100+ datasets found
  1. U.S. wealth distribution Q1 2025

    • statista.com
    Updated Jun 18, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2020). U.S. wealth distribution Q1 2025 [Dataset]. https://www.statista.com/statistics/203961/wealth-distribution-for-the-us/
    Explore at:
    Dataset updated
    Jun 18, 2020
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In the first quarter of 2025, almost ********** of the total wealth in the United States was owned by the top 10 percent of earners. In comparison, the lowest ** percent of earners only owned *** percent of the total wealth. Income inequality in the U.S. Despite the idea that the United States is a country where hard work and pulling yourself up by your bootstraps will inevitably lead to success, this is often not the case. In 2024, *** percent of U.S. households had an annual income under 15,000 U.S. dollars. With such a small percentage of people in the United States owning such a vast majority of the country’s wealth, the gap between the rich and poor in America remains stark. The top one percent The United States was the country with the most billionaires in the world in 2025. Elon Musk, with a net worth of *** billion U.S. dollars, was among the richest people in the United States in 2025. Over the past 50 years, the CEO-to-worker compensation ratio has exploded, causing the gap between rich and poor to grow, with some economists theorizing that this gap is the largest it has been since right before the Great Depression.

  2. Income Inequality

    • data.ca.gov
    • data.chhs.ca.gov
    • +3more
    pdf, xlsx, zip
    Updated Nov 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). Income Inequality [Dataset]. https://data.ca.gov/dataset/income-inequality
    Explore at:
    pdf, xlsx, zipAvailable download formats
    Dataset updated
    Nov 7, 2025
    Dataset authored and provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This table contains data on income inequality. The primary measure is the Gini index – a measure of the extent to which the distribution of income among families/households within a community deviates from a perfectly equal distribution. The index ranges from 0.0, when all families (households) have equal shares of income (implies perfect equality), to 1.0 when one family (household) has all the income and the rest have none (implies perfect inequality). Index data is provided for California and its counties, regions, and large cities/towns. The data is from the U.S. Census Bureau, American Community Survey. The table is part of a series of indicators in the Healthy Communities Data and Indicators Project of the Office of Health Equity. Income is linked to acquiring resources for healthy living. Both household income and the distribution of income across a society independently contribute to the overall health status of a community. On average Western industrialized nations with large disparities in income distribution tend to have poorer health status than similarly advanced nations with a more equitable distribution of income. Approximately 119,200 (5%) of the 2.4 million U.S. deaths in 2000 are attributable to income inequality. The pathways by which income inequality act to increase adverse health outcomes are not known with certainty, but policies that provide for a strong safety net of health and social services have been identified as potential buffers. More information about the data table and a data dictionary can be found in the About/Attachments section.

  3. Inequality in Income Across the Globe

    • kaggle.com
    zip
    Updated Aug 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sourav Banerjee (2023). Inequality in Income Across the Globe [Dataset]. https://www.kaggle.com/datasets/iamsouravbanerjee/inequality-in-income-across-the-globe
    Explore at:
    zip(7663 bytes)Available download formats
    Dataset updated
    Aug 28, 2023
    Authors
    Sourav Banerjee
    Description

    Context

    Income inequality is a global issue reflecting the uneven distribution of wealth within and between countries. Developed nations exhibit varying income levels due to economic policies and labor dynamics, resulting in Gini coefficients of around 0.3 to 0.4. Conversely, developing nations often experience higher income disparities due to limited access to education, healthcare, and jobs, leading to Gini coefficients exceeding 0.4, exacerbating poverty cycles and social tensions. This inequality hampers economic growth, social cohesion, and upward mobility. Addressing it requires comprehensive policies, including progressive taxation and equitable resource distribution, to promote a more just and inclusive society.

    Content

    This dataset comprises historical information encompassing various indicators concerning Inequality in Income on a global scale. The dataset prominently features: ISO3, Country, Continent, Hemisphere, Human Development Groups, UNDP Developing Regions, HDI Rank (2021), and Inequality in Income from 2010 to 2021.

