Facebook
TwitterThis statistic shows the inequality of income distribution in China from 2005 to 2023 based on the Gini Index. In 2023, China reached a score of ************ points. The Gini Index is a statistical measure that is used to represent unequal distributions, e.g. income distribution. It can take any value between 1 and 100 points (or 0 and 1). The closer the value is to 100 the greater is the inequality. 40 or 0.4 is the warning level set by the United Nations. The Gini Index for South Korea had ranged at about **** in 2022. Income distribution in China The Gini coefficient is used to measure the income inequality of a country. The United States, the World Bank, the US Central Intelligence Agency, and the Organization for Economic Co-operation and Development all provide their own measurement of the Gini coefficient, varying in data collection and survey methods. According to the United Nations Development Programme, countries with the largest income inequality based on the Gini index are mainly located in Africa and Latin America, with South Africa displaying the world's highest value in 2022. The world's most equal countries, on the contrary, are situated mostly in Europe. The United States' Gini for household income has increased by around ten percent since 1990, to **** in 2023. Development of inequality in China Growing inequality counts as one of the biggest social, economic, and political challenges to many countries, especially emerging markets. Over the last 20 years, China has become one of the world's largest economies. As parts of the society have become more and more affluent, the country's Gini coefficient has also grown sharply over the last decades. As shown by the graph at hand, China's Gini coefficient ranged at a level higher than the warning line for increasing risk of social unrest over the last decade. However, the situation has slightly improved since 2008, when the Gini coefficient had reached the highest value of recent times.
Facebook
TwitterIn the 2023/24 financial year, various measures of inequality in the United Kingdom are higher than in the late 1970s. The S80/20 ratio increased from ****to ***, the P90/10 ratio from ****to ***, and the Palma ratio from *** to ***.
Facebook
TwitterInequality in family wealth is high, yet we know little about how much and how wealth inequality is maintained across generations. We argue that a long-term perspective reflective of wealth’s cumulative nature is crucial to understand the extent and channels of wealth reproduction across generations. Using data from the Panel Study of Income Dynamics that span nearly half a century, we show that a one decile increase in parental wealth position is associated with an increase of about 4 percentiles in offspring wealth position in adulthood. We show that grandparental wealth is a unique predictor of grandchildren’s wealth, above and beyond the role of parental wealth, suggesting that a focus on only parent-child dyads understates the importance of family wealth lineages. Second, considering five channels of wealth transmission — gifts and bequests, education, marriage, homeownership, and business ownership — we find that most of the advantages arising from family wealth begin much earlier in the life-course than the common focus on bequests implies, even when we consider the wealth of grandparents. We also document the stark disadvantage of African-American households in terms of not only their wealth attainment but also their intergenerational downward wealth mobility compared to whites.
Facebook
TwitterAt the turn of the twentieth century, the wealthiest one percent of people in the United Kingdom controlled 71 percent of net personal wealth, while the top ten percent controlled 93 percent. The share of wealth controlled by the rich in the United Kingdom fell throughout the twentieth century, and by 1990 the richest one percent controlled 16 percent of wealth, and the richest ten percent just over half of it.
Facebook
TwitterPrior research on trends in educational inequality has focused chiefly on changing gaps in educational attainment by family income or parental occupation. In contrast, this contribution provides the first assessment of trends in educational attainment by family wealth and suggests that we should be at least as much concerned about growing wealth gaps in education. Despite overall growth in educational attainment and some signs of decreasing wealth gaps in high school attainment and college access, I find a large and rapidly increasing wealth gap in college attainment between cohorts born in the 1970 and 1980s, respectively. This growing wealth gap in higher educational attainment co-occurred with a rise in inequality in children's wealth backgrounds, though the analyses also suggest that the latter does not fully account for the former. Nevertheless, the results reported here raise concerns about the distribution of educational opportunity among today's children who grow up in a context of particularly extreme wealth inequality.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Income Gini Ratio for Households by Race of Householder, All Races (GINIALLRH) from 1967 to 2024 about gini, households, income, and USA.
Facebook
TwitterThe OECD Income Distribution database (IDD) has been developed to benchmark and monitor countries' performance in the field of income inequality and poverty. It contains a number of standardised indicators based on the central concept of "equivalised household disposable income", i.e. the total income received by the households less the current taxes and transfers they pay, adjusted for household size with an equivalence scale. While household income is only one of the factors shaping people's economic well-being, it is also the one for which comparable data for all OECD countries are most common. Income distribution has a long-standing tradition among household-level statistics, with regular data collections going back to the 1980s (and sometimes earlier) in many OECD countries.
Achieving comparability in this field is a challenge, as national practices differ widely in terms of concepts, measures, and statistical sources. In order to maximise international comparability as well as inter-temporal consistency of data, the IDD data collection and compilation process is based on a common set of statistical conventions (e.g. on income concepts and components). The information obtained by the OECD through a network of national data providers, via a standardized questionnaire, is based on national sources that are deemed to be most representative for each country.
Small changes in estimates between years should be treated with caution as they may not be statistically significant.
