100+ datasets found
  1. F

    Net Worth Held by the Top 0.1% (99.9th to 100th Wealth Percentiles)

    • fred.stlouisfed.org
    json
    Updated Mar 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Net Worth Held by the Top 0.1% (99.9th to 100th Wealth Percentiles) [Dataset]. https://fred.stlouisfed.org/series/WFRBLTP1246
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Mar 21, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Net Worth Held by the Top 0.1% (99.9th to 100th Wealth Percentiles) (WFRBLTP1246) from Q3 1989 to Q4 2024 about net worth, wealth, percentile, Net, and USA.

  2. Health Nutrition and Population Statistics by Wealth Quintile

    • johnsnowlabs.com
    csv
    Updated Jan 20, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    John Snow Labs (2021). Health Nutrition and Population Statistics by Wealth Quintile [Dataset]. https://www.johnsnowlabs.com/marketplace/health-nutrition-and-population-statistics-by-wealth-quintile/
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jan 20, 2021
    Dataset authored and provided by
    John Snow Labs
    Area covered
    World
    Description

    This time-series dataset includes data on countries worldwide and information on indicators pertaining to health and population by wealth quintile by each country from 1990 to 2020.

  3. Population distribution by wealth bracket in India 2021-2022

    • statista.com
    Updated Sep 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Population distribution by wealth bracket in India 2021-2022 [Dataset]. https://www.statista.com/statistics/482579/india-population-by-average-wealth/
    Explore at:
    Dataset updated
    Sep 19, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    India
    Description

    In 2022, the majority of Indian adults had a wealth of 10,000 U.S. dollars or less. On the other hand, about 0.1 percent were worth more than one million dollars that year. India The Republic of India is one of the world’s largest and most economically powerful states. India gained independence from Great Britain on August 15, 1947, after having been under their power for 200 years. With a population of about 1.4 billion people, it was the second most populous country in the world. Of that 1.4 billion, about 28.5 million lived in New Delhi, the capital. Wealth inequality India suffers from extreme income inequality. It is estimated that the top 10 percent of the population holds 77 percent of the national wealth. Billionaire fortune has increase sporadically in the last years whereas minimum wages have remain stunted.

  4. c

    Luxembourg Wealth Study Database: Gini Inequality Coefficients, 1993-2020

    • datacatalogue.cessda.eu
    • beta.ukdataservice.ac.uk
    Updated Mar 26, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    LIS Cross-National Data Center in Luxembourg, (2025). Luxembourg Wealth Study Database: Gini Inequality Coefficients, 1993-2020 [Dataset]. http://doi.org/10.5255/UKDA-SN-855655
    Explore at:
    Dataset updated
    Mar 26, 2025
    Authors
    LIS Cross-National Data Center in Luxembourg,
    Area covered
    United Kingdom, Luxembourg
    Variables measured
    Geographic Unit, Other
    Measurement technique
    All surveyed households and their members are included in our estimates of Gini and Atkinson coefficients, percentile ratios, and poverty lines. Poverty lines are calculated based on the total population. Those lines are then used to calculate poverty rates among subgroups (children and the elderly). Thus, when calculating poverty rates, the subgroups vary, but the poverty lines remain constant within any given dataset. The data file includes the Gini coefficient calculated for different wealth welfare aggregates constructed for all LWS datasets in all waves (as of March 2022).
    Description

    This data file includes the Gini coefficient calculated for different wealth welfare aggregates constructed for all Luxembourg Wealth Study (LWS) datasets in all waves (as of March 2022). It includes Gini coefficients calculated on: • Disposable Net Worth • Value of Principal residence • Financial Assets

