RTB Maps is a cloud-based electronic Atlas. We used ArGIS 10 for Desktop with Spatial Analysis Extension, ArcGIS 10 for Server on-premise, ArcGIS API for Javascript, IIS web services based on .NET, and ArcGIS Online combining data on the cloud with data and applications on our local server to develop an Atlas that brings together many of the map themes related to development of roots, tubers and banana crops. The Atlas is structured to allow our participating scientists to understand the distribution of the crops and observe the spatial distribution of many of the obstacles to production of these crops. The Atlas also includes an application to allow our partners to evaluate the importance of different factors when setting priorities for research and development. The application uses weighted overlay analysis within a multi-criteria decision analysis framework to rate the importance of factors when establishing geographic priorities for research and development.Datasets of crop distribution maps, agroecology maps, biotic and abiotic constraints to crop production, poverty maps and other demographic indicators are used as a key inputs to multi-objective criteria analysis.Further metadata/references can be found here: http://gisweb.ciat.cgiar.org/RTBmaps/DataAvailability_RTBMaps.htmlDISCLAIMER, ACKNOWLEDGMENTS AND PERMISSIONS:This service is provided by Roots, Tubers and Bananas CGIAR Research Program as a public service. Use of this service to retrieve information constitutes your awareness and agreement to the following conditions of use.This online resource displays GIS data and query tools subject to continuous updates and adjustments. The GIS data has been taken from various, mostly public, sources and is supplied in good faith.RTBMaps GIS Data Disclaimer• The data used to show the Base Maps is supplied by ESRI.• The data used to show the photos over the map is supplied by Flickr.• The data used to show the videos over the map is supplied by Youtube.• The population map is supplied to us by CIESIN, Columbia University and CIAT.• The Accessibility map is provided by Global Environment Monitoring Unit - Joint Research Centre of the European Commission. Accessibility maps are made for a specific purpose and they cannot be used as a generic dataset to represent "the accessibility" for a given study area.• Harvested area and yield for banana, cassava, potato, sweet potato and yam for the year 200, is provided by EarthSat (University of Minnesota’s Institute on the Environment-Global Landscapes initiative and McGill University’s Land Use and the Global Environment lab). Dataset from Monfreda C., Ramankutty N., and Foley J.A. 2008.• Agroecology dataset: global edapho-climatic zones for cassava based on mean growing season, temperature, number of dry season months, daily temperature range and seasonality. Dataset from CIAT (Carter et al. 1992)• Demography indicators: Total and Rural Population from Center for International Earth Science Information Network (CIESIN) and CIAT 2004.• The FGGD prevalence of stunting map is a global raster datalayer with a resolution of 5 arc-minutes. The percentage of stunted children under five years old is reported according to the lowest available sub-national administrative units: all pixels within the unit boundaries will have the same value. Data have been compiled by FAO from different sources: Demographic and Health Surveys (DHS), UNICEF MICS, WHO Global Database on Child Growth and Malnutrition, and national surveys. Data provided by FAO – GIS Unit 2007.• Poverty dataset: Global poverty headcount and absolute number of poor. Number of people living on less than $1.25 or $2.00 per day. Dataset from IFPRI and CIATTHE RTBMAPS GROUP MAKES NO WARRANTIES OR GUARANTEES, EITHER EXPRESSED OR IMPLIED AS TO THE COMPLETENESS, ACCURACY, OR CORRECTNESS OF THE DATA PORTRAYED IN THIS PRODUCT NOR ACCEPTS ANY LIABILITY, ARISING FROM ANY INCORRECT, INCOMPLETE OR MISLEADING INFORMATION CONTAINED THEREIN. ALL INFORMATION, DATA AND DATABASES ARE PROVIDED "AS IS" WITH NO WARRANTY, EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO, FITNESS FOR A PARTICULAR PURPOSE. By accessing this website and/or data contained within the databases, you hereby release the RTB group and CGCenters, its employees, agents, contractors, sponsors and suppliers from any and all responsibility and liability associated with its use. In no event shall the RTB Group or its officers or employees be liable for any damages arising in any way out of the use of the website, or use of the information contained in the databases herein including, but not limited to the RTBMaps online Atlas product.APPLICATION DEVELOPMENT:• Desktop and web development - Ernesto Giron E. (GeoSpatial Consultant) e.giron.e@gmail.com• GIS Analyst - Elizabeth Barona. (Independent Consultant) barona.elizabeth@gmail.comCollaborators:Glenn Hyman, Bernardo Creamer, Jesus David Hoyos, Diana Carolina Giraldo Soroush Parsa, Jagath Shanthalal, Herlin Rodolfo Espinosa, Carlos Navarro, Jorge Cardona and Beatriz Vanessa Herrera at CIAT, Tunrayo Alabi and Joseph Rusike from IITA, Guy Hareau, Reinhard Simon, Henry Juarez, Ulrich Kleinwechter, Greg Forbes, Adam Sparks from CIP, and David Brown and Charles Staver from Bioversity International.Please note these services may be unavailable at times due to maintenance work.Please feel free to contact us with any questions or problems you may be having with RTBMaps.
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
Abstract This dataset and its metadata statement were supplied to the Bioregional Assessment Programme by a third party and are presented here as originally supplied. This dataset was sourced from the Queensland Department of Natural Resources and Mines in 2012. Information provided by the Department describes the dataset as follows: This data was originally provided on DVD and contains the converted shapefiles, layer files, raster images and project .mxd files used on the Queensland geology …Show full descriptionAbstract This dataset and its metadata statement were supplied to the Bioregional Assessment Programme by a third party and are presented here as originally supplied. This dataset was sourced from the Queensland Department of Natural Resources and Mines in 2012. Information provided by the Department describes the dataset as follows: This data was originally provided on DVD and contains the converted shapefiles, layer files, raster images and project .mxd files used on the Queensland geology and structural framework map. The maps were done in ArcGIS 9.3.1 and the data stored in file geodatabases, topology created and validated. This provides greater data quality by performing topological validation on the feature's spatial relationships. For the purposes of the DVD, shapefiles were created from the file geodatabases and for MapInfo users MapInfo .tab and .wor files. The shapefiles on the DVD are a revision of the 1975 Queensland geology data, and are both are available for display, query and download on the department's online GIS application. The Queensland geology map is a digital representation of the distribution or extent of geological units within Queensland. In the GIS, polygons have a range of attributes including unit name, type of unit, age, lithological description, dominant rock type, and an abbreviated symbol for use in labelling the polygons. The lines in this dataset are a digital representation of the position of the boundaries of geological units and other linear features such as faults and folds. The lines are attributed with a description of the type of line represented. Approximately 2000 rock units were grouped into the 250 map units in this data set. The digital data was generalised and simplified from the Department's detailed geological data and was captured at 1:500 000 scale for output at 1:2 000 000 scale. In the ESRI version, a layer file is provided which presents the units in the colours and patterns used on the printed hard copy map. For Map Info users, a simplified colour palette is provided without patterns. However a georeferenced image of the hard copy map is included and can be displayed as a background in both Arc Map and Map Info. The geological framework of Queensland is classified by structural or tectonic unit (provinces and basins) in which the rocks formed. These are referred to as basins (or in some cases troughs and depressions) where the original form and structure are still apparent. Provinces (and subprovinces) are generally older basins that have been strongly tectonised and/or metamorphosed so that the original basin extent and form are no longer preserved. Note that intrusive and some related volcanic rocks that overlap these provinces and basins have not been included in this classification. The map was compiled using boundaries modified and generalised from the 1:2 000 000 Queensland Geology map (2012). Outlines of subsurface basins are also shown and these are based on data and published interpretations from petroleum exploration and geophysical surveys (seismic, gravity and magnetics). For the structural framework dataset, two versions are provided. In QLD_STRUCTURAL_FRAMEWORK, polygons are tagged with the name of the surface structural unit, and names of underlying units are imbedded in a text string in the HIERARCHY field. In QLD_STRUCTURAL_FRAMEWORK_MULTI_POLYS, the data is structured into a series of overlapping, multi-part polygons, one for each structural unit. Two layer files are provided with the ESRI data, one where units are symbolised by name. Because the dataset has been designed for units display in the order of superposition, this layer file assigns colours to the units that occur at the surface with concealed units being left uncoloured. Another layer file symbolises them by the orogen of which they are part. A similar set of palettes has been provided for Map Info. Dataset History Details on the source data can be found in the xml file associated with data layer. Data in this release *ESRI.shp and MapInfo .tab files of rock unit polygons and lines with associated layer attributes of Queensland geology *ESRI.shp and MapInfo .tab files of structural unit polygons and lines with associated layer attributes of structural framework *ArcMap .mxd and .lyr files and MapInfo .wor files containing symbology *Georeferenced Queensland geology map, gravity and magnetic images *Queensland geology map, structural framework and schematic diagram PDF files *Data supplied in geographical coordinates (latitude/longitude) based on Geocentric Datum of Australia - GDA94 Accessing the data Programs exist for the viewing and manipulation of the digital spatial data contained on this DVD. Accessing the digital datasets will require GIS software. The following GIS viewers can be downloaded from the internet. ESRI ArcExplorer can be found by a search of www.esriaustralia.com.au and MapInfo ProViewer by a search on www.pbinsight.com.au collectively ("the websites"). Metadata Metadata is contained in .htm files placed in the root folder of each vector data folder. For ArcMap users metadata for viewing in ArcCatalog is held in an .xml file with each shapefile within the ESRI Shapefile folders. Disclaimer The State of Queensland is not responsible for the privacy practices or the content of the websites and makes no statements, representations, or warranties about the content or accuracy or completeness of, any information or products contained on the websites. Despite our best efforts, the State of Queensland makes no warranties that the information or products available on the websites are free from infection by computer viruses or other contamination. The State of Queensland disclaims all responsibility and all liability (including without limitation, liability in negligence) for all expenses, losses, damages and costs you might incur as a result of accessing the websites or using the products available on the websites in any way, and for any reason. The State of Queensland has included the websites in this document as an information source only. The State of Queensland does not promote or endorse the websites or the programs contained on them in any way. WARNING: The Queensland Government and the Department of Natural Resources and Mines accept no liability for and give no undertakings, guarantees or warranties concerning the accuracy, completeness or fitness for the purposes of the information provided. The consumer must take all responsible steps to protect the data from unauthorised use, reproduction, distribution or publication by other parties. Please view the 'readme.html' and 'licence.html' file for further, more complete information Dataset Citation Geological Survey of Queensland (2012) Queensland geology and structural framework - GIS data July 2012. Bioregional Assessment Source Dataset. Viewed 07 December 2018, http://data.bioregionalassessments.gov.au/dataset/69da6301-04c1-4993-93c1-4673f3e22762.
