100+ datasets found
  1. Latin America: wealth inequality based on income concentration by country...

    • statista.com
    Updated Jul 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Latin America: wealth inequality based on income concentration by country 2022 [Dataset]. https://www.statista.com/statistics/1050681/latin-america-income-inequality-country/
    Explore at:
    Dataset updated
    Jul 24, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    LAC, Latin America
    Description

    Brazil is one of the most unequal countries in terms of income in Latin America. In 2022, it was estimated that almost 57 percent of the income generated in Brazil was held by the richest 20 percent of its population. Among the Latin American countries with available data included in this graph, Colombia came in first, as the wealthiest 20 percent of the Colombian population held over 59 percent of the country's total income.

  2. Inequality in Europe: wealth distribution in European countries 2019

    • statista.com
    • ai-chatbox.pro
    Updated Sep 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Inequality in Europe: wealth distribution in European countries 2019 [Dataset]. https://www.statista.com/statistics/1416753/inequality-in-europe-wealth-distribution-by-country/
    Explore at:
    Dataset updated
    Sep 2, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2021
    Area covered
    Europe
    Description

    As of 2021, the countries in Europe with the greatest share of national wealth taken by the top 10 percent of wealthy people were Russia, Turkey, and Hungary, with over two-thirds of wealth in Russia being owned by the wealthiest decile. On the other hand, the Netherlands, Slovakia, and Denmark were the countries with the smallest share of national wealth going to the top 10 percent, with more than half of wealth in the Netherlands going to the bottom 90 percent. Ireland, Poland, and Greece stand out, as in these countries the 50 percent of people who own the least wealth in fact have negative net wealth, meaning that the value of their debt is greater than the value of their gross wealth.

  3. Gini coefficient income distribution inequality in Latin America 2023, by...

    • statista.com
    • ai-chatbox.pro
    Updated May 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Gini coefficient income distribution inequality in Latin America 2023, by country [Dataset]. https://www.statista.com/statistics/980285/income-distribution-gini-coefficient-latin-america-caribbean-country/
    Explore at:
    Dataset updated
    May 6, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    LAC, Latin America
    Description

    Based on the degree of inequality in income distribution measured by the Gini coefficient, Colombia was the most unequal country in Latin America as of 2022. Colombia's Gini coefficient amounted to 54.8. The Dominican Republic recorded the lowest Gini coefficient at 37, even below Uruguay and Chile, which are some of the countries with the highest human development indexes in Latin America. The Gini coefficient explained The Gini coefficient measures the deviation of the distribution of income among individuals or households in a given country from a perfectly equal distribution. A value of 0 represents absolute equality, whereas 100 would be the highest possible degree of inequality. This measurement reflects the degree of wealth inequality at a certain moment in time, though it may fail to capture how average levels of income improve or worsen over time. What affects the Gini coefficient in Latin America? Latin America, as other developing regions in the world, generally records high rates of inequality, with a Gini coefficient ranging between 37 and 55 points according to the latest available data from the reporting period 2010-2023. According to the Human Development Report, wealth redistribution by means of tax transfers improves Latin America's Gini coefficient to a lesser degree than it does in advanced economies. Wider access to education and health services, on the other hand, have been proven to have a greater direct effect in improving Gini coefficient measurements in the region.

  4. Gini Index - countries with the biggest inequality in income distribution...

    • statista.com
    Updated Jun 16, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Gini Index - countries with the biggest inequality in income distribution 2024 [Dataset]. https://www.statista.com/statistics/264627/ranking-of-the-20-countries-with-the-biggest-inequality-in-income-distribution/
    Explore at:
    Dataset updated
    Jun 16, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    South Africa had the highest inequality in income distribution in 2024, with a Gini score of **. Its South African neighbor, Namibia, followed in second. The Gini coefficient measures the deviation of income (or consumption) distribution among individuals or households within a country from a perfectly equal distribution. A value of 0 represents absolute equality, and a value of 100 represents absolute inequality. All the 20 most unequal countries in the world were either located in Africa or Latin America & The Caribbean.

  5. Gini Index

    • resourcewatch.org
    Updated Apr 24, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank Group (2018). Gini Index [Dataset]. https://resourcewatch.org/data/explore/GINI-Index
    Explore at:
    Dataset updated
    Apr 24, 2018
    Dataset provided by
    World Bankhttp://worldbank.org/
    Authors
    World Bank Group
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Global
    Description

    The Gini index measures economic inequality in a country. Specifically, it is the extent to which the distribution of income (or, in some cases, consumption expenditure) deviates from a perfectly equal distribution among individuals or households within an economy.

