In the third quarter of 2024, the top ten percent of earners in the United States held over ** percent of total wealth. This is fairly consistent with the second quarter of 2024. Comparatively, the wealth of the bottom ** percent of earners has been slowly increasing since the start of the *****, though remains low. Wealth distribution in the United States by generation can be found here.
In the first quarter of 2024, 51.8 percent of the total wealth in the United States was owned by members of the baby boomer generation. In comparison, millennials own around 9.4 percent of total wealth in the U.S. In terms of population distribution, there is almost an equal share of millennials and baby boomers in the United States.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Net Worth Held by the Top 1% (99th to 100th Wealth Percentiles) (WFRBLT01026) from Q3 1989 to Q1 2025 about net worth, wealth, percentile, Net, and USA.
In 2023, according to the Gini coefficient, household income distribution in the United States was 0.47. This figure was at 0.43 in 1990, which indicates an increase in income inequality in the U.S. over the past 30 years. What is the Gini coefficient? The Gini coefficient, or Gini index, is a statistical measure of economic inequality and wealth distribution among a population. A value of zero represents perfect economic equality, and a value of one represents perfect economic inequality. The Gini coefficient helps to visualize income inequality in a more digestible way. For example, according to the Gini coefficient, the District of Columbia and the state of New York have the greatest amount of income inequality in the U.S. with a score of 0.51, and Utah has the greatest income equality with a score of 0.43. The Gini coefficient around the world The Gini coefficient is also an effective measure to help picture income inequality around the world. For example, in 2018 income inequality was highest in South Africa, while income inequality was lowest in Slovenia.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Wealth inequality has been sharply rising in the United States and across many other high-income countries. Due to a lack of data, we know little about how this trend has unfolded across locations within countries. Investigating this subnational geography of wealth is crucial, as from one generation to the next, wealth powerfully shapes opportunity and disadvantage across individuals and communities. Using machine-learning-based imputation to link newly assembled national historical surveys conducted by the U.S. Federal Reserve to population survey microdata, the data presented in this paper addresses this gap. The Geographic Wealth Inequality Database ("GEOWEALTH-US") provides the first estimates of the level and distribution of wealth at various geographical scales within the United States from 1960 to 2020. The GEOWEALTH-US database enables new lines investigation into the contribution of inter-regional wealth patterns to major societal challenges including wealth concentration, spatial income inequality, equality of opportunity, housing unaffordability, and political polarization.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Income Gini Ratio for Households by Race of Householder, All Races (GINIALLRH) from 1967 to 2023 about gini, households, income, and USA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the mean household income for each of the five quintiles in United States, as reported by the U.S. Census Bureau. The dataset highlights the variation in mean household income across quintiles, offering valuable insights into income distribution and inequality.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Income Levels:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for United States median household income. You can refer the same here
In 2023, roughly 1.49 billion adults worldwide had a net worth of less than 10,000 U.S. dollars. By comparison, 58 million adults had a net worth of more than one million U.S. dollars in the same year. Wealth distribution The distribution of wealth is an indicator of economic inequality. The United Nations says that wealth includes the sum of natural, human, and physical assets. Wealth is not synonymous with income, however, because having a large income can be depleted if one has significant expenses. In 2023, nearly 1,700 billionaires had a total wealth between one to two billion U.S. dollars. Wealth worldwide China had the highest number of billionaires in 2023, with the United States following behind. That same year, New York had the most billionaires worldwide.
