100+ datasets found
  1. d

    Data Mining in Systems Health Management

    • catalog.data.gov
    • data.wu.ac.at
    Updated Apr 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dashlink (2025). Data Mining in Systems Health Management [Dataset]. https://catalog.data.gov/dataset/data-mining-in-systems-health-management
    Explore at:
    Dataset updated
    Apr 10, 2025
    Dataset provided by
    Dashlink
    Description

    This chapter presents theoretical and practical aspects associated to the implementation of a combined model-based/data-driven approach for failure prognostics based on particle filtering algorithms, in which the current esti- mate of the state PDF is used to determine the operating condition of the system and predict the progression of a fault indicator, given a dynamic state model and a set of process measurements. In this approach, the task of es- timating the current value of the fault indicator, as well as other important changing parameters in the environment, involves two basic steps: the predic- tion step, based on the process model, and an update step, which incorporates the new measurement into the a priori state estimate. This framework allows to estimate of the probability of failure at future time instants (RUL PDF) in real-time, providing information about time-to- failure (TTF) expectations, statistical confidence intervals, long-term predic- tions; using for this purpose empirical knowledge about critical conditions for the system (also referred to as the hazard zones). This information is of paramount significance for the improvement of the system reliability and cost-effective operation of critical assets, as it has been shown in a case study where feedback correction strategies (based on uncertainty measures) have been implemented to lengthen the RUL of a rotorcraft transmission system with propagating fatigue cracks on a critical component. Although the feed- back loop is implemented using simple linear relationships, it is helpful to provide a quick insight into the manner that the system reacts to changes on its input signals, in terms of its predicted RUL. The method is able to manage non-Gaussian pdf’s since it includes concepts such as nonlinear state estimation and confidence intervals in its formulation. Real data from a fault seeded test showed that the proposed framework was able to anticipate modifications on the system input to lengthen its RUL. Results of this test indicate that the method was able to successfully suggest the correction that the system required. In this sense, future work will be focused on the development and testing of similar strategies using different input-output uncertainty metrics.

  2. m

    Educational Attainment in North Carolina Public Schools: Use of statistical...

    • data.mendeley.com
    Updated Nov 14, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Scott Herford (2018). Educational Attainment in North Carolina Public Schools: Use of statistical modeling, data mining techniques, and machine learning algorithms to explore 2014-2017 North Carolina Public School datasets. [Dataset]. http://doi.org/10.17632/6cm9wyd5g5.1
    Explore at:
    Dataset updated
    Nov 14, 2018
    Authors
    Scott Herford
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    North Carolina
    Description

    The purpose of data mining analysis is always to find patterns of the data using certain kind of techiques such as classification or regression. It is not always feasible to apply classification algorithms directly to dataset. Before doing any work on the data, the data has to be pre-processed and this process normally involves feature selection and dimensionality reduction. We tried to use clustering as a way to reduce the dimension of the data and create new features. Based on our project, after using clustering prior to classification, the performance has not improved much. The reason why it has not improved could be the features we selected to perform clustering are not well suited for it. Because of the nature of the data, classification tasks are going to provide more information to work with in terms of improving knowledge and overall performance metrics. From the dimensionality reduction perspective: It is different from Principle Component Analysis which guarantees finding the best linear transformation that reduces the number of dimensions with a minimum loss of information. Using clusters as a technique of reducing the data dimension will lose a lot of information since clustering techniques are based a metric of 'distance'. At high dimensions euclidean distance loses pretty much all meaning. Therefore using clustering as a "Reducing" dimensionality by mapping data points to cluster numbers is not always good since you may lose almost all the information. From the creating new features perspective: Clustering analysis creates labels based on the patterns of the data, it brings uncertainties into the data. By using clustering prior to classification, the decision on the number of clusters will highly affect the performance of the clustering, then affect the performance of classification. If the part of features we use clustering techniques on is very suited for it, it might increase the overall performance on classification. For example, if the features we use k-means on are numerical and the dimension is small, the overall classification performance may be better. We did not lock in the clustering outputs using a random_state in the effort to see if they were stable. Our assumption was that if the results vary highly from run to run which they definitely did, maybe the data just does not cluster well with the methods selected at all. Basically, the ramification we saw was that our results are not much better than random when applying clustering to the data preprocessing. Finally, it is important to ensure a feedback loop is in place to continuously collect the same data in the same format from which the models were created. This feedback loop can be used to measure the model real world effectiveness and also to continue to revise the models from time to time as things change.

  3. Data from: Enriching time series datasets using Nonparametric kernel...

    • figshare.com
    pdf
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mohamad Ivan Fanany (2023). Enriching time series datasets using Nonparametric kernel regression to improve forecasting accuracy [Dataset]. http://doi.org/10.6084/m9.figshare.1609661.v1
    Explore at:
    pdfAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Mohamad Ivan Fanany
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Improving the accuracy of prediction on future values based on the past and current observations has been pursued by enhancing the prediction's methods, combining those methods or performing data pre-processing. In this paper, another approach is taken, namely by increasing the number of input in the dataset. This approach would be useful especially for a shorter time series data. By filling the in-between values in the time series, the number of training set can be increased, thus increasing the generalization capability of the predictor. The algorithm used to make prediction is Neural Network as it is widely used in literature for time series tasks. For comparison, Support Vector Regression is also employed. The dataset used in the experiment is the frequency of USPTO's patents and PubMed's scientific publications on the field of health, namely on Apnea, Arrhythmia, and Sleep Stages. Another time series data designated for NN3 Competition in the field of transportation is also used for benchmarking. The experimental result shows that the prediction performance can be significantly increased by filling in-between data in the time series. Furthermore, the use of detrend and deseasonalization which separates the data into trend, seasonal and stationary time series also improve the prediction performance both on original and filled dataset. The optimal number of increase on the dataset in this experiment is about five times of the length of original dataset.