    Dataset Glossary (Column-wise)

    • ISO3 - ISO3 for the Country/Territory
    • Country - Name of the Country/Territory
    • Continent - Name of the Continent
    • Hemisphere - Name of the Hemisphere
    • Human Development Groups - Human Development Groups
    • UNDP Developing Regions - UNDP Developing Regions
    • HDI Rank (2021) - Human Development Index Rank for 2021
    • Inequality in Income from 2010 to 2021 - Inequality in Income from year 2010 to 2021

    Data Dictionary

    • UNDP Developing Regions:
      • SSA - Sub-Saharan Africa
      • LAC - Latin America and the Caribbean
      • EAP - East Asia and the Pacific
      • AS - Arab States
      • ECA - Europe and Central Asia
      • SA - South Asia

    Structure of the Dataset

    https://i.imgur.com/LIrXWPP.png" alt="">

    Acknowledgement

    This Dataset is created from Human Development Reports. This Dataset falls under the Creative Commons Attribution 3.0 IGO License. You can check the Terms of Use of this Data. If you want to learn more, visit the Website.

    Cover Photo by: Image by Image by pch.vector on Freepik

    Thumbnail by: Image by Salary icons created by Freepik - Flaticon

  4. World InEquality DataBase

    • kaggle.com
    zip
    Updated Dec 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sujay Kapadnis (2023). World InEquality DataBase [Dataset]. https://www.kaggle.com/datasets/sujaykapadnis/world-inequality-dataset
    Explore at:
    zip(274346982 bytes)Available download formats
    Dataset updated
    Dec 12, 2023
    Authors
    Sujay Kapadnis
    Description

    The World Inequality Database (WID.world) aims to provide open and convenient access to the most extensive available database on the historical evolution of the world distribution of income and wealth, both within countries and between countries.

    HISTORY OF WID.WORLD During the past fifteen years, the renewed interest for the long-run evolution of income and wealth inequality gave rise to a flourishing literature. In particular, a succession of studies has constructed top income share series for a large number of countries (see Thomas Piketty 2001, 2003, T. Piketty and Emmanuel Saez 2003, and the two multi-country volumes on top incomes edited by Anthony B. Atkinson and T. Piketty 2007, 2010; see also A. B. Atkinson et al. 2011 and Facundo Alvaredo et al. 2013 for surveys of this literature). These projects generated a large volume of data, intended as a research resource for further analysis, as well as a source to inform the public debate on income inequality. To a large extent, this literature follows the pioneering work of Simon Kuznets 1953, and A. B. Atkinson and Alan Harrison 1978, and extends it to many more countries and years.

    for more https://wid.world/wid-world/

  5. U.S. Gini index of income gap between rich and poor 2024, by state

    • statista.com
    Updated Apr 25, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2014). U.S. Gini index of income gap between rich and poor 2024, by state [Dataset]. https://www.statista.com/statistics/227249/greatest-gap-between-rich-and-poor-by-us-state/
    Explore at:
    Dataset updated
    Apr 25, 2014
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    United States
    Description

    In 2024, New York was the state with the greatest gap between rich and poor, with a Gini coefficient score of just under 0.52. Although not a state, District of Columbia was among the highest Gini coefficients in the United States that year. On the other hand, Utah had the lowest Gini score among U.S. states. Overall, income inequality has been rising in the country over recent decades.