    This project sought to renew the ESRC's invaluable financial support to LIS (formerly the Luxembourg Income Study) for a period of five more years. LIS is an independent, non-profit cross-national data archive and research institute located in Luxembourg. LIS relies on financial contributions from national science foundations, other research institutions and consortia, data-providing agencies, and supranational organisations to support data harmonisation and enable free and unlimited data access to researchers in the participating countries and to students world-wide. LIS' primary activity is to make harmonised household microdata available to researchers, thus enabling cross-national, interdisciplinary primary research into socio-economic outcomes and their determinants. Users of the Luxembourg Income Study Database and Luxembourg Wealth Study Database come from countries around the globe, including the UK. LIS has four goals: 1) to harmonise microdatasets from high- and middle-income countries that include data on income, wealth, employment, and demography; 2) to provide a secure method for researchers to query data that would otherwise be unavailable due to country-specific privacy restrictions; 3) to create and maintain a remote-execution system that sends research query results quickly back to users at off-site locations; and 4) to enable, facilitate, promote and conduct crossnational comparative research on the social and economic wellbeing of populations across countries. LIS contains the Luxembourg Income Study (LIS) Database, which includes income data, and the Luxembourg Wealth Study (LWS) Database, which focuses on wealth data. LIS currently includes microdata from 46 countries in Europe, the Americas, Africa, Asia and Australasia. LIS contains over 250 datasets, organised into eight time "waves," spanning the years 1968 to 2011. Since 2007, seventeen more countries have been added to LIS, including the BRICS countries (Brazil, Russia, India, China, South Africa), Japan, South Korea and a number of other Latin American countries. LWS contains 20 wealth datasets from 12 countries, including the UK, and covers the period 1994 to 2007. All told, LIS and LWS datasets together cover 86% of world GDP and 64% of world population. Users submit statistical queries to the microdatabases using a Java-based job submission interface or standard email. The databases are especially valuable for primary research in that they offer access to cross-national data at the micro-level - at the level of households and persons. Users are economists, sociologists, political scientists, and policy analysts, among others, and they employ a range of statistical approaches and methods. LIS also provides extensive documentation - metadata - for both LIS and LWS, concerning technical aspects of the survey data, the harmonisation process, and the social institutions of income and wealth provision in participating countries. In the next five years, for which support is sought, LIS will: - expand LIS, adding Waves IX (2013) and X (2016), and add new middle-income countries; - develop LWS, adding another wave of datasets to existing countries; acquire new wealth datasets for 14 more countries in cooperation with the European Central Bank (based on the Household Finance and Consumption Survey); - create a state-of-the-art metadata search and storage system; - maintain international standards in data security and data infrastructure systems; - provide high-quality harmonised household microdata to researchers around the world; - enable interdisciplinary cross-national social science research covering 45+ countries, including the UK; - aim to broaden its reach and impact in academic and non-academic circles through focused communications strategies and collaborations.

  5. N

    Income Distribution by Quintile: Mean Household Income in Rich Hill, MO

    • neilsberg.com
    csv, json
    Updated Jan 11, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Income Distribution by Quintile: Mean Household Income in Rich Hill, MO [Dataset]. https://www.neilsberg.com/research/datasets/94eceebb-7479-11ee-949f-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Jan 11, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Missouri, Rich Hill
    Variables measured
    Income Level, Mean Household Income
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. It delineates income distributions across income quintiles (mentioned above) following an initial analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series via current methods (R-CPI-U-RS). For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the mean household income for each of the five quintiles in Rich Hill, MO, as reported by the U.S. Census Bureau. The dataset highlights the variation in mean household income across quintiles, offering valuable insights into income distribution and inequality.

    Key observations

    • Income disparities: The mean income of the lowest quintile (20% of households with the lowest income) is 15,959, while the mean income for the highest quintile (20% of households with the highest income) is 97,931. This indicates that the top earners earn 6 times compared to the lowest earners.
    • *Top 5%: * The mean household income for the wealthiest population (top 5%) is 141,395, which is 144.38% higher compared to the highest quintile, and 885.99% higher compared to the lowest quintile.

    Mean household income by quintiles in Rich Hill, MO (in 2022 inflation-adjusted dollars))

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Income Levels:

    • Lowest Quintile
    • Second Quintile
    • Third Quintile
    • Fourth Quintile
    • Highest Quintile
    • Top 5 Percent

    Variables / Data Columns

    • Income Level: This column showcases the income levels (As mentioned above).
    • Mean Household Income: Mean household income, in 2022 inflation-adjusted dollars for the specific income level.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Rich Hill median household income. You can refer the same here

  6. H

    HANZE netCDF data on land use, population, GDP and wealth in Europe,...