  6. Income Inequality in U.S. Counties

    • hub.arcgis.com
    Updated Sep 29, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2015). Income Inequality in U.S. Counties [Dataset]. https://hub.arcgis.com/maps/b2db6f24618d4aad9885d2dd51024842
    Explore at:
    Dataset updated
    Sep 29, 2015
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Urban Observatory by Esri
    Area covered
    Description

    Income InequalityThe level of income inequality among households in a county can be measured using the Gini index. A Gini index varies between zero and one. A value of one indicates perfect inequality, where only one household in the county has any income. A value of zero indicates perfect equality, where all households in the county have equal income.The United States, as a country, has a Gini Index of 0.47 for this time period. For comparision in this map, the purple counties have greater income inequality, while orange counties have less inequality of incomes. For reference, Brazil has an index of 0.58 (relatively high inequality) and Denmark has an index of 0.24 (relatively low inequality).The 5-year Gini index for the U.S. was 0.4695 in 2007-2011 and 0.467 in 2006-2010. Appalachian Regional Commission, September 2013Data source: U.S. Census Bureau, 5-Year American Community Survey, 2006-2010 & 2007-2011

  7. World Income Inequality Database

    • kaggle.com
    zip
    Updated Oct 20, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Arman (2020). World Income Inequality Database [Dataset]. https://www.kaggle.com/mannmann2/world-income-inequality-database
    Explore at:
    zip(693569 bytes)Available download formats
    Dataset updated
    Oct 20, 2020
    Authors
    Arman
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    World
    Description

    Source: https://www.wider.unu.edu/database/wiid User Guide: https://www.wider.unu.edu/sites/default/files/WIID/PDF/WIID-User_Guide_06MAY2020.pdf

    The World Income Inequality Database (WIID) contains information on income inequality in various countries and is maintained by the United Nations University-World Institute for Development Economics Research (UNU-WIDER). The database was originally compiled during 1997-99 for the research project Rising Income Inequality and Poverty Reduction, directed by Giovanni Andrea Corina. A revised and updated version of the database was published in June 2005 as part of the project Global Trends in Inequality and Poverty, directed by Tony Shorrocks and Guang Hua Wan. The database was revised in 2007 and a new version was launched in May 2008.

    The database contains data on inequality in the distribution of income in various countries. The central variable in the dataset is the Gini index, a measure of income distribution in a society. In addition, the dataset contains information on income shares by quintile or decile. The database contains data for 159 countries, including some historical entities. The temporal coverage varies substantially across countries. For some countries there is only one data entry; in other cases there are over 100 data points. The earliest entry is from 1867 (United Kingdom), the latest from 2003. The majority of the data (65%) cover the years from 1980 onwards. The 2008 update (version WIID2c) includes some major updates and quality improvements, in fact leading to a reduced number of variables in the new version. The new version has 334 new observations and several revisions/ corrections made in 2007 and 2008.

  8. H

    The Standardized World Income Inequality Database v1-v7

    • dataverse.harvard.edu
    Updated May 22, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Frederick Solt (2019). The Standardized World Income Inequality Database v1-v7 [Dataset]. http://doi.org/10.7910/DVN/WKOKHF
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 22, 2019
    Dataset provided by
    Harvard Dataverse
    Authors
    Frederick Solt
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    1960 - 2017
    Dataset funded by
    NSF
    Description

    Cross-national research on the causes and consequences of income inequality has been hindered by the limitations of existing inequality datasets: greater coverage across countries and over time is available from these sources only at the cost of significantly reduced comparability across observations. The goal of the Standardized World Income Inequality Database (SWIID) is to overcome these limitations. A custom missing-data algorithm was used to standardize the United Nations University's World Income Inequality Database and data from other sources; data collected by the Luxembourg Income Study served as the standard. The SWIID provides comparable Gini indices of gross and net income inequality for 192 countries for as many years as possible from 1960 to the present along with estimates of uncertainty in these statistics. By maximizing comparability for the largest possible sample of countries and years, the SWIID is better suited to broadly cross-national research on income inequality than previously available sources: it offers coverage double that of the next largest income inequality dataset, and its record of comparability is three to eight times better than those of alternate datasets. In any papers or publications that use the SWIID, authors are asked to cite the article of record for the data set and give the version number as follows: Solt, Frederick. 2016. "The Standardized World Income Inequality Database." Social Science Quarterly 97(5):1267-1281. SWIID Version 7.1, August 2018.

  9. F

    Share of Net Worth Held by the Top 0.1% (99.9th to 100th Wealth Percentiles)...