Terms of Use:
Data Limitations Disclaimer
The MassDEP Estimated Sewer System Service Area Boundaries datalayer may not be complete, may contain errors, omissions, and other inaccuracies, and the data are subject to change. The user’s use of and/or reliance on the information contained in the Document (e.g. data) shall be at the user’s own risk and expense. MassDEP disclaims any responsibility for any loss or harm that may result to the user of this data or to any other person due to the user’s use of the Document.
All sewer service area delineations are estimates for broad planning purposes and should only be used as a guide. The data is not appropriate for site-specific or parcel-specific analysis. Not all properties within a sewer service area are necessarily served by the system, and some properties outside the mapped service areas could be served by the wastewater utility – please contact the relevant wastewater system. Not all service areas have been confirmed by the sewer system authorities.
This is an ongoing data development project. Attempts have been made to contact all sewer/wastewater systems, but not all have responded with information on their service area. MassDEP will continue to collect and verify this information. Some sewer service areas included in this datalayer have not been verified by the POTWs, privately-owned treatment works, GWDPs, or the municipality involved, but since many of those areas are based on information published online by the municipality, the utility, or in a publicly available report, they are included in the estimated sewer service area datalayer.
Please use the following citation to reference these data
MassDEP. Water Utility Resilience Program. 2025. Publicly-Owned Treatment Work and Non-Publicly-Owned Sewer Service Areas (PubV2024_12).
We want to learn about the data uses. If you use this dataset, please notify staff in the Water Resilience program (WURP@mass.gov).
Layers and Tables:
The MassDEP Estimated Sewer System Service Area data layer comprises two feature classes and a supporting table:
Publicly-Owned Treatment Works (POTW) Sewer Service Areas feature class SEWER_SERVICE_AREA_POTW_POLY includes polygon features for sewer service areas systems operated by publicly owned treatment works (POTWs)Non-Publicly Owned Treatment Works (NON-POTW) Sewer Service Areas feature class SEWER_SERVICE_AREA_NONPOTW_POLY includes polygon features for sewer service areas for operated by NON publicly owned treatment works (NON-POTWs)The Sewer Service Areas Unlocated Sites table SEWER_SERVICE_AREA_USL contains a list of known, unmapped active POTW and NON-POTW services areas at the time of publication.
ProductionData Universe
Effluent wastewater treatment plants in Massachusetts are permitted either through the Environmental Protection Agency’s (EPA) National Pollutant Discharge Elimination System (NPDES) surface water discharge permit program or the MassDEP Groundwater Discharge Permit Program. The WURP has delineated active service areas served by publicly and privately-owned effluent treatment works with a NPDES permit or a groundwater discharge permit.
National Pollutant Discharge Elimination System (NPDES) Permits
In the Commonwealth of Massachusetts, the EPA is the permitting authority for regulating point sources that discharge pollutants to surface waters. NPDES permits regulate wastewater discharge by limiting the quantities of pollutants to be discharged and imposing monitoring requirements and other conditions. NPDES permits are typically co-issued by EPA and the MassDEP. The limits and/or requirements in the permit ensure compliance with the Massachusetts Surface Water Quality Standards and Federal Regulations to protect public health and the aquatic environment. Areas served by effluent treatment plants with an active NPDES permit are included in this datalayer based on a master list developed by MassDEP using information sourced from the EPA’s Integrated Compliance Information System (ICIS).
Groundwater Discharge (GWD) Permits
In addition to surface water permittees, the WURP has delineated all active systems served by publicly and privately owned effluent treatment works with groundwater discharge (GWD) permits, and some inactive service areas. Groundwater discharge permits are required for systems discharging over 10,000 GPD sanitary wastewater – these include effluent treatment systems for public, district, or privately owned effluent treatment systems. Areas served by an effluent treatment plant with an active GWD permit are included in this datalayer based on lists received from MassDEP Wastewater staff.
Creation of Unique IDs for Each Service Area
The Sewer Service Area datalayer contains polygons that represent the service area of a particular wastewater system within a particular municipality. Every discharge permittee is assigned a unique NPDES permit number by EPA or a unique GWD permit identifier by MassDEP. MassDEP WURP creates a unique Sewer_ID for each service area by combining the municipal name of the municipality served with the permit number (NPDES or GWD) ascribed to the sewer that is serving that area. Some municipalities contain more than one sewer system, but each sewer system has a unique Sewer_ID. Occasionally the area served by a sewer system will overlap another town by a small amount – these small areas are generally not given a unique ID. The Estimated sewer Service Area datalayer, therefore, contains polygons with a unique Sewer_ID for each sewer service area. In addition, some municipalities will have multiple service areas being served by the same treatment plant – the Sewer_ID for these will contain additional identification, such as the name of the system, to uniquely identify each system.
Classifying System Service Areas
WURP staff reviewed the service areas for each system and, based on OWNER_TYPE, classified as either a publicly-owned treatment work (POTW) or a NON-POTW (see FAC_TYPE field). Each service area is further classified based on the population type served (see SECTOR field).
Methodologies and Data Sources
Several methodologies were used to create service area boundaries using various sources, including data received from the sewer system in response to requests for information from the MassDEP WURP project, information on file at MassDEP, and service area maps found online at municipal and wastewater system websites. When MassDEP received sewer line data rather than generalized areas, 300-foot buffers were created around the sewer lines to denote service areas and then edited to incorporate generalizations. Some municipalities submitted parcel data or address information to be used in delineating service areas. Many of the smaller GWD permitted sewer service areas were delineated using parcel boundaries related to the address on file.
Verification Process
Small-scale pdf file maps with roads and other infrastructure were sent to systems for corrections or verifications. If the system were small, such as a condominium complex or residential school, the relevant parcels were often used as the basis for the delineated service area. In towns where 97% or more of their population is served by the wastewater system and no other service area delineation was available, the town boundary was used as the service area boundary. Some towns responded to the request for information or verification of service areas by stating that the town boundary should be used since all, or nearly all, of the municipality is served by one wastewater system.
To ensure active systems are mapped, WURP staff developed two work flows. For NPDES-permitted systems, WURP staff reviewed available information on EPA’s ICIS database and created a master list of these systems. Staff will work to routinely update this master list by reviewing the ICIS database for new NPDES permits. The master list will serve as a method for identifying active systems, inactive systems, and unmapped systems. For GWD permittees, GIS staff established a direct linkage to the groundwater database, which allows for populating information into data fields and identifying active systems, inactive systems, and unmapped systems.
All unmapped systems are added to the Sewer Service Area Unlocated List (SEWER_SERVICE_AREAS_USL) for future mapping. Some service areas have not been mapped but their general location is represented by a small circle which serves as a placeholder - the location of these circles are estimated based on the general location of the treatment plant or the general estimated location of the service area - these do not represent the actual service area.