    • data.4tu.nl
    • figshare.com
    zip
    Updated Oct 31, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dominik Paprotny (2017). HANZE netCDF data on land use, population, GDP and wealth in Europe, 1870-2020 (updated) [Dataset]. http://doi.org/10.4121/uuid:e027194f-a804-4f81-973e-8f7be9c25a99
    Explore at:
    zipAvailable download formats
    Dataset updated
    Oct 31, 2017
    Dataset provided by
    TU Delft
    Authors
    Dominik Paprotny
    License

    https://doi.org/10.4121/resource:terms_of_usehttps://doi.org/10.4121/resource:terms_of_use

    Time period covered
    1870 - 2020
    Area covered
    Europe
    Description

    The dataset provides information on exposure to natural hazards for 37 European countries and territories from 1870 to 2020, regridded to EURO-CORDEX 0.11 degree rotated-pole grid and geographical 5 arc minute grid (WGS84). The database was constructed using high-resolution maps of present land use and population, a large compilation of historical statistics, and relatively simple and explicit models and disaggregation techniques. It can be utilized to study changes in exposure, vulnerability and risk to various natural hazards. This page provides a revised version of the netCDF files previously published with the remainder of the HANZE database.

  7. Worldwide wealth distribution by net worth of individuals 2023

    • statista.com
    • flwrdeptvarieties.store
    Updated Mar 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Worldwide wealth distribution by net worth of individuals 2023 [Dataset]. https://www.statista.com/statistics/203930/global-wealth-distribution-by-net-worth/
    Explore at:
    Dataset updated
    Mar 19, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    World
    Description

    In 2023, roughly 1.49 billion adults worldwide had a net worth of less than 10,000 U.S. dollars. By comparison, 58 million adults had a net worth of more than one million U.S. dollars in the same year. Wealth distribution The distribution of wealth is an indicator of economic inequality. The United Nations says that wealth includes the sum of natural, human, and physical assets. Wealth is not synonymous with income, however, because having a large income can be depleted if one has significant expenses. In 2023, nearly 1,700 billionaires had a total wealth between one to two billion U.S. dollars. Wealth worldwide China had the highest number of billionaires in 2023, with the United States following behind. That same year, New York had the most billionaires worldwide.

  8. U.S. wealth distribution 1990-2024, by generation

    • statista.com
    Updated Aug 26, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). U.S. wealth distribution 1990-2024, by generation [Dataset]. https://www.statista.com/statistics/1376622/wealth-distribution-for-the-us-generation/
    Explore at:
    Dataset updated
    Aug 26, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In the first quarter of 2024, 51.8 percent of the total wealth in the United States was owned by members of the baby boomer generation. In comparison, millennials own around 9.4 percent of total wealth in the U.S. In terms of population distribution, there is almost an equal share of millennials and baby boomers in the United States.

  9. N

    Norway NO: Population Living in Areas Where Elevation is Below 5 Meters: %...

    • ceicdata.com
    Updated May 15, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2018). Norway NO: Population Living in Areas Where Elevation is Below 5 Meters: % of Total Population [Dataset]. https://www.ceicdata.com/en/norway/land-use-protected-areas-and-national-wealth/no-population-living-in-areas-where-elevation-is-below-5-meters--of-total-population
    Explore at:
    Dataset updated
    May 15, 2018
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 1990 - Dec 1, 2010
    Area covered
    Norway
    Description

    Norway NO: Population Living in Areas Where Elevation is Below 5 Meters: % of Total Population data was reported at 3.851 % in 2010. This records a decrease from the previous number of 3.862 % for 2000. Norway NO: Population Living in Areas Where Elevation is Below 5 Meters: % of Total Population data is updated yearly, averaging 3.862 % from Dec 1990 (Median) to 2010, with 3 observations. The data reached an all-time high of 3.883 % in 1990 and a record low of 3.851 % in 2010. Norway NO: Population Living in Areas Where Elevation is Below 5 Meters: % of Total Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Norway – Table NO.World Bank: Land Use, Protected Areas and National Wealth. Population below 5m is the percentage of the total population living in areas where the elevation is 5 meters or less.; ; Center for International Earth Science Information Network (CIESIN)/Columbia University. 2013. Urban-Rural Population and Land Area Estimates Version 2. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). http://sedac.ciesin.columbia.edu/data/set/lecz-urban-rural-population-land-area-estimates-v2.; Weighted Average;

  10. Geographic Detail for Owner-Occupied Housing Wealth

    • catalog.data.gov
    • datasets.ai
    • +1more
    Updated Dec 18, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Board of Governors of the Federal Reserve System (2024). Geographic Detail for Owner-Occupied Housing Wealth [Dataset]. https://catalog.data.gov/dataset/geographic-detail-for-owner-occupied-housing-wealth
    Explore at:
    Dataset updated
    Dec 18, 2024
    Dataset provided by
    Federal Reserve Board of Governors
    Federal Reserve Systemhttp://www.federalreserve.gov/
    Description

    This project presents geographical breakdowns of the aggregate value of owner-occupied real estate from 2001 to the present. The table contains quarterly estimates for the 20 largest U.S. states by population, as well as the 4 primary Census statistical regions and 9 Census divisions. The data are derived from property-value estimates constructed by Zillow and property-count estimates from the American Community Survey of the U.S. Census.