    • fred.stlouisfed.org
    json
    Updated Jun 20, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Share of Net Worth Held by the Top 0.1% (99.9th to 100th Wealth Percentiles) [Dataset]. https://fred.stlouisfed.org/series/WFRBSTP1300
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jun 20, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Share of Net Worth Held by the Top 0.1% (99.9th to 100th Wealth Percentiles) (WFRBSTP1300) from Q3 1989 to Q1 2025 about shares, net worth, wealth, percentile, Net, and USA.

  10. Gini index worldwide 2024, by country

    • statista.com
    Updated Jul 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Gini index worldwide 2024, by country [Dataset]. https://www.statista.com/forecasts/1171540/gini-index-by-country
    Explore at:
    Dataset updated
    Jul 10, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 1, 2024 - Dec 31, 2024
    Area covered
    Albania
    Description

    Comparing the *** selected regions regarding the gini index , South Africa is leading the ranking (**** points) and is followed by Namibia with **** points. At the other end of the spectrum is Slovakia with **** points, indicating a difference of *** points to South Africa. The Gini coefficient here measures the degree of income inequality on a scale from * (=total equality of incomes) to *** (=total inequality).The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in more than *** countries and regions worldwide. All input data are sourced from international institutions, national statistical offices, and trade associations. All data has been are processed to generate comparable datasets (see supplementary notes under details for more information).

  11. F

    GINI Index for the United States

    • fred.stlouisfed.org
    json
    Updated Jun 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). GINI Index for the United States [Dataset]. https://fred.stlouisfed.org/series/SIPOVGINIUSA
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jun 5, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    United States
    Description

    Graph and download economic data for GINI Index for the United States (SIPOVGINIUSA) from 1963 to 2023 about gini, indexes, and USA.

  12. Uruguay UY: Gini Coefficient (GINI Index): World Bank Estimate

    • ceicdata.com
    Updated Mar 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2023). Uruguay UY: Gini Coefficient (GINI Index): World Bank Estimate [Dataset]. https://www.ceicdata.com/en/uruguay/poverty/uy-gini-coefficient-gini-index-world-bank-estimate
    Explore at:
    Dataset updated
    Mar 15, 2023
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 1989 - Dec 1, 2016
    Area covered
    Uruguay
    Description

    Uruguay UY: Gini Coefficient (GINI Index): World Bank Estimate data was reported at 39.700 % in 2016. This records a decrease from the previous number of 40.200 % for 2015. Uruguay UY: Gini Coefficient (GINI Index): World Bank Estimate data is updated yearly, averaging 42.400 % from Dec 1981 (Median) to 2016, with 13 observations. The data reached an all-time high of 46.400 % in 2007 and a record low of 39.700 % in 2016. Uruguay UY: Gini Coefficient (GINI Index): World Bank Estimate data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Uruguay – Table UY.World Bank.WDI: Poverty. Gini index measures the extent to which the distribution of income (or, in some cases, consumption expenditure) among individuals or households within an economy deviates from a perfectly equal distribution. A Lorenz curve plots the cumulative percentages of total income received against the cumulative number of recipients, starting with the poorest individual or household. The Gini index measures the area between the Lorenz curve and a hypothetical line of absolute equality, expressed as a percentage of the maximum area under the line. Thus a Gini index of 0 represents perfect equality, while an index of 100 implies perfect inequality.; ; World Bank, Development Research Group. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. For more information and methodology, please see PovcalNet (http://iresearch.worldbank.org/PovcalNet/index.htm).; ; The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than one thousand six hundred household surveys across 164 countries in six regions and 25 other high income countries (industrialized economies). While income distribution data are published for all countries with data available, poverty data are published for low- and middle-income countries and countries eligible to receive loans from the World Bank (such as Chile) and recently graduated countries (such as Estonia) only. See PovcalNet (http://iresearch.worldbank.org/PovcalNet/WhatIsNew.aspx) for definitions of geographical regions and industrialized countries.

  13. w

    Measuring Income Inequality (Deininger and Squire) Database 1890-1996 -...

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Oct 26, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Klaus W. Deininger and Lyn Squire (2023). Measuring Income Inequality (Deininger and Squire) Database 1890-1996 - Argentina, Australia, Austria...and 99 more [Dataset]. https://microdata.worldbank.org/index.php/catalog/1790
    Explore at:
    Dataset updated
    Oct 26, 2023
    Dataset authored and provided by
    Klaus W. Deininger and Lyn Squire
    Time period covered
    1890 - 1996
    Area covered
    Austria, Australia
    Description

    Abstract

    This file contains data on Gini coefficients, cumulative quintile shares, explanations regarding the basis on which the Gini coefficient was computed, and the source of the information. There are two data-sets, one containing the "high quality" sample and the other one including all the information (of lower quality) that had been collected.