Percent Served Statistics The attribute table for the POTW sewer service areas (SEWER_SERVICE_AREA_POTW_POLY) has several fields relating to the percent of the town served by the particular system and one field describing the percent of town served by all systems in the town. The field ‘Percent AREA Served by System’ is strictly a calculation done dividing the area of the system by the total area of the town and multiplying by 100. In contrast, the field ‘Percent Served by System’, is not based on a particular calculation or source – it is an estimate based on various sources – these estimates are for planning purposes only. Data includes information from municipal websites and associated plans, the 1990 Municipal Priority list from CMR 310 14.17, the 2004 Pioneer Institute for Public Policy Research “percent on sewer” document, information contained on NPDES Permits and MassDEP Wastewater program staff input. Not all POTW systems have percent served statistics. Percentage may reflect the percentage of parcels served, the percent of area within a community served or the population served and should not be used for legal boundary definition or regulatory interpretation.
Sources of information for estimated wastewater service areas:
EEOA Water Assets
This map service is a one-stop location to view and explore Kentucky geologic map data and related-data (geologic outcrops, photos, and diagrams), Kentucky water wells and springs, Kentucky oil and gas wells. All features are provided by the Kentucky Geological Survey via ArcGIS Server services. This map service displays the 1:500,000-scale geologic map of Kentucky at scales smaller than 1:100,000, and 1:24,000-scale geological quadrangle data at larger scales. The 1:500,000-scale geologic map data were derived from the 1988 Geologic Map of Kentucky, which was compiled by Martin C. Noger (KGS) from the 1981 Geologic Map of Kentucky (Scale 1:250,000) by McDowell and others (USGS). The 1:24,000-scale geologic map data and the fault data were compiled from 707 Geological Survey 7.5-minute geologic quadrangle maps, which were digitized during the Kentucky Geological Survey Digital Mapping Program (1996-2006).The basemap data is provided via ArcGIS Server services hosted by the Kentucky Office of Geographic Information.Some tools are provided to help explore the map data:- Query tool: use this tool to search on the KGS database of lithologic descriptions. Most descriptions are derived from the 707 1:24,000 geological quadrangle maps. Once a search is completed, every unit that contains the search parameters is highlighted on the map service.- ID tools: users can identify and get detailed info on geologic units and other map features using either the point, area, or buffer identification tools.A few notes on this service:- the legend is dynamic for the viewed extent. It is provided via a database call using the current map extent.- the oil and gas and water wells are ArcGIS Server services that update dynamically from the KGS database.- the geologic map and faults are dynamic ArcGIS Server map services.- the user can link to other geologic data for the viewed extent using the links provided in the "Geologic Info" tab.- you can query the entire KGS lithologic description database and highlight the relevant geologic units based on the query.
This polygon files contains 2015-2016 school-year data delineating school attendance boundaries. These data were collected and processed as part of the School Attendance Boundary Survey (SABS) project which was funded by NCES to create geography delineating school attendance boundaries. Original source information that was used to create these boundary files were collected were collected over a web-based self-reporting system, through e-mail, and mailed paper maps. The web application provided instructions and assistance to users via a user guide, a frequently asked questions document, and instructional videos. Boundaries supplied outside of the online reporting system typically fell into one of six categories: a digital geographic file, such as a shapefile or KML file; digital image files, such as jpegs and pdfs; narrative descriptions; an interactive web map; Excel or pdf address lists; and paper maps. 2015 TIGER/line features (that consist of streets, hydrography, railways, etc.) were used to digitize school attendance boundaries and was the primary source of information used to digitize analog information. This practice works well as most school attendance boundaries align with streets, railways, water bodies and similar line features included in the 2015 TIGER/line "edges" files. In those few cases in which a portion of a school attendance boundary serves both sides of a street contractor staff used Esri’s Imagery base map to estimate the property lines of parcels. The data digitized from analog maps and verbal descriptions do not conform to cadastral data (and many of the original GIS files created by school districts do not conform with cadastral or parcel data).The SABS 2015-2016 file uses the WGS 1984 Web Mercator Auxiliary Sphere coordinate system.Additional information about SABS can be found on the EDGE website.The SABS dataset is intended for research purposes only and reflects a single snapshot in time. School boundaries frequently change from year to year. To verify legal descriptions of boundaries, users must contact the school district directly.All information contained in this file is in the public domain. Data users are advised to review NCES program documentation and feature class metadata to understand the limitations and appropriate use of these data.
The information contained on the graphic documents of a planning document shall be added either for regulatory reasons or for information purposes: — the information to be annexed to the planning documents in accordance with Articles R123-13 and R123-14 of the Planning Code, — information reported on graphic documents for information purposes.
L_INFO_PCT_PLU_019 The information contained in graphic documents of a PLU or POS urban planning document shall be added either for regulatory reasons or for information purposes: — the information to be annexed to the planning documents in accordance with Articles R123-13 and R123-14 of the Planning Code, — information reported on graphic documents for information purposes.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This abstract contains links to public ArcGIS maps that include locations of carbonate springs and some of their characteristics. Information for accessing and navigating through the maps are included in a PowerPoint presentation IN THE FILE UPLOAD SECTION BELOW. Three separate data sets are included in the maps:
Several base maps are included in the links. The US carbonate map describes and categorizes carbonates (e.g., depth from surface, overlying geology/ice, climate). The carbonate springs map categorizes springs as being urban, specifically within 1000 ft of a road, or rural. The basis for this categorization was that the heat island effect defines urban as within a 1000 ft of a road. There are other methods for defining urban versus rural to consider. Map links and details of the information they contain are listed below.
Map set 1: The WQP map provides three mapping options separated by the parameters available at each spring site. These maps summarize discrete water quality samples, but not data logger availability. Information at each spring provides links for where users can explore further data.
Option 1: WQP data with urban and rural springs labeled, with highlight of springs with or without NWIS data https://www.arcgis.com/home/item.html?id=2ce914ec01f14c20b58146f5d9702d8a
Options 2: WQP data by major ions and a few other solutes https://www.arcgis.com/home/item.html?id=5a114d2ce24c473ca07ef9625cd834b8
Option 3:WQP data by various carbon species https://www.arcgis.com/home/item.html?id=ae406f1bdcd14f78881905c5e0915b96
Map 2: The worldwide carbonate map in the WoKaS data set (citation below) includes a description of carbonate purity and distribution of urban and rural springs, for which discharge data are available: https://www.arcgis.com/apps/mapviewer/index.html?webmap=5ab43fdb2b784acf8bef85b61d0ebcbe.
Reference: Olarinoye, T., Gleeson, T., Marx, V., Seeger, S., Adinehvand, R., Allocca, V., Andreo, B., Apaéstegui, J., Apolit, C., Arfib, B. and Auler, A., 2020. Global karst springs hydrograph dataset for research and management of the world’s fastest-flowing groundwater. Scientific Data, 7(1), pp.1-9.
Map 3: Karst and spring data from selected states: This map includes sites that members of the RCN have suggested to our group.
https://uageos.maps.arcgis.com/apps/mapviewer/index.html?webmap=28ed22a14bb749e2b22ece82bf8a8177
This data set is incomplete (as of October 13, 2022 it includes Florida and Missouri). We are looking for more information. You can share data links to additional data by typing them into the hydroshare page created for our group. Then new sites will periodically be added to the map: https://www.hydroshare.org/resource/0cf10e9808fa4c5b9e6a7852323e6b11/
Acknowledgements: These maps were created by Michael Jones, University of Arkansas and Shishir Sarker, University of Kentucky with help from Laura Toran and Francesco Navarro, Temple University.
TIPS FOR NAVIGATING THE MAPS ARE IN THE POWERPOINT DOCUMENT IN THE FILE UPLOAD SECTION BELOW.