  4. Data Mining Tools Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Apr 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2024). Data Mining Tools Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-data-mining-tools-market
    Explore at:
    pdf, pptx, csvAvailable download formats
    Dataset updated
    Apr 1, 2024
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Data Mining Tools Market Outlook 2032



    The global data mining tools market size was USD 932 Million in 2023 and is projected to reach USD 2,584.7 Million by 2032, expanding at a CAGR of 12% during 2024–2032. The market is fueled by the rising demand for big data analytics across various industries and the increasing need for AI-integrated data mining tools for insightful decision-making.



    Increasing adoption of cloud-based platforms in data mining tools fuels the market. This enhances scalability, flexibility, and cost-efficiency in data handling processes. Major tech companies are launching cloud-based data mining solutions, enabling businesses to analyze vast datasets effectively. This trend reflects the shift toward agile and scalable data analysis methods, meeting the dynamic needs of modern enterprises.





    • In July 2023, Microsoft launched Power Automate Process Mining. This tool, powered by advanced AI, allows companies to gain deep insights into their operations, streamline processes, and foster ongoing improvement through automation and low-code applications, marking a new era in business efficiency and process optimization.







    Rising focus on predictive analytics propels the development of advanced data mining tools capable of forecasting future trends and behaviors. Industries such as finance, healthcare, and retail invest significantly in predictive analytics to gain a competitive edge, driving demand for sophisticated data mining technologies. This trend underscores the strategic importance of foresight in decision-making processes.



    Visual data mining tools are gaining traction in the market, offering intuitive data exploration and interpretation capabilities. These tools enable users to uncover patterns and insights through graphical representations, making data analysis accessible to a broader audience. The launch of user-friendly visual data mining applications marks a significant step toward democratizing data analytics.



    Impact of Artificial Intelligence (

  5. Data mining-based machine learning methods for improving hydrological data:...

    • zenodo.org
    nc
    Updated May 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The citation is currently not available for this dataset.
    Explore at:
    ncAvailable download formats
    Dataset updated
    May 20, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Shuhao TAO; Shuhao TAO; Ling Du; Ling Du
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Arctic Ocean
    Description

    Salinity variations in Arctic Ocean determine the strength of stratification, ocean circulation, and biogeochemical cycles. Therefore, accurate salinity product is of great significance for our study of the Arctic Ocean. The mean density structure and wind-driven surface circulation of the Arctic Ocean are largely dominated by the anti-cyclonic Beaufort Gyre in the Canadian Basin, along with the Transpolar Drift (Hall et al.,2022). We focus on the salinity in Western Arctic Ocean. Multiple machine learning methods were used to reconstruct annual salinity product in the Western Arctic Ocean temporal for the period 2003-2022.

  6. Data Mining in Systems Health Management - Dataset - NASA Open Data Portal

    • data.nasa.gov
    • data.staging.idas-ds1.appdat.jsc.nasa.gov
    Updated Mar 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nasa.gov (2025). Data Mining in Systems Health Management - Dataset - NASA Open Data Portal [Dataset]. https://data.nasa.gov/dataset/data-mining-in-systems-health-management
    Explore at:
    Dataset updated
    Mar 31, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Description

    This chapter presents theoretical and practical aspects associated to the implementation of a combined model-based/data-driven approach for failure prognostics based on particle filtering algorithms, in which the current esti- mate of the state PDF is used to determine the operating condition of the system and predict the progression of a fault indicator, given a dynamic state model and a set of process measurements. In this approach, the task of es- timating the current value of the fault indicator, as well as other important changing parameters in the environment, involves two basic steps: the predic- tion step, based on the process model, and an update step, which incorporates the new measurement into the a priori state estimate. This framework allows to estimate of the probability of failure at future time instants (RUL PDF) in real-time, providing information about time-to- failure (TTF) expectations, statistical confidence intervals, long-term predic- tions; using for this purpose empirical knowledge about critical conditions for the system (also referred to as the hazard zones). This information is of paramount significance for the improvement of the system reliability and cost-effective operation of critical assets, as it has been shown in a case study where feedback correction strategies (based on uncertainty measures) have been implemented to lengthen the RUL of a rotorcraft transmission system with propagating fatigue cracks on a critical component. Although the feed- back loop is implemented using simple linear relationships, it is helpful to provide a quick insight into the manner that the system reacts to changes on its input signals, in terms of its predicted RUL. The method is able to manage non-Gaussian pdf’s since it includes concepts such as nonlinear state estimation and confidence intervals in its formulation. Real data from a fault seeded test showed that the proposed framework was able to anticipate modifications on the system input to lengthen its RUL. Results of this test indicate that the method was able to successfully suggest the correction that the system required. In this sense, future work will be focused on the development and testing of similar strategies using different input-output uncertainty metrics.

  7. c

    Global Data Mining Software Market Report 2025 Edition, Market Size, Share,...

    • cognitivemarketresearch.com
    pdf,excel,csv,ppt
    Updated May 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cognitive Market Research (2025). Global Data Mining Software Market Report 2025 Edition, Market Size, Share, CAGR, Forecast, Revenue [Dataset]. https://www.cognitivemarketresearch.com/data-mining-software-market-report
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    May 15, 2025
    Dataset authored and provided by
    Cognitive Market Research
    License

    https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy

    Time period covered
    2021 - 2033
    Area covered
    Global
    Description

    According to Cognitive Market Research, the global Data Mining Software market size will be USD XX million in 2025. It will expand at a compound annual growth rate (CAGR) of XX% from 2025 to 2031.