    The database was constructed for the production of the following paper:

    Deininger, Klaus and Lyn Squire, "A New Data Set Measuring Income Inequality", The World Bank Economic Review, 10(3): 565-91, 1996.

    This article presents a new data set on inequality in the distribution of income. The authors explain the criteria they applied in selecting data on Gini coefficients and on individual quintile groups’ income shares. Comparison of the new data set with existing compilations reveals that the data assembled here represent an improvement in quality and a significant expansion in coverage, although differences in the definition of the underlying data might still affect intertemporal and international comparability. Based on this new data set, the authors do not find a systematic link between growth and changes in aggregate inequality. They do find a strong positive relationship between growth and reduction of poverty.

    Geographic coverage

    In what follows, we provide brief descriptions of main features for individual countries that are included in the data-base. Without being comprehensive, these notes are intended to indicate some of the considerations underlying our decision to include or exclude certain observations.

    Argentina Various permanent household surveys, all covering urban centers only, have been regularly conducted since 1972 and are quoted in a wide variety of sources and years, e.g., for 1980 (World Bank 1992), 1985 (Altimir 1994), and 1989 (World Bank 1992). Estimates for 1963, 1965, 1969/70, 1970/71, 1974, 1975, 1980, and 1981 (Altimir 1987) are based only on Greater Buenos Aires. Estimates for 1961, 1963, 1970 (Jain 1975) and for 1970 (van Ginneken 1984) have only limited geographic coverage and do not satisfy our minimum criteria.

    Despite the many urban surveys, there are no income distribution data that are representative of the population as a whole. References to national income distribution for the years 1953, 1959, and 1961(CEPAL 1968 in Altimir 1986 ) are based on extrapolation from national accounts and have therefore not been included. Data for 1953 and 1961 from Weisskoff (1970) , from Lecaillon (1984) , and from Cromwell (1977) are also excluded.

    Australia Household surveys, the result of which is reported in the statistical yearbook, have been conducted in 1968/9, 1975/6, 1978/9, 1981, 1985, 1986, 1989, and 1990.

    Data for 1962 (Cromwell, 1977) and 1966/67 (Sawyer 1976) were excluded as they covered only tax payers. Jain's data for 1970 was excluded because it covered income recipients only. Data from Podder (1972) for 1967/68, from Jain (1975) for the same year, from UN (1985) for 78/79, from Sunders and Hobbes (1993) for 1986 and for 1989 were excluded given the availability of the primary sources. Data from Bishop (1991) for 1981/82, from Buhman (1988) for 1981/82, from Kakwani (1986) for 1975/76, and from Sunders and Hobbes (1993) for 1986 were utilized to test for the effect of different definitions. The values for 1967 used by Persson and Tabellini and Alesina and Rodrik (based on Paukert and Jain) are close to the ones reported in the Statistical Yearbook for 1969.

    Austria: In addition to data referring to the employed population (Guger 1989), national household surveys for 1987 and 1991 are included in the LIS data base. As these data do not include income from self-employment, we do not report them in our high quality data-set.

    Bahamas Data for Ginis and shares are available for 1973, 1977, 1979, 1986, 1988, 1989, 1991, 1992, and 1993 in government reports on population censuses and household budget surveys, and for 1973 and 1975 from UN (1981). Estimates for 1970 (Jain 1975), 1973, 1975, 1977, and 1979 (Fields 1989) have been excluded given the availability of primary sources.

    Bangladesh Data from household surveys for 1973/74, 1976/77, 1977/78, 1981/82, and 1985/86 are available from the Statistical Yearbook, complemented by household-survey based information from Chen (1995) and the World Development Report. Household surveys with rural coverage for 1959, 1960, 1963/64, 1965, 1966/67 and 1968/69, and with urban coverage for 1963/64, 1965, 1966/67, and 1968/69 are also available from the Statistical yearbook. Data for 1963/64 ,1964 and 1966/67, (Jain 1975) are not included due to limited geographic coverage, We also excluded secondary sources for 1973/74, 1976/77, 1981/82 (Fields 1989), 1977 (UN 1981), 1983 (Milanovic 1994), and 1985/86 due to availability of the primary source.

    Barbados National household surveys have been conducted in 1951/52 and 1978/79 (Downs, 1988). Estimates based on personal tax returns, reported consistently for 1951-1981 (Holder and Prescott, 1989), had to be excluded as they exclude the non-wage earning population. Jain's figure (used by Alesina and Rodrik) is based on the same source.