Terms of UseData Limitations and DisclaimerThe user’s use of and/or reliance on the information contained in the Document shall be at the user’s own risk and expense. MassDEP disclaims any responsibility for any loss or harm that may result to the user of this data or to any other person due to the user’s use of the Document.This is an ongoing data development project. Attempts have been made to contact all PWS systems, but not all have responded with information on their service area. MassDEP will continue to collect and verify this information. Some PWS service areas included in this datalayer have not been verified by the PWS or the municipality involved, but since many of those areas are based on information published online by the municipality, the PWS, or in a publicly available report, they are included in the estimated PWS service area datalayer.Please note: All PWS service area delineations are estimates for broad planning purposes and should only be used as a guide. The data is not appropriate for site-specific or parcel-specific analysis. Not all properties within a PWS service area are necessarily served by the system, and some properties outside the mapped service areas could be served by the PWS – please contact the relevant PWS. Not all service areas have been confirmed by the systems.Please use the following citation to reference these data:MassDEP, Water Utility Resilience Program. 2025. Community and Non-Transient Non-Community Public Water System Service Area (PubV2025_3).IMPORTANT NOTICE: This MassDEP Estimated Water Service datalayer may not be complete, may contain errors, omissions, and other inaccuracies and the data are subject to change. This version is published through MassGIS. We want to learn about the data uses. If you use this dataset, please notify staff in the Water Utility Resilience Program (WURP@mass.gov).This GIS datalayer represents approximate service areas for Public Water Systems (PWS) in Massachusetts. In 2017, as part of its “Enhancing Resilience and Emergency Preparedness of Water Utilities through Improved Mapping” (Critical Infrastructure Mapping Project ), the MassDEP Water Utility Resilience Program (WURP) began to uniformly map drinking water service areas throughout Massachusetts using information collected from various sources. Along with confirming existing public water system (PWS) service area information, the project collected and verified estimated service area delineations for PWSs not previously delineated and will continue to update the information contained in the datalayers. As of the date of publication, WURP has delineated Community (COM) and Non-Transient Non-Community (NTNC) service areas. Transient non-community (TNCs) are not part of this mapping project.Layers and Tables:The MassDEP Estimated Public Water System Service Area data comprises two polygon feature classes and a supporting table. Some data fields are populated from the MassDEP Drinking Water Program’s Water Quality Testing System (WQTS) and Annual Statistical Reports (ASR).The Community Water Service Areas feature class (PWS_WATER_SERVICE_AREA_COMM_POLY) includes polygon features that represent the approximate service areas for PWS classified as Community systems.The NTNC Water Service Areas feature class (PWS_WATER_SERVICE_AREA_NTNC_POLY) includes polygon features that represent the approximate service areas for PWS classified as Non-Transient Non-Community systems.The Unlocated Sites List table (PWS_WATER_SERVICE_AREA_USL) contains a list of known, unmapped active Community and NTNC PWS services areas at the time of publication.ProductionData UniversePublic Water Systems in Massachusetts are permitted and regulated through the MassDEP Drinking Water Program. The WURP has mapped service areas for all active and inactive municipal and non-municipal Community PWSs in MassDEP’s Water Quality Testing Database (WQTS). Community PWS refers to a public water system that serves at least 15 service connections used by year-round residents or regularly serves at least 25 year-round residents.All active and inactive NTNC PWS were also mapped using information contained in WQTS. An NTNC or Non-transient Non-community Water System refers to a public water system that is not a community water system and that has at least 15 service connections or regularly serves at least 25 of the same persons or more approximately four or more hours per day, four or more days per week, more than six months or 180 days per year, such as a workplace providing water to its employees.These data may include declassified PWSs. Staff will work to rectify the status/water services to properties previously served by declassified PWSs and remove or incorporate these service areas as needed.Maps of service areas for these systems were collected from various online and MassDEP sources to create service areas digitally in GIS. Every PWS is assigned a unique PWSID by MassDEP that incorporates the municipal ID of the municipality it serves (or the largest municipality it serves if it serves multiple municipalities). Some municipalities contain more than one PWS, but each PWS has a unique PWSID. The Estimated PWS Service Area datalayer, therefore, contains polygons with a unique PWSID for each PWS service area.A service area for a community PWS may serve all of one municipality (e.g. Watertown Water Department), multiple municipalities (e.g. Abington-Rockland Joint Water Works), all or portions of two or more municipalities (e.g. Provincetown Water Dept which serves all of Provincetown and a portion of Truro), or a portion of a municipality (e.g. Hyannis Water System, which is one of four PWSs in the town of Barnstable).Some service areas have not been mapped but their general location is represented by a small circle which serves as a placeholder. The location of these circles are estimates based on the general location of the source wells or the general estimated location of the service area - these do not represent the actual service area.Service areas were mapped initially from 2017 to 2022 and reflect varying years for which service is implemented for that service area boundary. WURP maintains the dataset quarterly with annual data updates; however, the dataset may not include all current active PWSs. A list of unmapped PWS systems is included in the USL table PWS_WATER_SERVICE_AREA_USL available for download with the dataset. Some PWSs that are not mapped may have come online after this iteration of the mapping project; these will be reconciled and mapped during the next phase of the WURP project. PWS IDs that represent regional or joint boards with (e.g. Tri Town Water Board, Randolph/Holbrook Water Board, Upper Cape Regional Water Cooperative) will not be mapped because their individual municipal service areas are included in this datalayer.PWSs that do not have corresponding sources, may be part of consecutive systems, may have been incorporated into another PWSs, reclassified as a different type of PWS, or otherwise taken offline. PWSs that have been incorporated, reclassified, or taken offline will be reconciled during the next data update.Methodologies and Data SourcesSeveral methodologies were used to create service area boundaries using various sources, including data received from the systems in response to requests for information from the MassDEP WURP project, information on file at MassDEP, and service area maps found online at municipal and PWS websites. When provided with water line data rather than generalized areas, 300-foot buffers were created around the water lines to denote service areas and then edited to incorporate generalizations. Some municipalities submitted parcel data or address information to be used in delineating service areas.Verification ProcessSmall-scale PDF file maps with roads and other infrastructure were sent to every PWS for corrections or verifications. For small systems, such as a condominium complex or residential school, the relevant parcels were often used as the basis for the delineated service area. In towns where 97% or more of their population is served by the PWS and no other service area delineation was available, the town boundary was used as the service area boundary. Some towns responded to the request for information or verification of service areas by stating that the town boundary should be used since all or nearly all of the municipality is served by the PWS.Sources of information for estimated drinking water service areasThe following information was used to develop estimated drinking water service areas:EOEEA Water Assets Project (2005) water lines (these were buffered to create service areas)Horsely Witten Report 2008Municipal Master Plans, Open Space Plans, Facilities Plans, Water Supply System Webpages, reports and online interactive mapsGIS data received from PWSDetailed infrastructure mapping completed through the MassDEP WURP Critical Infrastructure InitiativeIn the absence of other service area information, for municipalities served by a town-wide water system serving at least 97% of the population, the municipality’s boundary was used. Determinations of which municipalities are 97% or more served by the PWS were made based on the Percent Water Service Map created in 2018 by MassDEP based on various sources of information including but not limited to:The Winter population served submitted by the PWS in the ASR submittalThe number of services from WQTS as a percent of developed parcelsTaken directly from a Master Plan, Water Department Website, Open Space Plan, etc. found onlineCalculated using information from the town on the population servedMassDEP staff estimateHorsely Witten Report 2008Calculation based on Water System Areas Mapped through MassDEP WURP Critical Infrastructure Initiative, 2017-2022Information found in publicly available PWS planning documents submitted to MassDEP or as part of infrastructure planningMaintenanceThe
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
1H NMR profiling is nowadays a consolidated technique for the identification of geographical origin of food samples. The common approach consists in correlating NMR spectra of food samples to their territorial origin by multivariate classification statistical algorithms. In the present work we illustrate an alternative perspective to exploit territorial information, contained in the NMR spectra, which is based on the implementation of a Geographic Information System (GIS). NMR spectra are used to build a GIS map permitting the identification of territorial regions having strong similarities in the chemical content of the produced food (terroir units). These terroir units can, in turn, be used as input for labeling samples to be analyzed by traditional classification methods. In this work we describe the methods and the algorithms which permits to produce GIS maps from NMR profiles and apply the described method to the analysis of the geographical distribution of olive oils in an Italian region. In particular, we analyzed by 1H NMR up to 98 georeferenced olive oil samples produced in the Abruzzo Italian region. By using the first principal component of the NMR variables selected according to the Moran test, we produced a GIS map, in which we identified two regions incidentally corresponding to the provinces of Teramo and Pescara. We then labeled the samples according to the province of provenience and built a LDA model which provides a classification ability up to 99 % . A comparison between the variables selected in the geostatistics and classification steps is finally performed.