  6. The Dynamics of Wealth Inequality and the Effect of Income Distribution

    • plos.figshare.com
    pdf
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yonatan Berman; Eshel Ben-Jacob; Yoash Shapira (2023). The Dynamics of Wealth Inequality and the Effect of Income Distribution [Dataset]. http://doi.org/10.1371/journal.pone.0154196
    Explore at:
    pdfAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Yonatan Berman; Eshel Ben-Jacob; Yoash Shapira
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The rapid increase of wealth inequality in the past few decades is one of the most disturbing social and economic issues of our time. Studying its origin and underlying mechanisms is essential for policy aiming to control and even reverse this trend. In that context, controlling the distribution of income, using income tax or other macroeconomic policy instruments, is generally perceived as effective for regulating the wealth distribution. We provide a theoretical tool, based on the realistic modeling of wealth inequality dynamics, to describe the effects of personal savings and income distribution on wealth inequality. Our theoretical approach incorporates coupled equations, solved using iterated maps to model the dynamics of wealth and income inequality. Notably, using the appropriate historical parameter values we were able to capture the historical dynamics of wealth inequality in the United States during the course of the 20th century. It is found that the effect of personal savings on wealth inequality is substantial, and its major decrease in the past 30 years can be associated with the current wealth inequality surge. In addition, the effect of increasing income tax, though naturally contributing to lowering income inequality, might contribute to a mild increase in wealth inequality and vice versa. Plausible changes in income tax are found to have an insignificant effect on wealth inequality, in practice. In addition, controlling the income inequality, by progressive taxation, for example, is found to have a very small effect on wealth inequality in the short run. The results imply, therefore, that controlling income inequality is an impractical tool for regulating wealth inequality.

  7. Gini coefficient income distribution inequality in Latin America 2023, by...

    • statista.com
    Updated May 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Gini coefficient income distribution inequality in Latin America 2023, by country [Dataset]. https://www.statista.com/statistics/980285/income-distribution-gini-coefficient-latin-america-caribbean-country/
    Explore at:
    Dataset updated
    May 6, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Americas, Latin America
    Description

    Based on the degree of inequality in income distribution measured by the Gini coefficient, Colombia was the most unequal country in Latin America as of 2022. Colombia's Gini coefficient amounted to 54.8. The Dominican Republic recorded the lowest Gini coefficient at 37, even below Uruguay and Chile, which are some of the countries with the highest human development indexes in Latin America. The Gini coefficient explained The Gini coefficient measures the deviation of the distribution of income among individuals or households in a given country from a perfectly equal distribution. A value of 0 represents absolute equality, whereas 100 would be the highest possible degree of inequality. This measurement reflects the degree of wealth inequality at a certain moment in time, though it may fail to capture how average levels of income improve or worsen over time. What affects the Gini coefficient in Latin America? Latin America, as other developing regions in the world, generally records high rates of inequality, with a Gini coefficient ranging between 37 and 55 points according to the latest available data from the reporting period 2010-2023. According to the Human Development Report, wealth redistribution by means of tax transfers improves Latin America's Gini coefficient to a lesser degree than it does in advanced economies. Wider access to education and health services, on the other hand, have been proven to have a greater direct effect in improving Gini coefficient measurements in the region.

  8. Income of the richest 20 percent of the population in LAC 2024, by country

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Income of the richest 20 percent of the population in LAC 2024, by country [Dataset]. https://www.statista.com/statistics/1050681/latin-america-income-inequality-country/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    Latin America
    Description

    In 2024, Colombia ranked first by percentage of income held by the richest 20 percent of the population among the 22 countries presented in the ranking. Colombia's percentage of income held amounted to 58.70 percent, while Brazil and Panama, the second and third countries, had records amounting to 56.60 percent and 53.50 percent, respectively.

  9. w

    Income Distribution Database

    • data360.worldbank.org
    Updated Apr 18, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Income Distribution Database [Dataset]. https://data360.worldbank.org/en/dataset/OECD_IDD
    Explore at:
    Dataset updated
    Apr 18, 2025
    Time period covered
    1974 - 2023
    Area covered
    Denmark, Portugal, Slovak Republic, Croatia, Iceland, Romania, Hungary, Luxembourg, Belgium, Lithuania
    Description

    The OECD Income Distribution database (IDD) has been developed to benchmark and monitor countries' performance in the field of income inequality and poverty. It contains a number of standardised indicators based on the central concept of "equivalised household disposable income", i.e. the total income received by the households less the current taxes and transfers they pay, adjusted for household size with an equivalence scale. While household income is only one of the factors shaping people's economic well-being, it is also the one for which comparable data for all OECD countries are most common. Income distribution has a long-standing tradition among household-level statistics, with regular data collections going back to the 1980s (and sometimes earlier) in many OECD countries.