    Belgium Household surveys with national coverage are available for 1978/79 (UN 1985), and for 1985, 1988, and 1992 (LIS 1995). Earlier data for 1969, 1973, 1975, 1976 and 1977 (UN 1981) refer to taxable households only and are not included.

    Bolivia The only survey with national coverage is the 1990 LSMS (World Development Report). Surveys for 1986 and 1989 cover the main cities only (Psacharopoulos et al. 1992) and are therefore not included. Data for 1968 (Cromwell 1977) do not refer to a clear definition and is therefore excluded.

    Botswana The only survey with national coverage was conducted in 1985-1986 (Chen et al 1993); surveys in 74/75 and 85/86 included rural areas only (UN 1981). We excluded Gini estimates for 1971/72 that refer to the economically active population only (Jain 1975), as well as 1974/75 and 1985/86 (Valentine 1993) due to lack of national coverage or consistency in definition.

    Brazil Data from 1960, 1970, 1974/75, 1976, 1977, 1978, 1980, 1982, 1983, 1985, 1987 and 1989 are available from the statistical yearbook, in addition to data for 1978 (Fields 1987) and for 1979 (Psacharopoulos et al. 1992). Other sources have been excluded as they were either not of national coverage, based on wage earners only, or because a more consistent source was available.

    Bulgaria: Data from household surveys are available for 1963-69 (in two year intervals), for 1970-90 (on an annual basis) from the Statistical yearbook and for 1991 - 93 from household surveys by the World Bank (Milanovic and Ying).

    Burkina Faso A priority survey has been undertaken in 1995.

    Central African Republic: Except for a household survey conducted in 1992, no information was available.

    Cameroon The only data are from a 1983/4 household budget survey (World Bank Poverty Assessment).

    Canada Gini- and share data for the 1950-61 (in irregular intervals), 1961-81 (biennially), and 1981-91 (annually) are available from official sources (Statistical Yearbook for years before 1971 and Income Distributions by Size in Canada for years since 1973, various issues). All other references seem to be based on these primary sources.

    Chad: An estimate for 1958 is available in the literature, and used by Alesina and Rodrik and Persson and Tabellini but was not included due to lack of primary sources.

    Chile The first nation-wide survey that included not only employment income was carried out in 1968 (UN 1981). This is complemented by household survey-based data for 1971 (Fields 1989), 1989, and 1994. Other data that refer either only to part of the population or -as in the case of a long series available from World Bank country operations- are not clearly based on primary sources, are excluded.

    China Annual household surveys from 1980 to 1992, conducted separately in rural and urban areas, were consolidated by Ying (1995), based on the statistical yearbook. Data from other secondary sources are excluded due to limited geographic and population coverage and data from Chen et al (1993) for 1985 and 1990 have not been included, to maintain consistency of sources..

    Colombia The first household survey with national coverage was conducted in 1970 (DANE 1970). In addition, there are data for 1971, 1972, 1974 CEPAL (1986), and for 1978, 1988/89, and 1991 (World Bank Poverty Assessment 1992 and Chen et al. 1995). Data referring to years before 1970 -including the 1964 estimate used in Persson and Tabellini were excluded, as were estimates for the wage earning population only.

    Costa Rica Data on Gini coefficients and quintile shares are available for 1961, 1971 (Cespedes 1973),1977 (OPNPE 1982), 1979 (Fields 1989), 1981 (Chen et al 1993), 1983 (Bourguignon and Morrison 1989), 1986 (Sauma-Fiatt 1990), and 1989 (Chen et al 1993). Gini coefficients for 1971 (Gonzalez-Vega and Cespedes in Rottenberg 1993), 1973 and 1985 (Bourguignon and Morrison 1989) cover urban areas only and were excluded.

    Cote d'Ivoire: Data based on national-level household surveys (LSMS) are available for 1985, 1986, 1987, 1988, and 1995. Information for the 1970s (Schneider 1991) is based on national accounting information and therefore excluded

    Cuba Official information on income distribution is limited. Data from secondary sources are available for 1953, 1962, 1973, and 1978, relying on personal wage income, i.e. excluding the population that is not economically active (Brundenius 1984).