    North America held the major market share for more than XX% of the global revenue with a market size of USD XX million in 2025 and will grow at a CAGR of XX% from 2025 to 2031. Europe accounted for a market share of over XX% of the global revenue with a market size of USD XX million in 2025 and will grow at a CAGR of XX% from 2025 to 2031. Asia Pacific held a market share of around XX% of the global revenue with a market size of USD XX million in 2025 and will grow at a CAGR of XX% from 2025 to 2031. Latin America had a market share of more than XX% of the global revenue with a market size of USD XX million in 2025 and will grow at a CAGR of XX% from 2025 to 2031. Middle East and Africa had a market share of around XX% of the global revenue and was estimated at a market size of USD XX million in 2025 and will grow at a CAGR of XX% from 2025 to 2031. KEY DRIVERS

    Increasing Focus on Customer Satisfaction to Drive Data Mining Software Market Growth

    In today’s hyper-competitive and digitally connected marketplace, customer satisfaction has emerged as a critical factor for business sustainability and growth. The growing focus on enhancing customer satisfaction is proving to be a significant driver in the expansion of the data mining software market. Organizations are increasingly leveraging data mining tools to sift through vast volumes of customer data—ranging from transactional records and website activity to social media engagement and call center logs—to uncover insights that directly influence customer experience strategies. Data mining software empowers companies to analyze customer behavior patterns, identify dissatisfaction triggers, and predict future preferences. Through techniques such as classification, clustering, and association rule mining, businesses can break down large datasets to understand what customers want, what they are likely to purchase next, and how they feel about the brand. These insights not only help in refining customer service but also in shaping product development, pricing strategies, and promotional campaigns. For instance, Netflix uses data mining to recommend personalized content by analyzing a user's viewing history, ratings, and preferences. This has led to increased user engagement and retention, highlighting how a deep understanding of customer preferences—made possible through data mining—can translate into competitive advantage. Moreover, companies are increasingly using these tools to create highly targeted and customer-specific marketing campaigns. By mining data from e-commerce transactions, browsing behavior, and demographic profiles, brands can tailor their offerings and communications to suit individual customer segments. For Instance Amazon continuously mines customer purchasing and browsing data to deliver personalized product recommendations, tailored promotions, and timely follow-ups. This not only enhances customer satisfaction but also significantly boosts conversion rates and average order value. According to a report by McKinsey, personalization can deliver five to eight times the ROI on marketing spend and lift sales by 10% or more—a powerful incentive for companies to adopt data mining software as part of their customer experience toolkit. (Source: https://www.mckinsey.com/capabilities/growth-marketing-and-sales/our-insights/personalizing-at-scale#/) The utility of data mining tools extends beyond e-commerce and streaming platforms. In the banking and financial services industry, for example, institutions use data mining to analyze customer feedback, call center transcripts, and usage data to detect pain points and improve service delivery. Bank of America, for instance, utilizes data mining and predictive analytics to monitor customer interactions and provide proactive service suggestions or fraud alerts, significantly improving user satisfaction and trust. (Source: https://futuredigitalfinance.wbresearch.com/blog/bank-of-americas-erica-client-interactions-future-ai-in-banking) Similarly, telecom companies like Vodafone use data mining to understand customer churn behavior and implement retention strategies based on insights drawn from service usage patterns and complaint histories. In addition to p...

  8. f

    Data from: Users’ satisfaction with the public dental service: the discovery...

    • scielo.figshare.com
    jpeg
    Updated Jun 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cristina Berger Fadel; Danielle Bordin; Celso Bilynkievycz dos Santos; Deborah Ribeiro Carvalho; Suzely Adas Saliba Moimaz (2023). Users’ satisfaction with the public dental service: the discovery of new patterns [Dataset]. http://doi.org/10.6084/m9.figshare.14270921.v1
    Explore at:
    jpegAvailable download formats
    Dataset updated
    Jun 3, 2023
    Dataset provided by
    SciELO journals
    Authors
    Cristina Berger Fadel; Danielle Bordin; Celso Bilynkievycz dos Santos; Deborah Ribeiro Carvalho; Suzely Adas Saliba Moimaz
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Abstract Background Regarding to oral health, little has been advanced on how to improve quality within dental care. Objective The aim of this study was to identify the demographic factors affecting the satisfaction of users of the dental public service having the value of a strategic and high consistency methodology. Method The Data Mining was used to a secondary database, contemplating 91 features, segmental in 9 demographic factors, 17 facets, and 5 dominions. Descriptive statistics were extracted to a demographic data and the satisfaction of the users by facets and dominions, being discovered as from Decision Trees and Association Rules. Results the analysis of the results showed the relation between the demographic factor 'professional occupation' and satisfaction, in all of the dominions. The occupations of general assistant and home assistant with daily wage stood out in Association Rules to represent the lower level of satisfaction compared to the facets that were worse evaluated. Also, the factor ‘health unit's name’ showed relation with most of the investigated dominions. The difference between health units was even more evident through the Association Rule. Conclusion The Data Mining allowed to identify complementary relations to the user's perception about the public oral health services quality, constituting a safe tool to support the management of Brazilian public health and the basis of future plans.

  9. d

    Data from: Privacy Preserving Outlier Detection through Random Nonlinear...