London’s first Cultural Infrastructure Map brings together new research and information that has previously not existed in one place. It plots the location of cultural infrastructure and enables the user to view it alongside useful contextual data. This page contains cultural infrastructure data sets collected in the spring and summer of 2022 and published in 2023. Audits of facilities or infrastructure are a snapshot in time and based on best available information. We welcome contributions or updates to the datasets from Londoners and others which can be submitted through the Cultural Infrastructure Map . Since the previous data sets were published in 2019, the definition and typologies of premises that feed into the ‘Music venues all’ category have been changed to ensure that the category is mapped in an improved consistency. Changes mean that the 2019 and 2023 datasets aren’t directly comparable. Data and analysis from GLA GIS Team form a basis for the policy and investment decisions facing the Mayor of London and the GLA group. GLA Intelligence uses a wide range of information and data sourced from third party suppliers within its analysis and reports. GLA Intelligence cannot be held responsible for the accuracy or timeliness of this information and data. The GLA will not be liable for any losses suffered or liabilities incurred by a party as a result of that party relying in any way on the information contained in this report. Contains OS data © Crown copyright and database rights 2019. Contains Audience Agency data. Contains CAMRA data. NOTE: The data is based on Ordnance Survey mapping and the data is published under Ordnance Survey’s ‘presumption to publish’. NOTE: This page contains cultural infrastructure data collected in the spring and summer of 2022 and published in 2023. For 2019 cultural infrastructure data, please visit: https://data.london.gov.uk/dataset/cultural-infrastructure-map
Terms of UseData Limitations and DisclaimerThe user’s use of and/or reliance on the information contained in the Document shall be at the user’s own risk and expense. MassDEP disclaims any responsibility for any loss or harm that may result to the user of this data or to any other person due to the user’s use of the Document.This is an ongoing data development project. Attempts have been made to contact all PWS systems, but not all have responded with information on their service area. MassDEP will continue to collect and verify this information. Some PWS service areas included in this datalayer have not been verified by the PWS or the municipality involved, but since many of those areas are based on information published online by the municipality, the PWS, or in a publicly available report, they are included in the estimated PWS service area datalayer.Please note: All PWS service area delineations are estimates for broad planning purposes and should only be used as a guide. The data is not appropriate for site-specific or parcel-specific analysis. Not all properties within a PWS service area are necessarily served by the system, and some properties outside the mapped service areas could be served by the PWS – please contact the relevant PWS. Not all service areas have been confirmed by the systems.Please use the following citation to reference these data:MassDEP, Water Utility Resilience Program. 2025. Community and Non-Transient Non-Community Public Water System Service Area (PubV2025_3).IMPORTANT NOTICE: This MassDEP Estimated Water Service datalayer may not be complete, may contain errors, omissions, and other inaccuracies and the data are subject to change. This version is published through MassGIS. We want to learn about the data uses. If you use this dataset, please notify staff in the Water Utility Resilience Program (WURP@mass.gov).
This GIS datalayer represents approximate service areas for Public Water Systems (PWS) in Massachusetts. In 2017, as part of its “Enhancing Resilience and Emergency Preparedness of Water Utilities through Improved Mapping” (Critical Infrastructure Mapping Project ), the MassDEP Water Utility Resilience Program (WURP) began to uniformly map drinking water service areas throughout Massachusetts using information collected from various sources. Along with confirming existing public water system (PWS) service area information, the project collected and verified estimated service area delineations for PWSs not previously delineated and will continue to update the information contained in the datalayers. As of the date of publication, WURP has delineated Community (COM) and Non-Transient Non-Community (NTNC) service areas. Transient non-community (TNCs) are not part of this mapping project.
Layers and Tables:
The MassDEP Estimated Public Water System Service Area data comprises two polygon feature classes and a supporting table. Some data fields are populated from the MassDEP Drinking Water Program’s Water Quality Testing System (WQTS) and Annual Statistical Reports (ASR).
The Community Water Service Areas feature class (PWS_WATER_SERVICE_AREA_COMM_POLY) includes polygon features that represent the approximate service areas for PWS classified as Community systems.The NTNC Water Service Areas feature class (PWS_WATER_SERVICE_AREA_NTNC_POLY) includes polygon features that represent the approximate service areas for PWS classified as Non-Transient Non-Community systems.The Unlocated Sites List table (PWS_WATER_SERVICE_AREA_USL) contains a list of known, unmapped active Community and NTNC PWS services areas at the time of publication.
Production
Data Universe
Public Water Systems in Massachusetts are permitted and regulated through the MassDEP Drinking Water Program. The WURP has mapped service areas for all active and inactive municipal and non-municipal Community PWSs in MassDEP’s Water Quality Testing Database (WQTS). Community PWS refers to a public water system that serves at least 15 service connections used by year-round residents or regularly serves at least 25 year-round residents.
All active and inactive NTNC PWS were also mapped using information contained in WQTS. An NTNC or Non-transient Non-community Water System refers to a public water system that is not a community water system and that has at least 15 service connections or regularly serves at least 25 of the same persons or more approximately four or more hours per day, four or more days per week, more than six months or 180 days per year, such as a workplace providing water to its employees.
These data may include declassified PWSs. Staff will work to rectify the status/water services to properties previously served by declassified PWSs and remove or incorporate these service areas as needed.
Maps of service areas for these systems were collected from various online and MassDEP sources to create service areas digitally in GIS. Every PWS is assigned a unique PWSID by MassDEP that incorporates the municipal ID of the municipality it serves (or the largest municipality it serves if it serves multiple municipalities). Some municipalities contain more than one PWS, but each PWS has a unique PWSID. The Estimated PWS Service Area datalayer, therefore, contains polygons with a unique PWSID for each PWS service area.
A service area for a community PWS may serve all of one municipality (e.g. Watertown Water Department), multiple municipalities (e.g. Abington-Rockland Joint Water Works), all or portions of two or more municipalities (e.g. Provincetown Water Dept which serves all of Provincetown and a portion of Truro), or a portion of a municipality (e.g. Hyannis Water System, which is one of four PWSs in the town of Barnstable).
Some service areas have not been mapped but their general location is represented by a small circle which serves as a placeholder. The location of these circles are estimates based on the general location of the source wells or the general estimated location of the service area - these do not represent the actual service area.
Service areas were mapped initially from 2017 to 2022 and reflect varying years for which service is implemented for that service area boundary. WURP maintains the dataset quarterly with annual data updates; however, the dataset may not include all current active PWSs. A list of unmapped PWS systems is included in the USL table PWS_WATER_SERVICE_AREA_USL available for download with the dataset. Some PWSs that are not mapped may have come online after this iteration of the mapping project; these will be reconciled and mapped during the next phase of the WURP project. PWS IDs that represent regional or joint boards with (e.g. Tri Town Water Board, Randolph/Holbrook Water Board, Upper Cape Regional Water Cooperative) will not be mapped because their individual municipal service areas are included in this datalayer.
Some PWSs that are not mapped may have come online after this iteration of the mapping project; these will be reconciled and mapped during the next phase of the WURP project. Those highlighted (e.g. Tri Town Water Board, Randolph/Holbrook Water Board, Upper Cape Regional Water Cooperative) represent regional or joint boards that will not be mapped, because their individual municipal service areas are included in this datalayer.
PWSs that do not have corresponding sources, may be part of consecutive systems, may have been incorporated into another PWSs, reclassified as a different type of PWS, or otherwise taken offline. PWSs that have been incorporated, reclassified, or taken offline will be reconciled during the next data update.
Methodologies and Data Sources
Several methodologies were used to create service area boundaries using various sources, including data received from the systems in response to requests for information from the MassDEP WURP project, information on file at MassDEP, and service area maps found online at municipal and PWS websites. When provided with water line data rather than generalized areas, 300-foot buffers were created around the water lines to denote service areas and then edited to incorporate generalizations. Some municipalities submitted parcel data or address information to be used in delineating service areas.
Verification Process
Small-scale PDF file maps with roads and other infrastructure were sent to every PWS for corrections or verifications. For small systems, such as a condominium complex or residential school, the relevant parcels were often used as the basis for the delineated service area. In towns where 97% or more of their population is served by the PWS and no other service area delineation was available, the town boundary was used as the service area boundary. Some towns responded to the request for information or verification of service areas by stating that the town boundary should be used since all or nearly all of the municipality is served by the PWS.