  11. N

    Rich Hill, MO Age Cohorts Dataset: Children, Working Adults, and Seniors in...

    • neilsberg.com
    csv, json
    Updated Feb 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Rich Hill, MO Age Cohorts Dataset: Children, Working Adults, and Seniors in Rich Hill - Population and Percentage Analysis // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/rich-hill-mo-population-by-age/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 22, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Missouri, Rich Hill
    Variables measured
    Population Over 65 Years, Population Under 18 Years, Population Between 18 and 64 Years, Percent of Total Population for Age Groups
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the age cohorts. For age cohorts we divided it into three buckets Children ( Under the age of 18 years), working population ( Between 18 and 64 years) and senior population ( Over 65 years). For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Rich Hill population by age cohorts (Children: Under 18 years; Working population: 18-64 years; Senior population: 65 years or more). It lists the population in each age cohort group along with its percentage relative to the total population of Rich Hill. The dataset can be utilized to understand the population distribution across children, working population and senior population for dependency ratio, housing requirements, ageing, migration patterns etc.

    Key observations

    The largest age group was 18 to 64 years with a poulation of 769 (54.46% of the total population). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Age cohorts:

    • Under 18 years
    • 18 to 64 years
    • 65 years and over

    Variables / Data Columns

    • Age Group: This column displays the age cohort for the Rich Hill population analysis. Total expected values are 3 groups ( Children, Working Population and Senior Population).
    • Population: The population for the age cohort in Rich Hill is shown in the following column.
    • Percent of Total Population: The population as a percent of total population of the Rich Hill is shown in the following column.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Rich Hill Population by Age. You can refer the same here

  12. Health Nutrition and Population Statistics by Wealth Quintile

    • datasearch.gesis.org
    Updated Feb 25, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Health Nutrition and Population Statistics by Wealth Quintile, World Bank Group (2020). Health Nutrition and Population Statistics by Wealth Quintile [Dataset]. https://datasearch.gesis.org/dataset/api_worldbank_org_v2_datacatalog-77
    Explore at:
    Dataset updated
    Feb 25, 2020
    Dataset provided by
    World Bankhttp://worldbank.org/
    Authors
    Health Nutrition and Population Statistics by Wealth Quintile, World Bank Group
    Description

    This database presents HNP data by wealth quintile since 1990s to present. It covers more than 70 indicators, including childhood diseases and interventions, nutrition, sexual and reproductive health, mortality, and other determinants of health, for more than 90 low- and middle-income countries. The data sources are Demographic and Health Surveys (DHS) and Multiple Indicator Cluster Surveys (MICS).

  13. g

    Wealth by type of wealth, unit, age, sex and population | gimi9.com

    • gimi9.com
    Updated Oct 22, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Wealth by type of wealth, unit, age, sex and population | gimi9.com [Dataset]. https://gimi9.com/dataset/eu_dst-formue11
    Explore at:
    Dataset updated
    Oct 22, 2024
    Description

    StatBank dataset: FORMUE11 Title: Wealth by type of wealth, unit, age, sex and population Period type: years Period format (time in data): yyyy The oldest period: 2014 The most recent period: 2022

  14. H

    HANZE netCDF data on land use, population, GDP and wealth in Europe,...

    • 4tu.edu.hpc.n-helix.com
    zip
    Updated Oct 31, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The citation is currently not available for this dataset.
    Explore at:
    zipAvailable download formats
    Dataset updated
    Oct 31, 2017
    Dataset provided by
    TU Delft
    Authors
    Dominik Paprotny
    License

    https://doi.org/10.4121/resource:terms_of_usehttps://doi.org/10.4121/resource:terms_of_use

    Time period covered
    1870 - 2020
    Area covered
    Europe
    Description

    The dataset provides information on exposure to natural hazards for 37 European countries and territories from 1870 to 2020, regridded to EURO-CORDEX 0.11 degree rotated-pole grid and geographical 5 arc minute grid (WGS84). The database was constructed using high-resolution maps of present land use and population, a large compilation of historical statistics, and relatively simple and explicit models and disaggregation techniques. It can be utilized to study changes in exposure, vulnerability and risk to various natural hazards. This page provides a revised version of the netCDF files previously published with the remainder of the HANZE database.