    • catalog.data.gov
    • data.amerigeoss.org
    Updated Apr 10, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dashlink (2025). Privacy Preserving Outlier Detection through Random Nonlinear Data Distortion [Dataset]. https://catalog.data.gov/dataset/privacy-preserving-outlier-detection-through-random-nonlinear-data-distortion
    Explore at:
    Dataset updated
    Apr 10, 2025
    Dataset provided by
    Dashlink
    Description

    Consider a scenario in which the data owner has some private/sensitive data and wants a data miner to access it for studying important patterns without revealing the sensitive information. Privacy preserving data mining aims to solve this problem by randomly transforming the data prior to its release to data miners. Previous work only considered the case of linear data perturbations — additive, multiplicative or a combination of both for studying the usefulness of the perturbed output. In this paper, we discuss nonlinear data distortion using potentially nonlinear random data transformation and show how it can be useful for privacy preserving anomaly detection from sensitive datasets. We develop bounds on the expected accuracy of the nonlinear distortion and also quantify privacy by using standard definitions. The highlight of this approach is to allow a user to control the amount of privacy by varying the degree of nonlinearity. We show how our general transformation can be used for anomaly detection in practice for two specific problem instances: a linear model and a popular nonlinear model using the sigmoid function. We also analyze the proposed nonlinear transformation in full generality and then show that for specific cases it is distance preserving. A main contribution of this paper is the discussion between the invertibility of a transformation and privacy preservation and the application of these techniques to outlier detection. Experiments conducted on real-life datasets demonstrate the effectiveness of the approach.

  10. Market Basket Analysis

    • kaggle.com
    Updated Dec 9, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aslan Ahmedov (2021). Market Basket Analysis [Dataset]. https://www.kaggle.com/datasets/aslanahmedov/market-basket-analysis
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 9, 2021
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Aslan Ahmedov
    Description

    Market Basket Analysis

    Market basket analysis with Apriori algorithm

    The retailer wants to target customers with suggestions on itemset that a customer is most likely to purchase .I was given dataset contains data of a retailer; the transaction data provides data around all the transactions that have happened over a period of time. Retailer will use result to grove in his industry and provide for customer suggestions on itemset, we be able increase customer engagement and improve customer experience and identify customer behavior. I will solve this problem with use Association Rules type of unsupervised learning technique that checks for the dependency of one data item on another data item.

    Introduction

    Association Rule is most used when you are planning to build association in different objects in a set. It works when you are planning to find frequent patterns in a transaction database. It can tell you what items do customers frequently buy together and it allows retailer to identify relationships between the items.

    An Example of Association Rules

    Assume there are 100 customers, 10 of them bought Computer Mouth, 9 bought Mat for Mouse and 8 bought both of them. - bought Computer Mouth => bought Mat for Mouse - support = P(Mouth & Mat) = 8/100 = 0.08 - confidence = support/P(Mat for Mouse) = 0.08/0.09 = 0.89 - lift = confidence/P(Computer Mouth) = 0.89/0.10 = 8.9 This just simple example. In practice, a rule needs the support of several hundred transactions, before it can be considered statistically significant, and datasets often contain thousands or millions of transactions.

    Strategy

    • Data Import
    • Data Understanding and Exploration
    • Transformation of the data – so that is ready to be consumed by the association rules algorithm
    • Running association rules
    • Exploring the rules generated
    • Filtering the generated rules
    • Visualization of Rule

    Dataset Description

    • File name: Assignment-1_Data
    • List name: retaildata
    • File format: . xlsx
    • Number of Row: 522065
    • Number of Attributes: 7

      • BillNo: 6-digit number assigned to each transaction. Nominal.
      • Itemname: Product name. Nominal.
      • Quantity: The quantities of each product per transaction. Numeric.
      • Date: The day and time when each transaction was generated. Numeric.
      • Price: Product price. Numeric.
      • CustomerID: 5-digit number assigned to each customer. Nominal.
      • Country: Name of the country where each customer resides. Nominal.

    imagehttps://user-images.githubusercontent.com/91852182/145270162-fc53e5a3-4ad1-4d06-b0e0-228aabcf6b70.png">

    Libraries in R

    First, we need to load required libraries. Shortly I describe all libraries.

    • arules - Provides the infrastructure for representing, manipulating and analyzing transaction data and patterns (frequent itemsets and association rules).
    • arulesViz - Extends package 'arules' with various visualization. techniques for association rules and item-sets. The package also includes several interactive visualizations for rule exploration.
    • tidyverse - The tidyverse is an opinionated collection of R packages designed for data science.
    • readxl - Read Excel Files in R.
    • plyr - Tools for Splitting, Applying and Combining Data.
    • ggplot2 - A system for 'declaratively' creating graphics, based on "The Grammar of Graphics". You provide the data, tell 'ggplot2' how to map variables to aesthetics, what graphical primitives to use, and it takes care of the details.
    • knitr - Dynamic Report generation in R.
    • magrittr- Provides a mechanism for chaining commands with a new forward-pipe operator, %>%. This operator will forward a value, or the result of an expression, into the next function call/expression. There is flexible support for the type of right-hand side expressions.
    • dplyr - A fast, consistent tool for working with data frame like objects, both in memory and out of memory.
    • tidyverse - This package is designed to make it easy to install and load multiple 'tidyverse' packages in a single step.

    imagehttps://user-images.githubusercontent.com/91852182/145270210-49c8e1aa-9753-431b-a8d5-99601bc76cb5.png">

    Data Pre-processing

    Next, we need to upload Assignment-1_Data. xlsx to R to read the dataset.Now we can see our data in R.

    imagehttps://user-images.githubusercontent.com/91852182/145270229-514f0983-3bbb-4cd3-be64-980e92656a02.png"> imagehttps://user-images.githubusercontent.com/91852182/145270251-6f6f6472-8817-435c-a995-9bc4bfef10d1.png">

    After we will clear our data frame, will remove missing values.

    imagehttps://user-images.githubusercontent.com/91852182/145270286-05854e1a-2b6c-490e-ab30-9e99e731eacb.png">

    To apply Association Rule mining, we need to convert dataframe into transaction data to make all items that are bought together in one invoice will be in ...