    Czech Republic Household surveys for 1993 and 1994 were obtained from Milanovic and Ying. While it is in principle possible to go back further, splitting national level surveys for the former Czechoslovakia into their independent parts, we decided not to do so as the same argument could be used to

  14. B

    Brazil BR: Gini Coefficient (GINI Index): World Bank Estimate

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, Brazil BR: Gini Coefficient (GINI Index): World Bank Estimate [Dataset]. https://www.ceicdata.com/en/brazil/social-poverty-and-inequality/br-gini-coefficient-gini-index-world-bank-estimate
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2011 - Dec 1, 2022
    Area covered
    Brazil
    Description

    Brazil BR: Gini Coefficient (GINI Index): World Bank Estimate data was reported at 52.000 % in 2022. This records a decrease from the previous number of 52.900 % for 2021. Brazil BR: Gini Coefficient (GINI Index): World Bank Estimate data is updated yearly, averaging 56.400 % from Dec 1981 (Median) to 2022, with 38 observations. The data reached an all-time high of 63.300 % in 1989 and a record low of 48.900 % in 2020. Brazil BR: Gini Coefficient (GINI Index): World Bank Estimate data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Brazil – Table BR.World Bank.WDI: Social: Poverty and Inequality. Gini index measures the extent to which the distribution of income (or, in some cases, consumption expenditure) among individuals or households within an economy deviates from a perfectly equal distribution. A Lorenz curve plots the cumulative percentages of total income received against the cumulative number of recipients, starting with the poorest individual or household. The Gini index measures the area between the Lorenz curve and a hypothetical line of absolute equality, expressed as a percentage of the maximum area under the line. Thus a Gini index of 0 represents perfect equality, while an index of 100 implies perfect inequality.;World Bank, Poverty and Inequality Platform. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are mostly from the Luxembourg Income Study database. For more information and methodology, please see http://pip.worldbank.org.;;The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than 2000 household surveys across 169 countries. See the Poverty and Inequality Platform (PIP) for details (www.pip.worldbank.org).

  15. f

    Measures of wealth-inequality in Pardus compared to real-world countries.

    • plos.figshare.com
    xls
    Updated Jun 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Benedikt Fuchs; Stefan Thurner (2023). Measures of wealth-inequality in Pardus compared to real-world countries. [Dataset]. http://doi.org/10.1371/journal.pone.0103503.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Benedikt Fuchs; Stefan Thurner
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    World
    Description

    Gini index , and fraction of total wealth in % held by a fraction of the population. Real-world data is taken from [61].

  16. T

    Tunisia TN: Gini Coefficient (GINI Index): World Bank Estimate

    • ceicdata.com
    Updated Dec 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2024). Tunisia TN: Gini Coefficient (GINI Index): World Bank Estimate [Dataset]. https://www.ceicdata.com/en/tunisia/poverty/tn-gini-coefficient-gini-index-world-bank-estimate
    Explore at:
    Dataset updated
    Dec 15, 2024
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 1985 - Dec 1, 2010
    Area covered
    Tunisia
    Description

    Tunisia TN: Gini Coefficient (GINI Index): World Bank Estimate data was reported at 35.800 % in 2010. This records a decrease from the previous number of 37.700 % for 2005. Tunisia TN: Gini Coefficient (GINI Index): World Bank Estimate data is updated yearly, averaging 40.500 % from Dec 1985 (Median) to 2010, with 6 observations. The data reached an all-time high of 43.400 % in 1985 and a record low of 35.800 % in 2010. Tunisia TN: Gini Coefficient (GINI Index): World Bank Estimate data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Tunisia – Table TN.World Bank.WDI: Poverty. Gini index measures the extent to which the distribution of income (or, in some cases, consumption expenditure) among individuals or households within an economy deviates from a perfectly equal distribution. A Lorenz curve plots the cumulative percentages of total income received against the cumulative number of recipients, starting with the poorest individual or household. The Gini index measures the area between the Lorenz curve and a hypothetical line of absolute equality, expressed as a percentage of the maximum area under the line. Thus a Gini index of 0 represents perfect equality, while an index of 100 implies perfect inequality.; ; World Bank, Development Research Group. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. For more information and methodology, please see PovcalNet (http://iresearch.worldbank.org/PovcalNet/index.htm).; ; The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than one thousand six hundred household surveys across 164 countries in six regions and 25 other high income countries (industrialized economies). While income distribution data are published for all countries with data available, poverty data are published for low- and middle-income countries and countries eligible to receive loans from the World Bank (such as Chile) and recently graduated countries (such as Estonia) only. See PovcalNet (http://iresearch.worldbank.org/PovcalNet/WhatIsNew.aspx) for definitions of geographical regions and industrialized countries.

  17. F

    Income Gini Ratio for Households by Race of Householder, All Races

    • fred.stlouisfed.org
    json
    Updated Sep 10, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Income Gini Ratio for Households by Race of Householder, All Races [Dataset]. https://fred.stlouisfed.org/series/GINIALLRH
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Sep 10, 2024
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Income Gini Ratio for Households by Race of Householder, All Races (GINIALLRH) from 1967 to 2023 about gini, households, income, and USA.