Fore more details, please refer to: https://www.oecd.org/els/soc/IDD-Metadata.pdf and https://www.oecd.org/social/income-distribution-database.htm
Facebook
TwitterThe gini index in Canada was forecast to remain on a similar level in 2029 as compared to 2024 with 0.33 points. According to this forecast, the gini will stay nearly the same over the forecast period. The Gini coefficient here measures the degree of income inequality on a scale from 0 (=total equality of incomes) to one (=total inequality).The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in more than 150 countries and regions worldwide. All input data are sourced from international institutions, national statistical offices, and trade associations. All data has been are processed to generate comparable datasets (see supplementary notes under details for more information).Find more key insights for the gini index in countries like United States and Mexico.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Income Inequality in Denver County, CO was 17.97779 Ratio in January of 2023, according to the United States Federal Reserve. Historically, Income Inequality in Denver County, CO reached a record high of 20.23338 in January of 2010 and a record low of 17.13318 in January of 2021. Trading Economics provides the current actual value, an historical data chart and related indicators for Income Inequality in Denver County, CO - last updated from the United States Federal Reserve on October of 2025.
Facebook
TwitterCross-national research on the causes and consequences of income inequality has been hindered by the limitations of existing inequality datasets: greater coverage across countries and over time is available from these sources only at the cost of significantly reduced comparability across observations. The goal of the Standardized World Income Inequality Database (SWIID) is to overcome these limitations. A custom missing-data algorithm was used to standardize the United Nations University's World Income Inequality Database and data from other sources; data collected by the Luxembourg Income Study served as the standard. The SWIID provides comparable Gini indices of gross and net income inequality for 192 countries for as many years as possible from 1960 to the present along with estimates of uncertainty in these statistics. By maximizing comparability for the largest possible sample of countries and years, the SWIID is better suited to broadly cross-national research on income inequality than previously available sources: it offers coverage double that of the next largest income inequality dataset, and its record of comparability is three to eight times better than those of alternate datasets.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the detailed breakdown of the count of individuals within distinct income brackets, categorizing them by gender (men and women) and employment type - full-time (FT) and part-time (PT), offering valuable insights into the diverse income landscapes within Corydon. The dataset can be utilized to gain insights into gender-based income distribution within the Corydon population, aiding in data analysis and decision-making..
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Income brackets:
Variables / Data Columns
Employment type classifications include:
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Corydon median household income by race. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Chile CL: Gini Coefficient (GINI Index): World Bank Estimate data was reported at 43.000 % in 2022. This records a decrease from the previous number of 47.000 % for 2020. Chile CL: Gini Coefficient (GINI Index): World Bank Estimate data is updated yearly, averaging 49.600 % from Dec 1987 (Median) to 2022, with 16 observations. The data reached an all-time high of 57.200 % in 1990 and a record low of 43.000 % in 2022. Chile CL: Gini Coefficient (GINI Index): World Bank Estimate data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Chile – Table CL.World Bank.WDI: Social: Poverty and Inequality. Gini index measures the extent to which the distribution of income (or, in some cases, consumption expenditure) among individuals or households within an economy deviates from a perfectly equal distribution. A Lorenz curve plots the cumulative percentages of total income received against the cumulative number of recipients, starting with the poorest individual or household. The Gini index measures the area between the Lorenz curve and a hypothetical line of absolute equality, expressed as a percentage of the maximum area under the line. Thus a Gini index of 0 represents perfect equality, while an index of 100 implies perfect inequality.;World Bank, Poverty and Inequality Platform. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are mostly from the Luxembourg Income Study database. For more information and methodology, please see http://pip.worldbank.org.;;The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than 2000 household surveys across 169 countries. See the Poverty and Inequality Platform (PIP) for details (www.pip.worldbank.org).
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Examines how taxes and benefits redistribute income between various groups of households in the UK. The study shows where different types of households and individuals are in the income distribution and looks at the changing levels of income inequality over time.
Source agency: Office for National Statistics
Designation: National Statistics
Language: English
Alternative title: household income
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Computation Codes for On Income and Wealth Inequality in Turkey
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Historical dataset showing U.K. income inequality - gini coefficient by year from N/A to N/A.
Facebook
TwitterThe highest median wealth worldwide was found in North America in 2022, reaching a median level of nearly 110,000 U.S. dollars. Notably, the median wealth in China grew from 3.2 dollars in 2000 to over 30,000 dollars in 2022, underlining the country's remarkable economic growth over the past decades.