  11. Forecast revenue big data market worldwide 2011-2027

    • statista.com
    Updated Feb 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Forecast revenue big data market worldwide 2011-2027 [Dataset]. https://www.statista.com/statistics/254266/global-big-data-market-forecast/
    Explore at:
    Dataset updated
    Feb 13, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    The global big data market is forecasted to grow to 103 billion U.S. dollars by 2027, more than double its expected market size in 2018. With a share of 45 percent, the software segment would become the large big data market segment by 2027.

    What is Big data?

    Big data is a term that refers to the kind of data sets that are too large or too complex for traditional data processing applications. It is defined as having one or some of the following characteristics: high volume, high velocity or high variety. Fast-growing mobile data traffic, cloud computing traffic, as well as the rapid development of technologies such as artificial intelligence (AI) and the Internet of Things (IoT) all contribute to the increasing volume and complexity of data sets.

    Big data analytics

    Advanced analytics tools, such as predictive analytics and data mining, help to extract value from the data and generate new business insights. The global big data and business analytics market was valued at 169 billion U.S. dollars in 2018 and is expected to grow to 274 billion U.S. dollars in 2022. As of November 2018, 45 percent of professionals in the market research industry reportedly used big data analytics as a research method.

  12. m

    Input data and detailed numerical results for 'Improving a State-of-the-Art...

    • data.mendeley.com
    Updated May 26, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Italo G. Santana (2018). Input data and detailed numerical results for 'Improving a State-of-the-Art Heuristic for the Minimum Latency Problem with Data Mining' [Dataset]. http://doi.org/10.17632/sxz37ssdbc.1
    Explore at:
    Dataset updated
    May 26, 2018
    Authors
    Italo G. Santana
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    All used instances and logs from all experiments are available in this dataset.

    There is a README file explaining how to reproduce the experiments in each complementary experiments folder.

  13. MOESM3 of Data mining combined to the multicriteria decision analysis for...

    • springernature.figshare.com
    • figshare.com
    xls
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fatima El Mazouri; Mohammed Chaouki Abounaima; Khalid Zenkouar (2023). MOESM3 of Data mining combined to the multicriteria decision analysis for the improvement of road safety: case of France [Dataset]. http://doi.org/10.6084/m9.figshare.7660091.v1
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Fatima El Mazouri; Mohammed Chaouki Abounaima; Khalid Zenkouar
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    France
    Description

    Additional file 3. The integral matrix of concordance indices.

  14. Pump it Up: Data Mining the Water Table

    • kaggle.com
    Updated Sep 29, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    vdwow (2020). Pump it Up: Data Mining the Water Table [Dataset]. https://www.kaggle.com/datasets/valentindefour/pump-it-up-data-mining-the-water-table
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 29, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    vdwow
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    This dataset is extracted from a data science contest held on DrivenData.org (link here).

    Content

    The dataset contains informations about water pumps located in Tanzania : geography, operating state, installation method, fundings, ...

    Target

    Can you predict which water pumps are faulty?

    Using data from Taarifa and the Tanzanian Ministry of Water, can you predict which pumps are functional, which need some repairs, and which don't work at all? This is an intermediate-level practice competition. Predict one of these three classes based on a number of variables about what kind of pump is operating, when it was installed, and how it is managed. A smart understanding of which waterpoints will fail can improve maintenance operations and ensure that clean, potable water is available to communities across Tanzania.

  15. d

    ASIAS - Some History

    • catalog.data.gov
    • data.staging.idas-ds1.appdat.jsc.nasa.gov
    • +1more
    Updated Apr 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dashlink (2025). ASIAS - Some History [Dataset]. https://catalog.data.gov/dataset/asias-some-history
    Explore at:
    Dataset updated
    Apr 11, 2025
    Dataset provided by
    Dashlink
    Description

    The ASIAS effort builds on demonstrations that an open exchange of information contributes to improved aviation safety. ASIAS is a comprehensive effort, covering the collection and secure maintenance of aviation data, the analysis performed on that data, and long-term research to better extract safety information from the data. In the mid-90s, NASA researchers started briefing the JIMDAT of CAST on how extracting and integrating information from many sources, and multiple perspectives (including controllers and flight crews) could help them improve aviation safety. The NASA Integrated Safety Data for Strategic Response (ISDSR) concept was incorporated into the JIMDAT concept, ASIAS, which was presented to CAST as essential capabilities, and was then adopted. In parallel with these activities, the FAA encouraged NASA to undertake the Information Sharing Initiative (ISI), a collaborative effort among FAA, NASA, the air carriers and the unions, to develop the DNFA and DNAA (two key srouces of data for ASIAS). A 5-yr plan for collaboration between NASA and the FAA to develop ISDSR was proposed, but was never put into place. That plan would have continued the collaboration with provisions for NAS to develop the analytical tools and transfer them to the FAA for implementation. NASA has, and continues to, develop advanced algorithms to mine the various data sources for information that could continue to maintain and improve the safety of the air transportation system. Such algorithms have already been developed by NASA to identify atypical flights revealing unexpected events and etermine why they were anomalous, to identify anomalous cockpit procedures (switches flipped in the cockpit) during takeoff and landing for possible evidence of problems with the automated systems, and to categorize submitted safety reports such as those submitted to ASRS or ASAP into one or more defined categories to aid the search for clues as to why safety-related events may have occurred. ASIAS provides a vital mechanism for monitoring for safety concerns as we transition to the Next Generation Air Transportation System (NextGen). Not only can ASIAS examine for any indication of hypothesized concerns, but, with the NASA-developed data mining tools, ASIAS can also monitor for statistical trends suggesting the potential emergence of new issues unanticipated or unimagined during the design and testing of NextGen concepts. ASIAS has been carefully developed to capitalize upon the best attributes of earlier research at NASA, while also providing necessary guarantees for anonymity and data protection and while using scientifically justified, rigorous methods for estimating frequencies and causality. NASA's role in the ASIAS effort is to continue to develop these advanced data mining tools and methods to better analyze data voluntarily provided by the aviation community. Acronym List: ASAP: Aviation Safety Action Program ASRS: Aviation Safety Reporting System ASIAS: Aviation Safety Information Analysis & Sharing CAST: Commercial Aviation Safety Team FAA: Federal Aviation Administration ISDSR: Integrated Safety Data for Strategic Response ISI: Information Sharing Initiative JIMDAT: Joint Implementation Monitoring Data Analysis Team NASA: National Aeronautics and Space Administration