  15. Q

    Qatar QA: Population Living in Areas Where Elevation is Below 5 Meters: % of...

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, Qatar QA: Population Living in Areas Where Elevation is Below 5 Meters: % of Total Population [Dataset]. https://www.ceicdata.com/en/qatar/land-use-protected-areas-and-national-wealth/qa-population-living-in-areas-where-elevation-is-below-5-meters--of-total-population
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 1990 - Dec 1, 2010
    Area covered
    Qatar
    Description

    Qatar QA: Population Living in Areas Where Elevation is Below 5 Meters: % of Total Population data was reported at 12.829 % in 2010. This records a decrease from the previous number of 13.191 % for 2000. Qatar QA: Population Living in Areas Where Elevation is Below 5 Meters: % of Total Population data is updated yearly, averaging 13.191 % from Dec 1990 (Median) to 2010, with 3 observations. The data reached an all-time high of 14.506 % in 1990 and a record low of 12.829 % in 2010. Qatar QA: Population Living in Areas Where Elevation is Below 5 Meters: % of Total Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Qatar – Table QA.World Bank: Land Use, Protected Areas and National Wealth. Population below 5m is the percentage of the total population living in areas where the elevation is 5 meters or less.; ; Center for International Earth Science Information Network (CIESIN)/Columbia University. 2013. Urban-Rural Population and Land Area Estimates Version 2. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). http://sedac.ciesin.columbia.edu/data/set/lecz-urban-rural-population-land-area-estimates-v2.; Weighted Average;

  16. Distribution of wealth held by percentile in Mexico 2022

    • statista.com
    Updated Jul 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Distribution of wealth held by percentile in Mexico 2022 [Dataset]. https://www.statista.com/statistics/1294751/distribution-wealth-by-percentile-mexico/
    Explore at:
    Dataset updated
    Jul 5, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2022
    Area covered
    Mexico
    Description

    In 2022, from the total national wealth in Mexico, 79.1 percent belonged to the top ten percent group. Meanwhile, the bottom 50 percent had a total of -0.3 percent, which means that, on average, the bottom half has more debts than assets. Further, the average personal wealth of the top one percent was valued at 2.91 million euros.

  17. u

    Wealth Inequality and Population Scaling in the Ancient Near East

    • rdr.ucl.ac.uk
    zip
    Updated Jun 30, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mark Altaweel (2022). Wealth Inequality and Population Scaling in the Ancient Near East [Dataset]. http://doi.org/10.5522/04/20198672.v1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 30, 2022
    Dataset provided by
    University College London
    Authors
    Mark Altaweel
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Near East
    Description

    The attached file includes data and code used to analyse population scaling and house size in the ancient Near East.

  18. N

    Rich Square, NC Age Cohorts Dataset: Children, Working Adults, and Seniors...

    • neilsberg.com
    csv, json
    Updated Feb 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Rich Square, NC Age Cohorts Dataset: Children, Working Adults, and Seniors in Rich Square - Population and Percentage Analysis // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/rich-square-nc-population-by-age/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 22, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    North Carolina, Rich Square
    Variables measured
    Population Over 65 Years, Population Under 18 Years, Population Between 18 and 64 Years, Percent of Total Population for Age Groups
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the age cohorts. For age cohorts we divided it into three buckets Children ( Under the age of 18 years), working population ( Between 18 and 64 years) and senior population ( Over 65 years). For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Rich Square population by age cohorts (Children: Under 18 years; Working population: 18-64 years; Senior population: 65 years or more). It lists the population in each age cohort group along with its percentage relative to the total population of Rich Square. The dataset can be utilized to understand the population distribution across children, working population and senior population for dependency ratio, housing requirements, ageing, migration patterns etc.

    Key observations

    The largest age group was 18 to 64 years with a poulation of 349 (44.74% of the total population). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Age cohorts:

    • Under 18 years
    • 18 to 64 years
    • 65 years and over

    Variables / Data Columns

    • Age Group: This column displays the age cohort for the Rich Square population analysis. Total expected values are 3 groups ( Children, Working Population and Senior Population).
    • Population: The population for the age cohort in Rich Square is shown in the following column.
    • Percent of Total Population: The population as a percent of total population of the Rich Square is shown in the following column.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Rich Square Population by Age. You can refer the same here

  19. c

    Luxembourg Income Study Database: Inequality and Poverty Key Figures,...