  18. a

    Goal 10: Reduce inequality within and among countries

    • senegal2-sdg.hub.arcgis.com
    • honduras-1-sdg.hub.arcgis.com
    • +12more
    Updated Jul 1, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    arobby1971 (2022). Goal 10: Reduce inequality within and among countries [Dataset]. https://senegal2-sdg.hub.arcgis.com/datasets/cea6440cb3bd405d95d8d491270ca6df
    Explore at:
    Dataset updated
    Jul 1, 2022
    Dataset authored and provided by
    arobby1971
    Description

    Goal 10Reduce inequality within and among countriesTarget 10.1: By 2030, progressively achieve and sustain income growth of the bottom 40 per cent of the population at a rate higher than the national averageIndicator 10.1.1: Growth rates of household expenditure or income per capita among the bottom 40 per cent of the population and the total populationSI_HEI_TOTL: Growth rates of household expenditure or income per capita (%)Target 10.2: By 2030, empower and promote the social, economic and political inclusion of all, irrespective of age, sex, disability, race, ethnicity, origin, religion or economic or other statusIndicator 10.2.1: Proportion of people living below 50 per cent of median income, by sex, age and persons with disabilitiesSI_POV_50MI: Proportion of people living below 50 percent of median income (%)Target 10.3: Ensure equal opportunity and reduce inequalities of outcome, including by eliminating discriminatory laws, policies and practices and promoting appropriate legislation, policies and action in this regardIndicator 10.3.1: Proportion of population reporting having personally felt discriminated against or harassed in the previous 12 months on the basis of a ground of discrimination prohibited under international human rights lawVC_VOV_GDSD: Proportion of population reporting having felt discriminated against, by grounds of discrimination, sex and disability (%)Target 10.4: Adopt policies, especially fiscal, wage and social protection policies, and progressively achieve greater equalityIndicator 10.4.1: Labour share of GDPSL_EMP_GTOTL: Labour share of GDP (%)Indicator 10.4.2: Redistributive impact of fiscal policySI_DST_FISP: Redistributive impact of fiscal policy, Gini index (%)Target 10.5: Improve the regulation and monitoring of global financial markets and institutions and strengthen the implementation of such regulationsIndicator 10.5.1: Financial Soundness IndicatorsFI_FSI_FSANL: Non-performing loans to total gross loans (%)FI_FSI_FSERA: Return on assets (%)FI_FSI_FSKA: Regulatory capital to assets (%)FI_FSI_FSKNL: Non-performing loans net of provisions to capital (%)FI_FSI_FSKRTC: Regulatory Tier 1 capital to risk-weighted assets (%)FI_FSI_FSLS: Liquid assets to short term liabilities (%)FI_FSI_FSSNO: Net open position in foreign exchange to capital (%)Target 10.6: Ensure enhanced representation and voice for developing countries in decision-making in global international economic and financial institutions in order to deliver more effective, credible, accountable and legitimate institutionsIndicator 10.6.1: Proportion of members and voting rights of developing countries in international organizationsSG_INT_MBRDEV: Proportion of members of developing countries in international organizations, by organization (%)SG_INT_VRTDEV: Proportion of voting rights of developing countries in international organizations, by organization (%)Target 10.7: Facilitate orderly, safe, regular and responsible migration and mobility of people, including through the implementation of planned and well-managed migration policiesIndicator 10.7.1: Recruitment cost borne by employee as a proportion of monthly income earned in country of destinationIndicator 10.7.2: Number of countries with migration policies that facilitate orderly, safe, regular and responsible migration and mobility of peopleSG_CPA_MIGRP: Proportion of countries with migration policies to facilitate orderly, safe, regular and responsible migration and mobility of people, by policy domain (%)SG_CPA_MIGRS: Countries with migration policies to facilitate orderly, safe, regular and responsible migration and mobility of people, by policy domain (1 = Requires further progress; 2 = Partially meets; 3 = Meets; 4 = Fully meets)Indicator 10.7.3: Number of people who died or disappeared in the process of migration towards an international destinationiSM_DTH_MIGR: Total deaths and disappearances recorded during migration (number)Indicator 10.7.4: Proportion of the population who are refugees, by country of originSM_POP_REFG_OR: Number of refugees per 100,000 population, by country of origin (per 100,000 population)Target 10.a: Implement the principle of special and differential treatment for developing countries, in particular least developed countries, in accordance with World Trade Organization agreementsIndicator 10.a.1: Proportion of tariff lines applied to imports from least developed countries and developing countries with zero-tariffTM_TRF_ZERO: Proportion of tariff lines applied to imports with zero-tariff (%)Target 10.b: Encourage official development assistance and financial flows, including foreign direct investment, to States where the need is greatest, in particular least developed countries, African countries, small island developing States and landlocked developing countries, in accordance with their national plans and programmesIndicator 10.b.1: Total resource flows for development, by recipient and donor countries and type of flow (e.g. official development assistance, foreign direct investment and other flows)DC_TRF_TOTDL: Total assistance for development, by donor countries (millions of current United States dollars)DC_TRF_TOTL: Total assistance for development, by recipient countries (millions of current United States dollars)DC_TRF_TFDV: Total resource flows for development, by recipient and donor countries (millions of current United States dollars)Target 10.c: By 2030, reduce to less than 3 per cent the transaction costs of migrant remittances and eliminate remittance corridors with costs higher than 5 per centIndicator 10.c.1: Remittance costs as a proportion of the amount remittedSI_RMT_COST: Remittance costs as a proportion of the amount remitted (%)SI_RMT_COST_BC: Corridor remittance costs as a proportion of the amount remitted (%)SI_RMT_COST_SC: SmaRT corridor remittance costs as a proportion of the amount remitted (%)