    Achieving comparability in this field is a challenge, as national practices differ widely in terms of concepts, measures, and statistical sources. In order to maximise international comparability as well as inter-temporal consistency of data, the IDD data collection and compilation process is based on a common set of statistical conventions (e.g. on income concepts and components). The information obtained by the OECD through a network of national data providers, via a standardized questionnaire, is based on national sources that are deemed to be most representative for each country.

    Small changes in estimates between years should be treated with caution as they may not be statistically significant.

    Fore more details, please refer to: https://www.oecd.org/els/soc/IDD-Metadata.pdf and https://www.oecd.org/social/income-distribution-database.htm

  10. Economic Disparity

    • kaggle.com
    zip
    Updated Mar 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    willian oliveira (2024). Economic Disparity [Dataset]. https://www.kaggle.com/datasets/willianoliveiragibin/economic-disparity
    Explore at:
    zip(133903 bytes)Available download formats
    Dataset updated
    Mar 9, 2024
    Authors
    willian oliveira
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    this graphs is ourdataworld :

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2F00b0f9cc2bd8326c60fd0ea3b5dbe4b7%2Finequality.png?generation=1710013947537354&alt=media" alt="">

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2F1978511abe249d3081a3a95bae2ef7d5%2Fincome-share-top-1-before-tax-wid-extrapolations.png?generation=1710013977201099&alt=media" alt="">

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2F2a5a54725f65801ba75b6ab07bc5cb9f%2Fincome-share-top-1-before-tax-wid-extrapolations%20(1).png?generation=1710013994341360&alt=media" alt="">

    How are incomes and wealth distributed between people? Both within countries and across the world as a whole?

    On this page, you can find all our data, visualizations, and writing relating to economic inequality.

    This evidence demonstrates that inequality in many countries is substantial and, in numerous instances, has been escalating. Global economic inequality is extensive and exacerbated by intersecting disparities in health, education, and various other dimensions.

    However, economic inequality is not uniformly increasing. In many countries, it has declined or remained steady. Furthermore, global inequality – following two centuries of ascent – is presently decreasing as well.

    The significant variations observed across countries and over time are pivotal. They indicate that high and rising inequality is not inevitable and that the current extent of inequality is subject to change.

    About this data This data explorer offers various inequality indicators measured according to two distinct definitions of income sourced from different outlets.

    Data from the World Inequality Database pertains to inequality prior to taxes and benefits. Data from the World Bank pertains to either income post taxes and benefits or consumption, contingent on the country and year. For additional details regarding the definitions and methodologies underlying this data, refer to the accompanying article below, where you can also delve into and juxtapose a broader spectrum of indicators from various sources.

  11. U.S. quarterly wealth distribution 1989-2024, by income percentile

    • statista.com
    Updated Nov 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). U.S. quarterly wealth distribution 1989-2024, by income percentile [Dataset]. https://www.statista.com/statistics/299460/distribution-of-wealth-in-the-united-states/
    Explore at:
    Dataset updated
    Nov 19, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In the third quarter of 2024, the top ten percent of earners in the United States held over ** percent of total wealth. This is fairly consistent with the second quarter of 2024. Comparatively, the wealth of the bottom ** percent of earners has been slowly increasing since the start of the *****, though remains low. Wealth distribution in the United States by generation can be found here.

  12. F

    Share of Net Worth Held by the Top 1% (99th to 100th Wealth Percentiles)

    • fred.stlouisfed.org
    json
    Updated Sep 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Share of Net Worth Held by the Top 1% (99th to 100th Wealth Percentiles) [Dataset]. https://fred.stlouisfed.org/series/WFRBST01134
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Sep 19, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Share of Net Worth Held by the Top 1% (99th to 100th Wealth Percentiles) (WFRBST01134) from Q3 1989 to Q2 2025 about net worth, wealth, percentile, Net, and USA.

