g. City level or 1:80k scale) to see the waterway features display. You can click on a feature to get the name of the waterway (if available). The name of the waterway will display by default at large scales (e.g. Street level of 1:5k scale). Labels can be turned off in your map if you prefer.Create New LayerIf you would like to create a more focused version of this waterway layer displaying just one or two waterway types, you can do that easily! Just add the layer to a map, copy the layer in the content window, add a filter to the new layer (e.g. waterway is dam), rename the layer as appropriate, and save layer. You can also change the layer symbols or popup if you like. Esri may publish a few such layers (e.g. streams and rivers) that are ready to use, but not for every type of waterway.Important Note: if you do create a new layer, it should be provided under the same Terms of Use and include the same Credits as this layer. You can copy and paste the Terms of Use and Credits info below in the new Item page as needed.
Since its formation, the Colorado River Basin Salinity Control Forum and its partners have completed a substantial amount of work in an ongoing effort to reduce salinity concentrations and loads in the Colorado River. These efforts and related monitoring have generated a large volume of data and information. This U.S. Geological Survey data release includes geospatial datasets that provide information on salinity-related topics and research in the Colorado River Basin. The datasets include background information and study-specific information. These datasets can be viewed in the accompanying interactive map, available at https://usgs.maps.arcgis.com/apps/webappviewer/index.html?id=a9728bc71f854e7da3e79632441b48a7.
A slow-moving area of low pressure and a high amount of atmospheric moisture produced heavy rainfall across Louisiana and southwest Mississippi in August 2016. Over 31 inches of rain was reported in Watson, 30 miles northeast of Baton Rouge, over the duration of the event. The result was major flooding that occurred in the southern portions of Louisiana and included areas surrounding Baton Rouge and Lafayette along rivers such as the Amite, Comite, Tangipahoa, Tickfaw, Vermilion, and Mermentau. The U.S. Geological Survey (USGS) Lower Mississippi-Gulf Water Science Center operates many continuous, streamflow-gaging stations in the impacted area. Peak streamflows of record were measured at 10 locations, and seven other locations experienced peak streamflows ranking in the top 5 for the duration of the period of record. In August 2016, USGS personnel made fifty streamflow measurements at 21 locations on streams in Louisiana. Many of those streamflow measurements were made for the purpose of verifying the accuracy of the stage-streamflow relation at the associated gaging station. USGS personnel also recovered and documented 590 high-water marks after the storm event by noting the location and height of the water above land surface. Many of these high water marks were used to create twelve flood-inundation maps for selected communities of Louisiana that experienced flooding in August 2016. This data release provides the actual flood-depth measurements made in selected river basins of Louisiana that were used to produce the flood-inundation maps published in the companion product (Watson and others, 2017). Reference Watson, K.M., Storm, J.B., Breaker, B.K., and Rose, C.E., 2017, Characterization of peak streamflows and flood inundation of selected areas in Louisiana from the August 2016 flood: U.S. Geological Survey Scientific Investigations Report 2017–5005, 26 p., https://doi.org/10.3133/sir20175005.
The State of Louisiana experienced widespread flooding during the extreme rainfall events of March and August 2016. The City of Central, Louisiana, which lies above the confluence of the Amite and Comite Rivers, is bordered on the East and West respectively by these rivers. The city had extensive damage from both events, in particular the August 2016 flood in which the river basins received up to 30 inches of documented rainfall. Many streamgages in the area recorded peak of record flood levels from the event. The US Geological Survey (USGS) in cooperation with the City of Central, created a digital flood inundation map library to depict estimated areal extents and depth of flooding along 14.5 and 20.2 mile reach lengths of the Amite and Comite Rivers. The maps were created using a 2-dimensional flow model calibrated to the March and August 2016 events as well as to the current stage-discharge ratings at USGS streamgaging stations 07377300 Amite River at Magnolia, Louisiana and 07378000 Comite River near Comite, Louisiana. The maps range from flood stage to the peak of record stage at the gaging stations. Annual peak flow data was analyzed to determine multiple flooding scenario possibilities between the two gages. This data release provides the ArcGIS files and metadata for these maps. In addition, the maps will be hosted by the USGS on an interactive web mapper accessible to the cooperator and the public at: https://www.usgs.gov/mission-areas/water-resources/science/flood-inundation-mapping-fim-program Use of the maps aids city officials and emergency managers in pre-planning for a flood event in areas such as road and bridge closures, staging of man power and materials, and estimation of affected population. The maps also aid the public in foreseeing their flood risk potential and helps them in their decision making regarding life and property.