  19. i

    World Income Inequality Database , WIID

    • ingridportal.eu
    Updated May 4, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2019). World Income Inequality Database , WIID [Dataset]. http://doi.org/10.23728/b2share.a47b8330c9f3408a8f0d715aeb3d9618
    Explore at:
    Dataset updated
    May 4, 2019
    Description

    The World Income Inequality database is part of the United Nations University World Institute for Development Economics Research (UNU-WIDER) and contains information on income inequality for 189 developed, developing and transition countries.

  20. Mexico MX: Gini Coefficient (GINI Index): World Bank Estimate

    • ceicdata.com
    Updated Feb 15, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2019). Mexico MX: Gini Coefficient (GINI Index): World Bank Estimate [Dataset]. https://www.ceicdata.com/en/mexico/poverty/mx-gini-coefficient-gini-index-world-bank-estimate
    Explore at:
    Dataset updated
    Feb 15, 2019
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 1996 - Dec 1, 2016
    Area covered
    Mexico
    Description

    Mexico MX: Gini Coefficient (GINI Index): World Bank Estimate data was reported at 43.400 % in 2016. This records a decrease from the previous number of 45.800 % for 2014. Mexico MX: Gini Coefficient (GINI Index): World Bank Estimate data is updated yearly, averaging 48.300 % from Dec 1984 (Median) to 2016, with 15 observations. The data reached an all-time high of 51.400 % in 2000 and a record low of 43.400 % in 2016. Mexico MX: Gini Coefficient (GINI Index): World Bank Estimate data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Mexico – Table MX.World Bank.WDI: Poverty. Gini index measures the extent to which the distribution of income (or, in some cases, consumption expenditure) among individuals or households within an economy deviates from a perfectly equal distribution. A Lorenz curve plots the cumulative percentages of total income received against the cumulative number of recipients, starting with the poorest individual or household. The Gini index measures the area between the Lorenz curve and a hypothetical line of absolute equality, expressed as a percentage of the maximum area under the line. Thus a Gini index of 0 represents perfect equality, while an index of 100 implies perfect inequality.; ; World Bank, Development Research Group. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. For more information and methodology, please see PovcalNet (http://iresearch.worldbank.org/PovcalNet/index.htm).; ; The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than one thousand six hundred household surveys across 164 countries in six regions and 25 other high income countries (industrialized economies). While income distribution data are published for all countries with data available, poverty data are published for low- and middle-income countries and countries eligible to receive loans from the World Bank (such as Chile) and recently graduated countries (such as Estonia) only. See PovcalNet (http://iresearch.worldbank.org/PovcalNet/WhatIsNew.aspx) for definitions of geographical regions and industrialized countries.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Latin America: wealth inequality based on income concentration by country 2022 [Dataset]. https://www.statista.com/statistics/1050681/latin-america-income-inequality-country/
Organization logo

Latin America: wealth inequality based on income concentration by country 2022

Explore at:
Dataset updated
Jul 24, 2024
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
LAC, Latin America
Description

Brazil is one of the most unequal countries in terms of income in Latin America. In 2022, it was estimated that almost 57 percent of the income generated in Brazil was held by the richest 20 percent of its population. Among the Latin American countries with available data included in this graph, Colombia came in first, as the wealthiest 20 percent of the Colombian population held over 59 percent of the country's total income.

Search
Clear search
Close search
Google apps
Main menu