  13. F

    Income Inequality in New York County, NY

    • fred.stlouisfed.org
    json
    Updated Dec 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Income Inequality in New York County, NY [Dataset]. https://fred.stlouisfed.org/series/2020RATIO036061
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Dec 12, 2024
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    New York, New York County, Manhattan, New York
    Description

    Graph and download economic data for Income Inequality in New York County, NY (2020RATIO036061) from 2010 to 2023 about New York County, NY; inequality; New York; NY; income; and USA.

  14. Data from: What Is Behind the Persistence of the Racial Wealth Gap?

    • clevelandfed.org
    Updated Feb 28, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Federal Reserve Bank of Cleveland (2019). What Is Behind the Persistence of the Racial Wealth Gap? [Dataset]. https://www.clevelandfed.org/publications/economic-commentary/2019/ec-201903-what-is-behind-the-persistence-of-the-racial-wealth-gap
    Explore at:
    Dataset updated
    Feb 28, 2019
    Dataset authored and provided by
    Federal Reserve Bank of Clevelandhttps://www.clevelandfed.org/
    Description

    Most studies of the persistent gap in wealth between whites and blacks have investigated the large gap in income earned by the two groups. Those studies generally concluded that the wealth gap was “too big” to be explained by differences in income. We study the issue using a different approach, capturing the dynamics of wealth accumulation over time. We find that the income gap is the primary driver behind the wealth gap and that it is large enough to explain the persistent difference in wealth accumulation. The key policy implication of our work is that policies designed to speed the closing of the racial wealth gap would do well to focus on closing the racial income gap.

  15. o

    Data and Code for: Intergenerational Economic Mobility and the Racial Wealth...

    • openicpsr.org
    Updated Jan 6, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jermaine Toney; Cassandra Robertson (2021). Data and Code for: Intergenerational Economic Mobility and the Racial Wealth Gap [Dataset]. http://doi.org/10.3886/E130341V3
    Explore at:
    Dataset updated
    Jan 6, 2021
    Dataset provided by
    American Economic Association
    Authors
    Jermaine Toney; Cassandra Robertson
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    A growing body of research documents the importance of wealth and the racial wealth gap in perpetuating inequality across generations. We add to this literature by examining the impact of wealth on child income. Our two stage least squares regressions reveal that grandparental and parental wealth have an important effect on the younger generation’s stock (first stage results), which in turn affects the younger generation’s household income (second stage results). We further explore the relationship between income and wealth by decomposing the child’s income by race. We find that the intergroup disparity in income is mainly attributable to differences in family background. These findings indicate that wealth is an important source of income inequality.

  16. F

    Income Inequality in Los Angeles County, CA

    • fred.stlouisfed.org
    json
    Updated Dec 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Income Inequality in Los Angeles County, CA [Dataset]. https://fred.stlouisfed.org/series/2020RATIO006037
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Dec 12, 2024
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    Los Angeles County, California
    Description

    Graph and download economic data for Income Inequality in Los Angeles County, CA (2020RATIO006037) from 2010 to 2023 about inequality; Los Angeles County, CA; Los Angeles; CA; income; and USA.

  17. U.S. household income Gini Index 1990-2024

    • statista.com
    Updated Nov 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). U.S. household income Gini Index 1990-2024 [Dataset]. https://www.statista.com/statistics/219643/gini-coefficient-for-us-individuals-families-and-households/
    Explore at:
    Dataset updated
    Nov 5, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In 2024, the Gini coefficient of household income distribution in the United States was 0.49. This figure was at 0.43 in 1990, which indicates an increase in income inequality in the U.S. over the past 30 years. What is the Gini coefficient? The Gini coefficient, or Gini index, is a statistical measure of economic inequality and wealth distribution among a population. A value of zero represents perfect economic equality, and a value of one represents perfect economic inequality. Within the United States, the District of Columbia and the state of New York had the largest income gap between earners by Gini Index of about 0.52. Utah, on the other hand, had the greatest income equality with a score of 0.42. The Gini coefficient around the world The Gini coefficient is also an effective measure of income inequality around the world. In 2024, income inequality was highest in South Africa. Slovakia and Slovenia were on the other end of the scale, with high levels of income equality.