  16. Data Science Platform Market Analysis, Size, and Forecast 2025-2029: North...

    • technavio.com
    Updated Feb 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Data Science Platform Market Analysis, Size, and Forecast 2025-2029: North America (US and Canada), Europe (France, Germany, UK), APAC (China, India, Japan), South America (Brazil), and Middle East and Africa (UAE) [Dataset]. https://www.technavio.com/report/data-science-platform-market-industry-analysis
    Explore at:
    Dataset updated
    Feb 15, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    Global, Canada, United States
    Description

    Snapshot img

    Data Science Platform Market Size 2025-2029

    The data science platform market size is forecast to increase by USD 763.9 million, at a CAGR of 40.2% between 2024 and 2029.

    The market is experiencing significant growth, driven by the increasing integration of Artificial Intelligence (AI) and Machine Learning (ML) technologies. This fusion enables organizations to derive deeper insights from their data, fueling business innovation and decision-making. Another trend shaping the market is the emergence of containerization and microservices in data science platforms. This approach offers enhanced flexibility, scalability, and efficiency, making it an attractive choice for businesses seeking to streamline their data science operations. However, the market also faces challenges. Data privacy and security remain critical concerns, with the increasing volume and complexity of data posing significant risks. Ensuring robust data security and privacy measures is essential for companies to maintain customer trust and comply with regulatory requirements. Additionally, managing the complexity of data science platforms and ensuring seamless integration with existing systems can be a daunting task, requiring significant investment in resources and expertise. Companies must navigate these challenges effectively to capitalize on the market's opportunities and stay competitive in the rapidly evolving data landscape.

    What will be the Size of the Data Science Platform Market during the forecast period?

    Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
    Request Free SampleThe market continues to evolve, driven by the increasing demand for advanced analytics and artificial intelligence solutions across various sectors. Real-time analytics and classification models are at the forefront of this evolution, with APIs integrations enabling seamless implementation. Deep learning and model deployment are crucial components, powering applications such as fraud detection and customer segmentation. Data science platforms provide essential tools for data cleaning and data transformation, ensuring data integrity for big data analytics. Feature engineering and data visualization facilitate model training and evaluation, while data security and data governance ensure data privacy and compliance. Machine learning algorithms, including regression models and clustering models, are integral to predictive modeling and anomaly detection. Statistical analysis and time series analysis provide valuable insights, while ETL processes streamline data integration. Cloud computing enables scalability and cost savings, while risk management and algorithm selection optimize model performance. Natural language processing and sentiment analysis offer new opportunities for data storytelling and computer vision. Supply chain optimization and recommendation engines are among the latest applications of data science platforms, demonstrating their versatility and continuous value proposition. Data mining and data warehousing provide the foundation for these advanced analytics capabilities.

    How is this Data Science Platform Industry segmented?

    The data science platform industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. DeploymentOn-premisesCloudComponentPlatformServicesEnd-userBFSIRetail and e-commerceManufacturingMedia and entertainmentOthersSectorLarge enterprisesSMEsApplicationData PreparationData VisualizationMachine LearningPredictive AnalyticsData GovernanceOthersGeographyNorth AmericaUSCanadaEuropeFranceGermanyUKMiddle East and AfricaUAEAPACChinaIndiaJapanSouth AmericaBrazilRest of World (ROW)

    By Deployment Insights

    The on-premises segment is estimated to witness significant growth during the forecast period.In the dynamic the market, businesses increasingly adopt solutions to gain real-time insights from their data, enabling them to make informed decisions. Classification models and deep learning algorithms are integral parts of these platforms, providing capabilities for fraud detection, customer segmentation, and predictive modeling. API integrations facilitate seamless data exchange between systems, while data security measures ensure the protection of valuable business information. Big data analytics and feature engineering are essential for deriving meaningful insights from vast datasets. Data transformation, data mining, and statistical analysis are crucial processes in data preparation and discovery. Machine learning models, including regression and clustering, are employed for model training and evaluation. Time series analysis and natural language processing are valuable tools for understanding trends and customer sen

  17. Big Data Analytics Tools Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Sep 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2024). Big Data Analytics Tools Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-big-data-analytics-tools-market
    Explore at:
    pptx, pdf, csvAvailable download formats
    Dataset updated
    Sep 22, 2024
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Big Data Analytics Tools Market Outlook



    The global big data analytics tools market size was valued at approximately USD 45.5 billion in 2023 and is expected to reach around USD 120.9 billion by 2032, growing at a compound annual growth rate (CAGR) of 11.4% during the forecast period. The growth of this market can be attributed to the increasing adoption of advanced analytics tools across various sectors to harness the power of big data.