This vector line dataset represents the river center line that are eligible, eligible and suitable, and eligible and not suitable for designation as a National Wild and Scenic River within the contiguous United States, Alaska, Hawaii, and Puerto Rico.The data was designed for mapping and analysis. This should be used as a companion to the LSRS data.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Heavy rainfall occurred across Louisiana during March 8-19, 2016, as a result of a massive, slow-moving southward dip in the jet stream, which moved eastward across Mexico, then neared the Gulf Coast, funneling deep tropical moisture into parts of the Gulf States and the Mississippi River Valley. The storm caused major flooding in north-central and southeastern Louisiana. Digital flood-inundation maps for a 28-mile reach within the communities of Port Vincent, French Settlement, and Maurepas near the Amite River in Livingston and Ascension Parishes, LA was created by the U.S. Geological Survey (USGS) in cooperation with Federal Emergency Management Agency (FEMA) to support response and recovery operations following a March 8-19, 2016 flood event. The inundation maps depict estimates of the areal extent and depth of flooding corresponding to 7 high-water marks (HWM) identified and surveyed by the USGS following the flood event.
The Digital Geologic Map of Stones River National Battlefield and Vicinity, Tennessee is composed of GIS data layers complete with ArcMap 9.3 layer (.LYR) files, two ancillary GIS tables, a Map PDF document with ancillary map text, figures and tables, a FGDC metadata record and a 9.3 ArcMap (.MXD) Document that displays the digital map in 9.3 ArcGIS. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Tennessee Division of Geology. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation sections(s) of this metadata record (stri_metadata.txt; available at http://nrdata.nps.gov/stri/nrdata/geology/gis/stri_metadata.xml). All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.1. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data is available as a 9.3 personal geodatabase (stri_geology.mdb), and as shapefile (.SHP) and DBASEIV (.DBF) table files. The GIS data projection is NAD83, UTM Zone 16N. That data is within the area of interest of Stones River National Battlefield.
Heavy rainfall occurred across Louisiana during March 8-19, 2016, as a result of a massive, slow-moving southward dip in the jet stream, which moved eastward across Mexico, then neared the Gulf Coast, funneling deep tropical moisture into parts of the Gulf States and the Mississippi River Valley. The storm caused major flooding in north-central and southeastern Louisiana. Digital flood-inundation maps for a 16-mile reach within the community of Merryville near the Sabine River in Beauregard and Vernon Parishes, LA and along the Texas border was created by the U.S. Geological Survey (USGS) in cooperation with Federal Emergency Management Agency (FEMA) to support response and recovery operations following a March 8-19, 2016 flood event. The inundation maps depict estimates of the areal extent and depth of flooding corresponding to 7 high-water marks (HWM) identified and surveyed by the USGS following the flood event.
The National Waterway Network is a comprehensive network database of the nation's navigable waterways. The data set covers the 48 contiguous states plus the District of Columbia, Hawaii, Alaska, Puerto Rico and water links between. The nominal scale of the dataset varies with the source material. The majority of the information is at 1:100,000 with larger scales used in harbor/bay/port areas and smaller scales used in open waters.
© The National Waterway Network was created on behalf of the Office of the Assistant Secretary for Research and Technology/Bureau of Transportation Statistics, the U.S. Army Corps of Engineers, the U.S. Bureau of Census, and the U.S. Coast Guard by Vanderbilt University and Oak Ridge National Laboratory. Additional agencies with input into network development include Volpe National Transportation Systems Center, Maritime Administration, Military Traffic Management Command, Tennessee Valley Authority, U.S. Environmental Protection Agency, and the Federal Railroad Administration. This layer is sourced from maps.bts.dot.gov.
The National Waterway Network (NTAD 2015) is a comprehensive network database of the nation's navigable waterways. The data set covers the 48 contiguous states plus the District of Columbia, Hawaii, Alaska, Puerto Rico and water links between. The nominal scale of the dataset varies with the source material. The majority of the information is at 1:100,000 with larger scales used in harbor/bay/port areas and smaller scales used in open waters.
© The National Waterway Network was created on behalf of the Bureau of Transportation Statistics, the U.S. Army Corps of Engineers, the U.S. Bureau of Census, and the U.S. Coast Guard by Vanderbilt University and Oak Ridge National Laboratory. Additional agencies with input into network development include Volpe National Transportation Systems Center, Maritime Administration, Military Traffic Management Command, Tennessee Valley Authority, U.S.Environmental Protection Agency, and the Federal Railroad Administration.