  18. g

    Replication Data for: Income Inequality and State Parties: Who Gets...

    • datasearch.gesis.org
    • dataverse-staging.rdmc.unc.edu
    Updated Feb 22, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wright, Gerald; Rigby, Elizabeth (2020). Replication Data for: Income Inequality and State Parties: Who Gets Represented? [Dataset]. http://doi.org/10.15139/S3/XJZONF
    Explore at:
    Dataset updated
    Feb 22, 2020
    Dataset provided by
    Odum Institute Dataverse Network
    Authors
    Wright, Gerald; Rigby, Elizabeth
    Description

    Recent studies of representation at the national and state levels have provided evidence that elected officials’ votes, political parties’ platforms, and enacted policy choices are more responsive to the preferences of the affluent, while those with average incomes and the poor have little or no impact in the political process. Yet, this research on the dominance of the affluent has overlooked key partisan differences in the electorate. In this era of hyper-partisanship, we argue that representation occurs through the party system, and we test whether taking this reality into account changes the story of policy dominance by the rich. We combine data on public preferences and state party positions to test for income bias in parties’ representation of their own co-partisans. The results show an interesting pattern in which under-representation of the poor is driven by Democratic parties pushing the more liberal social policy stances of rich Democrats and Republican parties reflecting the particularly conservative economic policy preferences of Rich Republicans. Thus, we have ample evidence that the wealthy, more often than not, do call the shots, but that the degree to which this disproportionate party responsiveness produces less representative policies depends on the party in power and the policy dimension being considered. We conclude by linking this pattern of influence and “coincidental representation” to familiar changes which define the transformation of the New Deal party system.[insert article abstract]

  19. GapMinder - Income Inequality

    • kaggle.com
    zip
    Updated Apr 11, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    psterk (2020). GapMinder - Income Inequality [Dataset]. https://www.kaggle.com/psterk/income-inequality
    Explore at:
    zip(151952 bytes)Available download formats
    Dataset updated
    Apr 11, 2020
    Authors
    psterk
    Description

    Content

    This analysis focuses on income inequailty as measured by the Gini Index* and its association with economic metrics such as GDP per capita, investments as a % of GDP, and tax revenue as a % of GDP. One polical metric, EIU democracy index, is also included.

    The data is for years 2006 - 2016

    This investigation can be considered a starting point for complex questions such as:

    1. Is a higher tax revenue as a % of GDP associated with less income inequality?
    2. Is a higher EIU democracy index associated with less income inequality?
    3. Is higher GDP per capita associated with less income inequality?
    4. Is higher investments as a % of GDP associated with less income inequality?

    This analysis uses the gapminder dataset from the Gapminder Foundation. The Gapminder Foundation is a non-profit venture registered in Stockholm, Sweden, that promotes sustainable global development and achievement of the United Nations Millennium Development Goals by increased use and understanding of statistics and other information about social, economic and environmental development at local, national and global levels.

    *The Gini Index is a measure of statistical dispersion intended to represent the income or wealth distribution of a nation's residents, and is the most commonly used measurement of inequality. It was developed by the Italian statistician and sociologist Corrado Gini and published in his 1912 paper Variability and Mutability.

    The dataset contains data from the following GapMinder datasets:

    EIU Democracy Index:

    "This democracy index is using the data from the Economist Inteligence Unit to express the quality of democracies as a number between 0 and 100. It's based on 60 different aspects of societies that are relevant to democracy universal suffrage for all adults, voter participation, perception of human rights protection and freedom to form organizations and parties. The democracy index is calculated from the 60 indicators, divided into five ""sub indexes"", which are:

    1. Electoral pluralism index;
    2. Government index;
    3. Political participation indexm;
    4. Political culture index;
    5. Civil liberty index.