Facebook
Twitterhttps://dataverse-staging.rdmc.unc.edu/api/datasets/:persistentId/versions/2.0/customlicense?persistentId=doi:10.15139/S3/D9ZUIBhttps://dataverse-staging.rdmc.unc.edu/api/datasets/:persistentId/versions/2.0/customlicense?persistentId=doi:10.15139/S3/D9ZUIB
While most Americans appear to acknowledge the large gap between the rich and the poor in the U.S., it is not clear if the public is aware of recent changes in income inequality. Even though economic inequality has grown substantially in recent decades, studies have shown that the public's perception of growing income disparities has remained mostly unchanged since the 1980s. This research offers an alternative approach to evaluating how public perceptions of inequality are developed. Centrally, it conceptualizes the public's response to growing economic disparities by applying theories of macro-political behavior and place-based contextual effects to the formation of aggregate perceptions about income inequality. It is argued that most of the public relies on basic information about the economy to form attitudes about inequality and that geographic context---in this case, the American states---plays a role in how views of income disparities are produced. A new measure of state perceptions of growing economic inequality over a 25-year period is used to examine whether the public is responsive to objective changes in economic inequality. Time-series cross-sectional analyses suggest that the public's perceptions of growing inequality are largely influenced by objective state economic indicators and state political ideology. This research has implications for how knowledgeable the public is of disparities between the rich and the poor, whether state context influences attitudes about inequality, and what role the public will have in determining how expanding income differences are addressed through government policy.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Waveland. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2023
Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Waveland, the median income for all workers aged 15 years and older, regardless of work hours, was $50,250 for males and $22,917 for females.
These income figures highlight a substantial gender-based income gap in Waveland. Women, regardless of work hours, earn 46 cents for each dollar earned by men. This significant gender pay gap, approximately 54%, underscores concerning gender-based income inequality in the town of Waveland.
- Full-time workers, aged 15 years and older: In Waveland, among full-time, year-round workers aged 15 years and older, males earned a median income of $52,250, while females earned $32,250, leading to a 38% gender pay gap among full-time workers. This illustrates that women earn 62 cents for each dollar earned by men in full-time roles. This level of income gap emphasizes the urgency to address and rectify this ongoing disparity, where women, despite working full-time, face a more significant wage discrepancy compared to men in the same employment roles.Remarkably, across all roles, including non-full-time employment, women displayed a similar gender pay gap percentage. This indicates a consistent gender pay gap scenario across various employment types in Waveland, showcasing a consistent income pattern irrespective of employment status.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Waveland median household income by race. You can refer the same here
Facebook
TwitterBetween 2010 and 2022, Panama's data on the degree of inequality in income distribution based on the Gini coefficient totaled 50.9. This coefficient represents a deterioration compared to last year. Panama was deemed as the third most unequal country in Latin America.
The Gini coefficient measures the deviation of the distribution of income (or consumption) among individuals or households in a given country from a perfectly equal distribution. A value of 0 represents absolute equality, whereas 100 would be the highest possible degree of inequality.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Wabash. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2023
Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Wabash, the median income for all workers aged 15 years and older, regardless of work hours, was $37,573 for males and $23,354 for females.
These income figures highlight a substantial gender-based income gap in Wabash. Women, regardless of work hours, earn 62 cents for each dollar earned by men. This significant gender pay gap, approximately 38%, underscores concerning gender-based income inequality in the city of Wabash.
- Full-time workers, aged 15 years and older: In Wabash, among full-time, year-round workers aged 15 years and older, males earned a median income of $58,214, while females earned $42,019, leading to a 28% gender pay gap among full-time workers. This illustrates that women earn 72 cents for each dollar earned by men in full-time roles. This analysis indicates a widening gender pay gap, showing a substantial income disparity where women, despite working full-time, face a more significant wage discrepancy compared to men in the same roles.Surprisingly, the gender pay gap percentage was higher across all roles, including non-full-time employment, for women compared to men. This suggests that full-time employment offers a more equitable income scenario for women compared to other employment patterns in Wabash.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Wabash median household income by race. You can refer the same here
Facebook
TwitterThis statistic shows the inequality of income distribution in China from 2005 to 2023 based on the Gini Index. In 2023, China reached a score of ************ points. The Gini Index is a statistical measure that is used to represent unequal distributions, e.g. income distribution. It can take any value between 1 and 100 points (or 0 and 1). The closer the value is to 100 the greater is the inequality. 40 or 0.4 is the warning level set by the United Nations. The Gini Index for South Korea had ranged at about **** in 2022. Income distribution in China The Gini coefficient is used to measure the income inequality of a country. The United States, the World Bank, the US Central Intelligence Agency, and the Organization for Economic Co-operation and Development all provide their own measurement of the Gini coefficient, varying in data collection and survey methods. According to the United Nations Development Programme, countries with the largest income inequality based on the Gini index are mainly located in Africa and Latin America, with South Africa displaying the world's highest value in 2022. The world's most equal countries, on the contrary, are situated mostly in Europe. The United States' Gini for household income has increased by around ten percent since 1990, to **** in 2023. Development of inequality in China Growing inequality counts as one of the biggest social, economic, and political challenges to many countries, especially emerging markets. Over the last 20 years, China has become one of the world's largest economies. As parts of the society have become more and more affluent, the country's Gini coefficient has also grown sharply over the last decades. As shown by the graph at hand, China's Gini coefficient ranged at a level higher than the warning line for increasing risk of social unrest over the last decade. However, the situation has slightly improved since 2008, when the Gini coefficient had reached the highest value of recent times.