We quantitatively identify the factors that drive wealth dynamics in the United States and are consistent with its skewed cross-sectional distribution and with social mobility. We concentrate on three critical factors: (i) skewed earnings, (ii) differential saving rates across wealth levels, and (iii) stochastic idiosyncratic returns to wealth. All of these are fundamental for matching both distribution and mobility. The stochastic process for returns which best fits the cross-sectional distribution of wealth and social mobility in the United States shares several statistical properties with those of the returns to wealth uncovered by Fagereng et al. (2017) from tax records in Norway.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the mean household income for each of the five quintiles in Black Earth, WI, as reported by the U.S. Census Bureau. The dataset highlights the variation in mean household income across quintiles, offering valuable insights into income distribution and inequality.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Income Levels:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Black Earth median household income. You can refer the same here
This statistic shows the inequality of income distribution in China from 2005 to 2023 based on the Gini Index. In 2023, China reached a score of ************ points. The Gini Index is a statistical measure that is used to represent unequal distributions, e.g. income distribution. It can take any value between 1 and 100 points (or 0 and 1). The closer the value is to 100 the greater is the inequality. 40 or 0.4 is the warning level set by the United Nations. The Gini Index for South Korea had ranged at about **** in 2022. Income distribution in China The Gini coefficient is used to measure the income inequality of a country. The United States, the World Bank, the US Central Intelligence Agency, and the Organization for Economic Co-operation and Development all provide their own measurement of the Gini coefficient, varying in data collection and survey methods. According to the United Nations Development Programme, countries with the largest income inequality based on the Gini index are mainly located in Africa and Latin America, with South Africa displaying the world's highest value in 2022. The world's most equal countries, on the contrary, are situated mostly in Europe. The United States' Gini for household income has increased by around ten percent since 1990, to **** in 2023. Development of inequality in China Growing inequality counts as one of the biggest social, economic, and political challenges to many countries, especially emerging markets. Over the last 20 years, China has become one of the world's largest economies. As parts of the society have become more and more affluent, the country's Gini coefficient has also grown sharply over the last decades. As shown by the graph at hand, China's Gini coefficient ranged at a level higher than the warning line for increasing risk of social unrest over the last decade. However, the situation has slightly improved since 2008, when the Gini coefficient had reached the highest value of recent times.
In the U.S., median household income rose from 51,570 U.S. dollars in 1967 to 80,610 dollars in 2023. In terms of broad ethnic groups, Black Americans have consistently had the lowest median income in the given years, while Asian Americans have the highest; median income in Asian American households has typically been around double that of Black Americans.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the mean household income for each of the five quintiles in Sedro-Woolley, WA, as reported by the U.S. Census Bureau. The dataset highlights the variation in mean household income across quintiles, offering valuable insights into income distribution and inequality.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Income Levels:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Sedro-Woolley median household income. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the mean household income for each of the five quintiles in Ideal Township, Minnesota, as reported by the U.S. Census Bureau. The dataset highlights the variation in mean household income across quintiles, offering valuable insights into income distribution and inequality.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Income Levels:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Ideal township median household income. You can refer the same here
This statistic presents the distribution of assets of the millionaire investors in the United States in 2014. In that year, 16 percent of the financial assets of the U.S. millionaire investors was held in their principal residences.
This statistic presents the distribution of investable assets of the ultra high net worth investors in the United States in 2014. In that year, 13 percent of the financial assets of the U.S. UHNW investors were held in cash and liquid assets.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the mean household income for each of the five quintiles in Denver, CO, as reported by the U.S. Census Bureau. The dataset highlights the variation in mean household income across quintiles, offering valuable insights into income distribution and inequality.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Income Levels:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Denver median household income. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the mean household income for each of the five quintiles in Fifty Lakes, MN, as reported by the U.S. Census Bureau. The dataset highlights the variation in mean household income across quintiles, offering valuable insights into income distribution and inequality.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Income Levels:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Fifty Lakes median household income. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the mean household income for each of the five quintiles in Munster, IN, as reported by the U.S. Census Bureau. The dataset highlights the variation in mean household income across quintiles, offering valuable insights into income distribution and inequality.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Income Levels:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Munster median household income. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the mean household income for each of the five quintiles in Mexico, MO, as reported by the U.S. Census Bureau. The dataset highlights the variation in mean household income across quintiles, offering valuable insights into income distribution and inequality.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Income Levels:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Mexico median household income. You can refer the same here
In the third quarter of 2024, the top ten percent of earners in the United States held over ** percent of total wealth. This is fairly consistent with the second quarter of 2024. Comparatively, the wealth of the bottom ** percent of earners has been slowly increasing since the start of the *****, though remains low. Wealth distribution in the United States by generation can be found here.