    One of the primary growth factors driving the big data analytics tools market is the rapid digitization across industries. Organizations are generating massive volumes of data through various sources such as social media, sensors, and transactional databases. The need to analyze this data and derive actionable insights to drive business decisions is propelling the demand for big data analytics tools. These tools enable organizations to gain a competitive edge, improve operational efficiency, and enhance customer experience by providing accurate and timely insights.



    Another significant factor contributing to the market growth is the increasing adoption of AI and machine learning technologies. Integrating these advanced technologies with big data analytics tools has revolutionized the way data is analyzed and interpreted. AI-driven analytics enables predictive and prescriptive insights that help organizations in strategic planning and decision-making processes. Furthermore, the advent of advanced algorithms and computational capabilities has made it possible to process and analyze vast datasets in real-time, further boosting the market growth.



    The proliferation of the Internet of Things (IoT) is also a major driver for the big data analytics tools market. With the increasing number of connected devices, a massive amount of data is being generated every second. Big data analytics tools are essential for managing and analyzing this data to derive meaningful insights. IoT data analytics helps in improving operational efficiencies, optimizing resource utilization, and enhancing product and service offerings. The integration of IoT with big data analytics tools is creating new opportunities for businesses to innovate and grow.



    From a regional perspective, North America holds a significant share in the big data analytics tools market due to the early adoption of advanced technologies and the presence of major industry players. The region's robust IT infrastructure and high investment in research and development activities further accelerate market growth. Europe follows closely, with significant investments in big data projects and stringent data protection regulations driving the demand for analytics tools. The Asia Pacific region is expected to witness the fastest growth during the forecast period, driven by rising digital transformation initiatives and increasing adoption of big data technologies across various industries.



    Component Analysis



    The big data analytics tools market by component is segmented into software and services. The software segment dominates the market and is expected to continue its dominance throughout the forecast period. The software segment includes various types of analytics tools such as data discovery, data visualization, data mining, and predictive analytics software. These tools are essential for analyzing large datasets and extracting valuable insights. The growing need for data-driven decision-making and the increasing complexity of data are driving the demand for advanced analytics software.



    On the other hand, the services segment is also witnessing significant growth. This segment includes professional services such as consulting, implementation, and support & maintenance services. Organizations often require expert assistance in deploying and managing big data analytics tools. Consulting services help businesses in selecting the right analytics tools and creating a robust data strategy. Implementation services ensure the seamless integration of analytics tools into existing IT infrastructure, while support & maintenance services provide ongoing technical assistance to ensure optimal performance. The increasing complexity of big data projects and the need for specialized skills are driving the growth of the services segment.



    The integration of cloud-based analytics tools is also contributing to the growth of the software and services segments. Cloud-based solutions offer scalability, flexibility, and cost-effectiveness, making them an attractive option for organizations of all sizes. The ability to access analytics tools on-demand and pay for only wh

  18. d

    Data from: Learning to Improve Earth Observation Flight Planning

    • catalog.data.gov
    • datasets.ai
    • +4more
    Updated Apr 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dashlink (2025). Learning to Improve Earth Observation Flight Planning [Dataset]. https://catalog.data.gov/dataset/learning-to-improve-earth-observation-flight-planning
    Explore at:
    Dataset updated
    Apr 9, 2025
    Dataset provided by
    Dashlink
    Area covered
    Earth
    Description

    This paper describes a method and system for integrating machine learning with planning and data visualization for the management of mobile sensors for Earth science investigations. Data mining identifies discrepancies between previous observations and predictions made by Earth science models. Locations of these discrepancies become interesting targets for future observations. Such targets become goals used by a flight planner to generate the observation activities. The cycle of observation, data analysis and planning is repeated continuously throughout a multi-week Earth science investigation.

  19. q

    Air Quality Data Mining: Mining the US EPA AirData website for student-led...

    • qubeshub.org
    Updated Aug 24, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mary Williams; Katherine Barry; Deena Wassenberg (2021). Air Quality Data Mining: Mining the US EPA AirData website for student-led evaluation of air quality issues [Dataset]. http://doi.org/10.24918/cs.2015.17
    Explore at:
    Dataset updated
    Aug 24, 2021
    Dataset provided by
    QUBES
    Authors
    Mary Williams; Katherine Barry; Deena Wassenberg
    Description

    Air pollution directly affects human health endpoints including growth, respiratory processes, cardiovascular health, fertility, pregnancy outcomes, and cancer. Therefore, the distribution of air pollution is a topic that is relevant to all, and of direct interest to many students. Air quality varies across space and time, often disproportionally affecting minority communities and impoverished neighborhoods. Air pollution is usually higher in locations where pollution sources are concentrated, such as industrial production facilities, highways, and coal-fired power plants. The United States Environmental Protection Agency manages a national air quality-monitoring program to measure and report air-pollutant levels across the United States. These data cover multiple decades and are publicly available via a website interface. For this lesson, students learn how to mine data from this website. They work in pairs to develop their own questions about air quality or air pollution that span spatial and/or temporal scales, and then gather the data needed to answer their question. The students analyze their data and write a scientific paper describing their work. This laboratory experience requires the students to generate their own questions, gather and interpret data, and draw conclusions, allowing for creativity and instilling ownership and motivation for deeper learning gains.