Sources of information for estimated drinking water service areas
The following information was used to develop estimated drinking water service areas:
EOEEA Water Assets Project (2005) water lines (these were buffered to create service areas)Horsely Witten Report 2008Municipal Master Plans, Open Space Plans, Facilities Plans, Water Supply System Webpages, reports and online interactive mapsGIS data received from PWSDetailed infrastructure mapping completed through the MassDEP WURP Critical Infrastructure InitiativeIn the absence of other service area information, for municipalities served by a town-wide water system serving at least 97% of the population, the municipality’s boundary was used. Determinations of which municipalities are 97% or more served by the PWS were made based on the Percent Water Service Map created in 2018 by MassDEP based on various sources of information including but not limited to:The Winter population served submitted by the PWS in the ASR submittalThe number of services from WQTS as a percent of
The Geotopographic DataBase (DBGT) is the information base of the Public Administration for the collection and management of spatial data (Article 2 of the Ministerial Decree of 10 November 2011). It forms the reference geographical and topographical basis of the Regional Territorial Information System and for the drafting of territorial and sectoral planning and planning tools at the different levels and related studies (Article 3 of Law No 12/2005).The service allows you to consult and download the DBGT of the Lombardy territory, with the municipal or provincial cut.Click on the symbol “map” (Open the map in the viewer of the Geoportal) for each municipality is visible the information about the relevant year of the DBGT (it is suggested to activate the legend function available in the vertical menu on the left).Click on the symbol “pointer” (Sign in to the web service) you will see a summary map with the municipal/provincial boundaries; proceeding in the “zoom in” you will see the “base card from DBGT” and the municipal DBGT (from scale 1:10.000-1:1,000). To download the DBGT of the whole Province or of the single municipality, just keep at high stairs and click on the map; in the pop up is activated the function of downloading the information contained in compressed files:to download the DBGT of;an entire province (zip file): click in map at scale 1:500.000 or lower & click in the pop-up DOWNLOAD & “Other information”.to download the municipal DBGT (zip file): click in map at scale 1:75.000 or lower & click in the pop-up DOWNLOAD DBGT & “Other information”.The completion of the regional DBGT (full coverage for the whole territory) took place in 2020 but the state of fact returned is not homogeneous (different years of importance); the Regional Executive has planned the updating of some classes of the DBGT (building and infrastructure); in the coming years it is hoped to publish a more homogeneous and updated DBGT, taking advantage of more recent flights (e.g. AGEA). For further information on the current technical specifications useful for updating the DBGT, please visit this;page;https://www.geoportale.regione.lombardia.it/specifiche-tecniche.La decoding the classes of the DBGT is available at the following link: https://tinyurl.com/mr2a7adp.
Terms of UseData Limitations and DisclaimerThe user’s use of and/or reliance on the information contained in the Document shall be at the user’s own risk and expense. MassDEP disclaims any responsibility for any loss or harm that may result to the user of this data or to any other person due to the user’s use of the Document.This is an ongoing data development project. Attempts have been made to contact all PWS systems, but not all have responded with information on their service area. MassDEP will continue to collect and verify this information. Some PWS service areas included in this datalayer have not been verified by the PWS or the municipality involved, but since many of those areas are based on information published online by the municipality, the PWS, or in a publicly available report, they are included in the estimated PWS service area datalayer.Please note: All PWS service area delineations are estimates for broad planning purposes and should only be used as a guide. The data is not appropriate for site-specific or parcel-specific analysis. Not all properties within a PWS service area are necessarily served by the system, and some properties outside the mapped service areas could be served by the PWS – please contact the relevant PWS. Not all service areas have been confirmed by the systems.Please use the following citation to reference these data:MassDEP, Water Utility Resilience Program. 2025. Community and Non-Transient Non-Community Public Water System Service Area (PubV2025_3).IMPORTANT NOTICE: This MassDEP Estimated Water Service datalayer may not be complete, may contain errors, omissions, and other inaccuracies and the data are subject to change. This version is published through MassGIS. We want to learn about the data uses. If you use this dataset, please notify staff in the Water Utility Resilience Program (WURP@mass.gov).This GIS datalayer represents approximate service areas for Public Water Systems (PWS) in Massachusetts. In 2017, as part of its “Enhancing Resilience and Emergency Preparedness of Water Utilities through Improved Mapping” (Critical Infrastructure Mapping Project ), the MassDEP Water Utility Resilience Program (WURP) began to uniformly map drinking water service areas throughout Massachusetts using information collected from various sources. Along with confirming existing public water system (PWS) service area information, the project collected and verified estimated service area delineations for PWSs not previously delineated and will continue to update the information contained in the datalayers. As of the date of publication, WURP has delineated Community (COM) and Non-Transient Non-Community (NTNC) service areas. Transient non-community (TNCs) are not part of this mapping project.Layers and Tables:The MassDEP Estimated Public Water System Service Area data comprises two polygon feature classes and a supporting table. Some data fields are populated from the MassDEP Drinking Water Program’s Water Quality Testing System (WQTS) and Annual Statistical Reports (ASR).The Community Water Service Areas feature class (PWS_WATER_SERVICE_AREA_COMM_POLY) includes polygon features that represent the approximate service areas for PWS classified as Community systems.The NTNC Water Service Areas feature class (PWS_WATER_SERVICE_AREA_NTNC_POLY) includes polygon features that represent the approximate service areas for PWS classified as Non-Transient Non-Community systems.The Unlocated Sites List table (PWS_WATER_SERVICE_AREA_USL) contains a list of known, unmapped active Community and NTNC PWS services areas at the time of publication.ProductionData UniversePublic Water Systems in Massachusetts are permitted and regulated through the MassDEP Drinking Water Program. The WURP has mapped service areas for all active and inactive municipal and non-municipal Community PWSs in MassDEP’s Water Quality Testing Database (WQTS). Community PWS refers to a public water system that serves at least 15 service connections used by year-round residents or regularly serves at least 25 year-round residents.All active and inactive NTNC PWS were also mapped using information contained in WQTS. An NTNC or Non-transient Non-community Water System refers to a public water system that is not a community water system and that has at least 15 service connections or regularly serves at least 25 of the same persons or more approximately four or more hours per day, four or more days per week, more than six months or 180 days per year, such as a workplace providing water to its employees.These data may include declassified PWSs. Staff will work to rectify the status/water services to properties previously served by declassified PWSs and remove or incorporate these service areas as needed.Maps of service areas for these systems were collected from various online and MassDEP sources to create service areas digitally in GIS. Every PWS is assigned a unique PWSID by MassDEP that incorporates the municipal ID of the municipality it serves (or the largest municipality it serves if it serves multiple municipalities). Some municipalities contain more than one PWS, but each PWS has a unique PWSID. The Estimated PWS Service Area datalayer, therefore, contains polygons with a unique PWSID for each PWS service area.A service area for a community PWS may serve all of one municipality (e.g. Watertown Water Department), multiple municipalities (e.g. Abington-Rockland Joint Water Works), all or portions of two or more municipalities (e.g. Provincetown Water Dept which serves all of Provincetown and a portion of Truro), or a portion of a municipality (e.g. Hyannis Water System, which is one of four PWSs in the town of Barnstable).Some service areas have not been mapped but their general location is represented by a small circle which serves as a placeholder. The location of these circles are estimates based on the general location of the source wells or the general estimated location of the service area - these do not represent the actual service area.Service areas were mapped initially from 2017 to 2022 and reflect varying years for which service is implemented for that service area boundary. WURP maintains the dataset quarterly with annual data updates; however, the dataset may not include all current active PWSs. A list of unmapped PWS systems is included in the USL table PWS_WATER_SERVICE_AREA_USL available for download with the dataset. Some PWSs that are not mapped may have come online after this iteration of the mapping project; these will be reconciled and mapped during the next phase of the WURP project. PWS IDs that represent regional or joint boards with (e.g. Tri Town Water Board, Randolph/Holbrook Water Board, Upper Cape Regional Water Cooperative) will not be mapped because their individual municipal service areas are included in this datalayer.PWSs that do not have corresponding sources, may be part of consecutive systems, may have been incorporated into another PWSs, reclassified as a different type of PWS, or otherwise taken offline. PWSs that have been incorporated, reclassified, or taken offline will be reconciled during the next data update.Methodologies and Data SourcesSeveral methodologies were used to create service area boundaries using various sources, including data received from the systems in response to requests for information from the MassDEP WURP project, information on file at MassDEP, and service area maps found online at municipal and PWS websites. When provided with water line data rather than generalized areas, 300-foot buffers were created around the water lines to denote service areas and then edited to incorporate generalizations. Some municipalities submitted parcel data or address information to be used in delineating service areas.Verification ProcessSmall-scale PDF file maps with roads and other infrastructure were sent to every PWS for corrections or verifications. For small systems, such as a condominium complex or residential school, the relevant parcels were often used as the basis for the delineated service area. In towns where 97% or more of their population is served by the PWS and no other service area delineation was available, the town boundary was used as the service area boundary. Some towns responded to the request for information or verification of service areas by stating that the town boundary should be used since all or nearly all of the municipality is served by the PWS.Sources of information for estimated drinking water service areasThe following information was used to develop estimated drinking water service areas:EOEEA Water Assets Project (2005) water lines (these were buffered to create service areas)Horsely Witten Report 2008Municipal Master Plans, Open Space Plans, Facilities Plans, Water Supply System Webpages, reports and online interactive mapsGIS data received from PWSDetailed infrastructure mapping completed through the MassDEP WURP Critical Infrastructure InitiativeIn the absence of other service area information, for municipalities served by a town-wide water system serving at least 97% of the population, the municipality’s boundary was used. Determinations of which municipalities are 97% or more served by the PWS were made based on the Percent Water Service Map created in 2018 by MassDEP based on various sources of information including but not limited to:The Winter population served submitted by the PWS in the ASR submittalThe number of services from WQTS as a percent of developed parcelsTaken directly from a Master Plan, Water Department Website, Open Space Plan, etc. found onlineCalculated using information from the town on the population servedMassDEP staff estimateHorsely Witten Report 2008Calculation based on Water System Areas Mapped through MassDEP WURP Critical Infrastructure Initiative, 2017-2022Information found in publicly available PWS planning documents submitted to MassDEP or as part of infrastructure planningMaintenanceThe
http://data.vlaanderen.be/id/licentie/modellicentie-gratis-hergebruik/v1.0http://data.vlaanderen.be/id/licentie/modellicentie-gratis-hergebruik/v1.0
‘Regional plan, vector - contours’ is a dataset in digital vector format of the contours of the regional plans. Each plan is defined by its contour. This outline concerns the geometric enveloping of all the containing layers of the plan. It has been conceptually decided to draw a buffer around any line elements that do not occur within a base plane in order to allow them to be included within the enveloping contour. At this plan contour layer, the administrative data of the plan are included in the attributes. No rights can be derived from the maps based on this dataset. The information contained in the maps is purely informative and has no legally binding force. In order to be able to determine the legal planning context of a particular plot or area, you should contact the urban planning department of the relevant municipal authority. The digital regional plans were created on the basis of the original regional plan (amendment) and were drawn up on map scale 1/10,000. As a result, this digital version is only suitable for use at medium-scale level, in particular with a maximum use scale of 1/10,000. The combined consultation of this file of large-scale parcel maps is not cartographically correct and does not provide a definitive answer to the legal planning context of a parcel. This digital file has been compiled with the utmost care, based on the original, legally valid regional plans. Nevertheless, it is not excluded that certain information is outdated, incomplete or incorrect. The information shown cannot therefore be regarded as a ‘certified copy’ of the original regional plan (amendments). This dataset was compiled by vectorization of the maps of the 25 regional plans adopted in the period 1976 - 1980. These maps are made on a map scale of 1:10.000. All adjustments resulting from the later approved regional plan changes have been integrated into the dataset. In the event that Judgments of the Council of State were issued that led to the destruction of certain parts of the regional plans, then, in almost all cases, the regional plan was restored to its pre-annihilation state. An overview of all implemented operations can be found under the heading Quality, Operations, Process Tapping in the metadata of the dataset series ‘regional plan, vector’ to which this dataset belongs.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ICDAR 2021 Competition on Historical Map Segmentation — Dataset
This is the dataset of the ICDAR 2021 Competition on Historical Map Segmentation (“MapSeg”). This competition ran from November 2020 to April 2021. Evaluation tools are freely available but distributed separately.