    The sub-indexes are based on the sum of scores on roughly 12 indicators per sub-index, converted into a score between 0 and 100. (The Economist publishes the index with a scale from 0 to 10, but Gapminder has converted it to 0 to 100 to make it easier to communicate as a percentage.)" https://docs.google.com/spreadsheets/d/1d0noZrwAWxNBTDSfDgG06_aLGWUz4R6fgDhRaUZbDzE/edit#gid=935776888

    Income: GDP per capita, constant PPP dollars

    GDP per capita measures the value of everything produced in a country during a year, divided by the number of people. The unit is in international dollars, fixed 2011 prices. The data is adjusted for inflation and differences in the cost of living between countries, so-called PPP dollars. The end of the time series, between 1990 and 2016, uses the latest GDP per capita data from the World Bank, from their World Development Indicators. To go back in time before the World Bank series starts in 1990, we have used several sources, such as Angus Maddison. https://www.gapminder.org/data/documentation/gd001/

    Investments (% of GDP)

    Capital formation is a term used to describe the net capital accumulation during an accounting period for a particular country. The term refers to additions of capital goods, such as equipment, tools, transportation assets, and electricity. Countries need capital goods to replace the older ones that are used to produce goods and services. If a country cannot replace capital goods as they reach the end of their useful lives, production declines. Generally, the higher the capital formation of an economy, the faster an economy can grow its aggregate income.

    Tax revenue (% of GDP)

    refers to compulsory transfers to the central governement for public purposes. Does not include social security. https://data.worldbank.org/indicator/GC.TAX.TOTL.GD.ZS

    Context

    Gapminder is an independent Swedish foundation with no political, religious or economic affiliations. Gapminder is a fact tank, not a think tank. Gapminder fights devastating misconceptions about global development. Gapminder produces free teaching resources making the world understandable based on reliable statistics. Gapminder promotes a fact-based worldview everyone can understand. Gapminder collaborates with universities, UN, public agencies and non-governmental organizations. All Gapminder activities are governed by the board. We do not award grants. Gapminder Foundation is registered at Stockholm County Administration Board. Our constitution can be found here.

    Acknowledgements

    Thanks to gapminder.org for organizing the above datasets.

    Inspiration

    Below are some research questions associated with the data and some ...

  20. F

    Income Inequality in New Haven County, CT

    • fred.stlouisfed.org
    json
    Updated Dec 8, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Income Inequality in New Haven County, CT [Dataset]. https://fred.stlouisfed.org/series/2020RATIO009009
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Dec 8, 2022
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    New Haven County, Connecticut
    Description

    Graph and download economic data for Income Inequality in New Haven County, CT (2020RATIO009009) from 2010 to 2021 about New Haven County, CT; New Haven; inequality; CT; income; and USA.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2020). U.S. wealth distribution Q1 2025 [Dataset]. https://www.statista.com/statistics/203961/wealth-distribution-for-the-us/
Organization logo

U.S. wealth distribution Q1 2025

Explore at:
Dataset updated
Jun 18, 2020
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
United States
Description

In the first quarter of 2025, almost ********** of the total wealth in the United States was owned by the top 10 percent of earners. In comparison, the lowest ** percent of earners only owned *** percent of the total wealth. Income inequality in the U.S. Despite the idea that the United States is a country where hard work and pulling yourself up by your bootstraps will inevitably lead to success, this is often not the case. In 2024, *** percent of U.S. households had an annual income under 15,000 U.S. dollars. With such a small percentage of people in the United States owning such a vast majority of the country’s wealth, the gap between the rich and poor in America remains stark. The top one percent The United States was the country with the most billionaires in the world in 2025. Elon Musk, with a net worth of *** billion U.S. dollars, was among the richest people in the United States in 2025. Over the past 50 years, the CEO-to-worker compensation ratio has exploded, causing the gap between rich and poor to grow, with some economists theorizing that this gap is the largest it has been since right before the Great Depression.

Search
Clear search
Close search
Google apps
Main menu