  20. Online Data Science Training Programs Market Analysis, Size, and Forecast...

    • technavio.com
    Updated Feb 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Online Data Science Training Programs Market Analysis, Size, and Forecast 2025-2029: North America (Mexico), Europe (France, Germany, Italy, and UK), Middle East and Africa (UAE), APAC (Australia, China, India, Japan, and South Korea), South America (Brazil), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/online-data-science-training-programs-market-industry-analysis
    Explore at:
    Dataset updated
    Feb 15, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    Mexico, Germany, Global
    Description

    Snapshot img

    Online Data Science Training Programs Market Size 2025-2029

    The online data science training programs market size is forecast to increase by USD 8.67 billion, at a CAGR of 35.8% between 2024 and 2029.

    The market is experiencing significant growth due to the increasing demand for data science professionals in various industries. The job market offers lucrative opportunities for individuals with data science skills, making online training programs an attractive option for those seeking to upskill or reskill. Another key driver in the market is the adoption of microlearning and gamification techniques in data science training. These approaches make learning more engaging and accessible, allowing individuals to acquire new skills at their own pace. Furthermore, the availability of open-source learning materials has democratized access to data science education, enabling a larger pool of learners to enter the field. However, the market also faces challenges, including the need for continuous updates to keep up with the rapidly evolving data science landscape and the lack of standardization in online training programs, which can make it difficult for employers to assess the quality of graduates. Companies seeking to capitalize on market opportunities should focus on offering up-to-date, high-quality training programs that incorporate microlearning and gamification techniques, while also addressing the challenges of continuous updates and standardization. By doing so, they can differentiate themselves in a competitive market and meet the evolving needs of learners and employers alike.

    What will be the Size of the Online Data Science Training Programs Market during the forecast period?

    Request Free SampleThe online data science training market continues to evolve, driven by the increasing demand for data-driven insights and innovations across various sectors. Data science applications, from computer vision and deep learning to natural language processing and predictive analytics, are revolutionizing industries and transforming business operations. Industry case studies showcase the impact of data science in action, with big data and machine learning driving advancements in healthcare, finance, and retail. Virtual labs enable learners to gain hands-on experience, while data scientist salaries remain competitive and attractive. Cloud computing and data science platforms facilitate interactive learning and collaborative research, fostering a vibrant data science community. Data privacy and security concerns are addressed through advanced data governance and ethical frameworks. Data science libraries, such as TensorFlow and Scikit-Learn, streamline the development process, while data storytelling tools help communicate complex insights effectively. Data mining and predictive analytics enable organizations to uncover hidden trends and patterns, driving innovation and growth. The future of data science is bright, with ongoing research and development in areas like data ethics, data governance, and artificial intelligence. Data science conferences and education programs provide opportunities for professionals to expand their knowledge and expertise, ensuring they remain at the forefront of this dynamic field.

    How is this Online Data Science Training Programs Industry segmented?

    The online data science training programs industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. TypeProfessional degree coursesCertification coursesApplicationStudentsWorking professionalsLanguageR programmingPythonBig MLSASOthersMethodLive streamingRecordedProgram TypeBootcampsCertificatesDegree ProgramsGeographyNorth AmericaUSMexicoEuropeFranceGermanyItalyUKMiddle East and AfricaUAEAPACAustraliaChinaIndiaJapanSouth KoreaSouth AmericaBrazilRest of World (ROW)

    By Type Insights

    The professional degree courses segment is estimated to witness significant growth during the forecast period.The market encompasses various segments catering to diverse learning needs. The professional degree course segment holds a significant position, offering comprehensive and in-depth training in data science. This segment's curriculum covers essential aspects such as statistical analysis, machine learning, data visualization, and data engineering. Delivered by industry professionals and academic experts, these courses ensure a high-quality education experience. Interactive learning environments, including live lectures, webinars, and group discussions, foster a collaborative and engaging experience. Data science applications, including deep learning, computer vision, and natural language processing, are integral to the market's growth. Data analysis, a crucial application, is gaining traction due to the increasing demand

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Dashlink (2025). Data Mining in Systems Health Management [Dataset]. https://catalog.data.gov/dataset/data-mining-in-systems-health-management

Data Mining in Systems Health Management

Explore at:
14 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Apr 10, 2025
Dataset provided by
Dashlink
Description

This chapter presents theoretical and practical aspects associated to the implementation of a combined model-based/data-driven approach for failure prognostics based on particle filtering algorithms, in which the current esti- mate of the state PDF is used to determine the operating condition of the system and predict the progression of a fault indicator, given a dynamic state model and a set of process measurements. In this approach, the task of es- timating the current value of the fault indicator, as well as other important changing parameters in the environment, involves two basic steps: the predic- tion step, based on the process model, and an update step, which incorporates the new measurement into the a priori state estimate. This framework allows to estimate of the probability of failure at future time instants (RUL PDF) in real-time, providing information about time-to- failure (TTF) expectations, statistical confidence intervals, long-term predic- tions; using for this purpose empirical knowledge about critical conditions for the system (also referred to as the hazard zones). This information is of paramount significance for the improvement of the system reliability and cost-effective operation of critical assets, as it has been shown in a case study where feedback correction strategies (based on uncertainty measures) have been implemented to lengthen the RUL of a rotorcraft transmission system with propagating fatigue cracks on a critical component. Although the feed- back loop is implemented using simple linear relationships, it is helpful to provide a quick insight into the manner that the system reacts to changes on its input signals, in terms of its predicted RUL. The method is able to manage non-Gaussian pdf’s since it includes concepts such as nonlinear state estimation and confidence intervals in its formulation. Real data from a fault seeded test showed that the proposed framework was able to anticipate modifications on the system input to lengthen its RUL. Results of this test indicate that the method was able to successfully suggest the correction that the system required. In this sense, future work will be focused on the development and testing of similar strategies using different input-output uncertainty metrics.

Search
Clear search
Close search
Google apps
Main menu