Official competition website: https://icdar21-mapseg.github.io/
The competition report can be cited as:
Joseph Chazalon, Edwin Carlinet, Yizi Chen, Julien Perret, Bertrand Duménieu, Clément Mallet, Thierry Géraud, Vincent Nguyen, Nam Nguyen, Josef Baloun, Ladislav Lenc, and Pavel Král, "ICDAR 2021 Competition on Historical Map Segmentation", in Proceedings of the 16th International Conference on Document Analysis and Recognition (ICDAR'21), September 5-10, 2021, Lausanne, Switzerland.
BibTeX entry:
@InProceedings{chazalon.21.icdar.mapseg, author = {Joseph Chazalon and Edwin Carlinet and Yizi Chen and Julien Perret and Bertrand Duménieu and Clément Mallet and Thierry Géraud and Vincent Nguyen and Nam Nguyen and Josef Baloun and Ladislav Lenc and and Pavel Král}, title = {ICDAR 2021 Competition on Historical Map Segmentation}, booktitle = {Proceedings of the 16th International Conference on Document Analysis and Recognition (ICDAR'21)}, year = {2021}, address = {Lausanne, Switzerland}, }
We thank the City of Paris for granting us with the permission to use and reproduce the atlases used in this work.
The images of this dataset are extracted from a series of 9 atlases of the City of Paris produced between 1894 and 1937 by the Map Service (“Service du plan”) of the City of Paris, France, for the purpose of urban management and planning. For each year, a set of approximately 20 sheets forms a tiled view of the city, drawn at 1/5000 scale using trigonometric triangulation.
Sample citation of original documents:
Atlas municipal des vingt arrondissements de Paris. 1894, 1895, 1898, 1905, 1909, 1912, 1925, 1929, and 1937. Bibliothèque de l’Hôtel de Ville. City of Paris. France.
Motivation
This competition aims as encouraging research in the digitization of historical maps. In order to be usable in historical studies, information contained in such images need to be extracted. The general pipeline involves multiples stages; we list some essential ones here:
segment map content: locate the area of the image which contains map content;
extract map object from different layers: detect objects like roads, buildings, building blocks, rivers, etc. to create geometric data;
georeference the map: by detecting objects at known geographic coordinate, compute the transformation to turn geometric objects into geographic ones (which can be overlaid on current maps).
Task overview
Task 1: Detection of building blocks
Task 2: Segmentation of map content within map sheets
Task 3: Localization of graticule lines intersections
Please refer to the enclosed README.md file or to the official website for the description of tasks and file formats.
Evaluation metrics and tools
Evaluation metrics are described in the competition report and tools are available at https://github.com/icdar21-mapseg/icdar21-mapseg-eval and should also be archived using Zenodo.
http://data.vlaanderen.be/id/licentie/modellicentie-gratis-hergebruik/v1.0http://data.vlaanderen.be/id/licentie/modellicentie-gratis-hergebruik/v1.0
‘Regional plan, vector - Lines’ is a dataset in digital vector format of the lines of the regional plans. Requirements linked to line-shaped plan elements are additional to those defined in ground planes and, where applicable, overprints. No rights can be derived from the maps based on this dataset. The information contained in the maps is purely informative and has no legally binding force. In order to be able to determine the legal planning context of a particular plot or area, you should contact the urban planning department of the relevant municipal authority. The digital regional plans were created on the basis of the original regional plan (amendment) and were drawn up on map scale 1/10,000. As a result, this digital version is only suitable for use at medium-scale level, in particular with a maximum use scale of 1/10,000. The combined consultation of this file of large-scale parcel maps is not cartographically correct and does not provide a definitive answer to the legal planning context of a parcel. This digital file has been compiled with the utmost care, based on the original, legally valid regional plans. Nevertheless, it is not excluded that certain information is outdated, incomplete or incorrect. The information shown cannot therefore be regarded as a ‘certified copy’ of the original regional plan (amendments). This dataset was compiled by vectorization of the maps of the 25 regional plans adopted in the period 1976 - 1980. These maps are made on a map scale of 1:10.000. All adjustments resulting from the later approved regional plan changes have been integrated into the dataset. In the event that Judgments of the Council of State were issued that led to the destruction of certain parts of the regional plans, then, in almost all cases, the regional plan was restored to its pre-annihilation state. An overview of all implemented operations can be found under the heading Quality, Operations, Process Tapping in the metadata of the dataset series ‘regional plan, vector’ to which this dataset belongs.
The information contained in graphic documents of a PLU or POS urban planning document shall be added either for regulatory reasons or for information purposes: — the information which is to be annexed to the planning documents in accordance with Articles R123-13 and R123-14 of the Planning Code, — the information reported on the graphic documents for information purposes.
Item added to the zoning plan of an urban planning document PLU (or POS) for information The information contained in graphic documents of a PLU or POS urban planning document shall be added either for regulatory reasons or for information purposes: — the information to be annexed to the planning documents in accordance with Articles R123-13 and R123-14 of the Planning Code, — information reported on graphic documents for information purposes.
FEMA provides access to the National Flood Hazards Layer (NFHL) through web mapping services. The maps depict effective flood hazard information and supporting data. The primary flood hazard classification is indicated in the Flood Hazard Zones layer.The NFHL layers include:Flood hazard zones and labelsRiver Miles MarkersCross-sections and coastal transects and their labelsLetter of Map Revision (LOMR) boundaries and case numbersFlood Insurance Rate Map (FIRM) boundaries, labels and effective datesCoastal Barrier Resources System (CBRS) and Otherwise Protected Area (OPA) unitsCommunity boundaries and namesLeveesHydraulic and flood control structuresProfile and coastal transect baselinesLimit of Moderate Wave Action(LiMWA)Not all effective Flood Insurance Rate Maps (FIRM) have GIS data available. To view a list of available county and single-jurisdiction flood study data in GIS format and check the status of the NFHL GIS services, please visit the NFHL Status Page.Preliminary & Pending National Flood Hazard LayersThe Preliminary and Pending NFHL dataset represents the current pre-effective flood data for the country. These layers are updated as new preliminary and pending data becomes available, and data is removed from these layers as it becomes effective.For more information, please visit FEMA's website.To download map panels or GIS Data, go to: NFHL on FEMA GeoPlatform.Preliminary & Pending DataPreliminary data are for review and guidance purposes only. By viewing preliminary data and maps, the user acknowledges that the information provided is preliminary and subject to change. Preliminary data are not final and are presented in this national layer as the best information available at this time. Additionally, preliminary data cannot be used to rate flood insurance policies or enforce the Federal mandatory purchase requirement. FEMA will remove preliminary data once pending data are available.Pending data are for early awareness of upcoming changes to regulatory flood map information. Until the data becomes effective, when it will appear in FEMA's National Flood Hazard Layer (NFHL), the data should not be used to rate flood insurance policies or enforce the Federal mandatory purchase requirement. FEMA will remove pending data once effective data are available.To better understand Preliminary data please see the View Your Community's Preliminary Flood Hazard Data webpage.FEMA GeoPlatformFEMA's GIS flood map services are available through FEMAs GeoPlatform, an ArcGIS Online portal containing a variety of FEMA-related data.To view the NFHL on the FEMA GeoPlatform go to NFHL on FEMA GeoPlatform.To view the Preliminary and Pending national layers on the FEMA Geoplatform go to FEMA's Preliminary & Pending National Flood Hazard Layer.Technical InformationFlood hazard and supporting data are developed using specifications for horizontal control consistent with 1:12,000–scale mapping. If you plan to display maps from the NFHL with other map data for official purposes, ensure that the other information meets FEMA’s standards for map accuracy.The minimum horizontal positional accuracy for base map hydrographic and transportation features used with the NFHL is the NSSDA radial accuracy of 38 feet. United States Geological Survey (USGS) imagery and map services that meet this standard can be found by visiting the Knowledge Sharing Site (KSS) for Base Map Standards (420). Other base map standards can be found at https://riskmapportal.msc.fema.gov/kss/MapChanges/default.aspx. You will need a username and password to access this information.The NFHL data are from FEMA’s FIRM databases. New data are added continually. The NFHL also contains map changes to FIRM data made by LOMRs.The NFHL is stored in North American Datum of 1983, Geodetic Reference System 80 coordinate system, though many of the NFHL GIS web services support the Web Mercator Sphere projection commonly used in web mapping applications.Organization & DisplayThe NFHL is organized into many data layers. The layers display information at map scales appropriate for the data. A layer indicating the availability of NFHL data is displayed at map scales smaller than 1:250,000, regional overviews at map scales between 1:250,000 and 1:50,000, and detailed flood hazard maps at map scales of 1:50,000 and larger. The "Scalehint" item in the Capabilities file for the Web Map Service encodes the scale range for a layer.In addition, there are non-NFHL datasets provided in the GIS web services, such as information about the availability of flood data and maps, the national map panel scheme, and point locations for LOMA and LOMR-Fs. The LOMA are positioned less accurately than are the NFHL data.Layers in the public NFHL GIS services:Use the numbers shown below when referencing layers by number.0. NFHL Availability1. LOMRs2. LOMAs3. FIRM Panels4. Base Index5. PLSS6. Toplogical Low Confidence Areas7. River Mile Markers8. Datum Conversion Points9. Coastal Gages10. Gages11. Nodes12. High Water Marks13. Station Start Points14. Cross-Sections15. Coastal Transects16. Base Flood Elevations17. Profile Baselines18. Transect Baselines19. Limit of Moderate Wave Action20. Water Lines21. Coastal Barrier Resources System Area22. Political Jurisdictions23. Levees24. General Structures25. Primary Frontal Dunes26. Hydrologic Reaches27. Flood Hazard Boundaries28. Flood Hazard Zones29. Submittal Information30. Alluvial Fans31. Subbasins32. Water Areas
RTB Maps is a cloud-based electronic Atlas. We used ArGIS 10 for Desktop with Spatial Analysis Extension, ArcGIS 10 for Server on-premise, ArcGIS API for Javascript, IIS web services based on .NET, and ArcGIS Online combining data on the cloud with data and applications on our local server to develop an Atlas that brings together many of the map themes related to development of roots, tubers and banana crops. The Atlas is structured to allow our participating scientists to understand the distribution of the crops and observe the spatial distribution of many of the obstacles to production of these crops. The Atlas also includes an application to allow our partners to evaluate the importance of different factors when setting priorities for research and development. The application uses weighted overlay analysis within a multi-criteria decision analysis framework to rate the importance of factors when establishing geographic priorities for research and development.Datasets of crop distribution maps, agroecology maps, biotic and abiotic constraints to crop production, poverty maps and other demographic indicators are used as a key inputs to multi-objective criteria analysis.Further metadata/references can be found here: http://gisweb.ciat.cgiar.org/RTBmaps/DataAvailability_RTBMaps.htmlDISCLAIMER, ACKNOWLEDGMENTS AND PERMISSIONS:This service is provided by Roots, Tubers and Bananas CGIAR Research Program as a public service. Use of this service to retrieve information constitutes your awareness and agreement to the following conditions of use.This online resource displays GIS data and query tools subject to continuous updates and adjustments. The GIS data has been taken from various, mostly public, sources and is supplied in good faith.RTBMaps GIS Data Disclaimer• The data used to show the Base Maps is supplied by ESRI.• The data used to show the photos over the map is supplied by Flickr.• The data used to show the videos over the map is supplied by Youtube.• The population map is supplied to us by CIESIN, Columbia University and CIAT.• The Accessibility map is provided by Global Environment Monitoring Unit - Joint Research Centre of the European Commission. Accessibility maps are made for a specific purpose and they cannot be used as a generic dataset to represent "the accessibility" for a given study area.• Harvested area and yield for banana, cassava, potato, sweet potato and yam for the year 200, is provided by EarthSat (University of Minnesota’s Institute on the Environment-Global Landscapes initiative and McGill University’s Land Use and the Global Environment lab). Dataset from Monfreda C., Ramankutty N., and Foley J.A. 2008.• Agroecology dataset: global edapho-climatic zones for cassava based on mean growing season, temperature, number of dry season months, daily temperature range and seasonality. Dataset from CIAT (Carter et al. 1992)• Demography indicators: Total and Rural Population from Center for International Earth Science Information Network (CIESIN) and CIAT 2004.• The FGGD prevalence of stunting map is a global raster datalayer with a resolution of 5 arc-minutes. The percentage of stunted children under five years old is reported according to the lowest available sub-national administrative units: all pixels within the unit boundaries will have the same value. Data have been compiled by FAO from different sources: Demographic and Health Surveys (DHS), UNICEF MICS, WHO Global Database on Child Growth and Malnutrition, and national surveys. Data provided by FAO – GIS Unit 2007.• Poverty dataset: Global poverty headcount and absolute number of poor. Number of people living on less than $1.25 or $2.00 per day. Dataset from IFPRI and CIATTHE RTBMAPS GROUP MAKES NO WARRANTIES OR GUARANTEES, EITHER EXPRESSED OR IMPLIED AS TO THE COMPLETENESS, ACCURACY, OR CORRECTNESS OF THE DATA PORTRAYED IN THIS PRODUCT NOR ACCEPTS ANY LIABILITY, ARISING FROM ANY INCORRECT, INCOMPLETE OR MISLEADING INFORMATION CONTAINED THEREIN. ALL INFORMATION, DATA AND DATABASES ARE PROVIDED "AS IS" WITH NO WARRANTY, EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO, FITNESS FOR A PARTICULAR PURPOSE. By accessing this website and/or data contained within the databases, you hereby release the RTB group and CGCenters, its employees, agents, contractors, sponsors and suppliers from any and all responsibility and liability associated with its use. In no event shall the RTB Group or its officers or employees be liable for any damages arising in any way out of the use of the website, or use of the information contained in the databases herein including, but not limited to the RTBMaps online Atlas product.APPLICATION DEVELOPMENT:• Desktop and web development - Ernesto Giron E. (GeoSpatial Consultant) e.giron.e@gmail.com• GIS Analyst - Elizabeth Barona. (Independent Consultant) barona.elizabeth@gmail.comCollaborators:Glenn Hyman, Bernardo Creamer, Jesus David Hoyos, Diana Carolina Giraldo Soroush Parsa, Jagath Shanthalal, Herlin Rodolfo Espinosa, Carlos Navarro, Jorge Cardona and Beatriz Vanessa Herrera at CIAT, Tunrayo Alabi and Joseph Rusike from IITA, Guy Hareau, Reinhard Simon, Henry Juarez, Ulrich Kleinwechter, Greg Forbes, Adam Sparks from CIP, and David Brown and Charles Staver from Bioversity International.Please note these services may be unavailable at times due to maintenance work.Please feel free to contact us with any questions or problems you may be having with RTBMaps.