    • datacatalogue.cessda.eu
    • beta.ukdataservice.ac.uk
    Updated Mar 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    LIS Cross-National Data Center in Luxembourg, (2025). Luxembourg Income Study Database: Inequality and Poverty Key Figures, 1967-2020 [Dataset]. http://doi.org/10.5255/UKDA-SN-855648
    Explore at:
    Dataset updated
    Mar 26, 2025
    Authors
    LIS Cross-National Data Center in Luxembourg,
    Area covered
    Africa, South America, United Kingdom, Australia, Europe, Asia, Northern America
    Variables measured
    Geographic Unit, Other
    Measurement technique
    All surveyed households and their members are included in our estimates of Gini and Atkinson coefficients, percentile ratios, and poverty lines. Poverty lines are calculated based on the total population. Those lines are then used to calculate poverty rates among subgroups (children and the elderly). Thus, when calculating poverty rates, the subgroups vary, but the poverty lines remain constant within any given dataset.- Income ConceptAll Key Figures use the LIS data on disposable household income.Disposable Household IncomeDisposable Household Income (DHI) is defined as the sum of monetary and non-monetary income from labour, monetary income from capital, monetary social security transfers (including work-related insurance transfers, universal transfers, and assistance transfers), and non-monetary social assistance transfers, as well as monetary and non-monetary private transfers, less the amount of income taxes and social contributions paid.DHI is the variable used for the LIS Inequality and Poverty Key Figures.
    Description

    This data file includes the Inequality and Poverty Key Figures (as of March 2022), constructed for all Luxembourg Income Study (LIS) Study datasets in all waves. It includes multiple national-level measures: • on inequality measures: Gini, Atkinson coefficients, and percentile ratios • on relative poverty rates for various demographic groups • median and mean of disposable household income

    This project sought to renew the ESRC's invaluable financial support to LIS (formerly the Luxembourg Income Study) for a period of five more years. LIS is an independent, non-profit cross-national data archive and research institute located in Luxembourg. LIS relies on financial contributions from national science foundations, other research institutions and consortia, data-providing agencies, and supranational organisations to support data harmonisation and enable free and unlimited data access to researchers in the participating countries and to students world-wide. LIS' primary activity is to make harmonised household microdata available to researchers, thus enabling cross-national, interdisciplinary primary research into socio-economic outcomes and their determinants. Users of the Luxembourg Income Study Database and Luxembourg Wealth Study Database come from countries around the globe, including the UK. LIS has four goals: 1) to harmonise microdatasets from high- and middle-income countries that include data on income, wealth, employment, and demography; 2) to provide a secure method for researchers to query data that would otherwise be unavailable due to country-specific privacy restrictions; 3) to create and maintain a remote-execution system that sends research query results quickly back to users at off-site locations; and 4) to enable, facilitate, promote and conduct crossnational comparative research on the social and economic wellbeing of populations across countries. LIS contains the Luxembourg Income Study (LIS) Database, which includes income data, and the Luxembourg Wealth Study (LWS) Database, which focuses on wealth data. LIS currently includes microdata from 46 countries in Europe, the Americas, Africa, Asia and Australasia. LIS contains over 250 datasets, organised into eight time "waves," spanning the years 1968 to 2011. Since 2007, seventeen more countries have been added to LIS, including the BRICS countries (Brazil, Russia, India, China, South Africa), Japan, South Korea and a number of other Latin American countries. LWS contains 20 wealth datasets from 12 countries, including the UK, and covers the period 1994 to 2007. All told, LIS and LWS datasets together cover 86% of world GDP and 64% of world population. Users submit statistical queries to the microdatabases using a Java-based job submission interface or standard email. The databases are especially valuable for primary research in that they offer access to cross-national data at the micro-level - at the level of households and persons. Users are economists, sociologists, political scientists, and policy analysts, among others, and they employ a range of statistical approaches and methods. LIS also provides extensive documentation - metadata - for both LIS and LWS, concerning technical aspects of the survey data, the harmonisation process, and the social institutions of income and wealth provision in participating countries. In the next five years, for which support is sought, LIS will: - expand LIS, adding Waves IX (2013) and X (2016), and add new middle-income countries; - develop LWS, adding another wave of datasets to existing countries; acquire new wealth datasets for 14 more countries in cooperation with the European Central Bank (based on the Household Finance and Consumption Survey); - create a state-of-the-art metadata search and storage system; - maintain international standards in data security and data infrastructure systems; - provide high-quality harmonised household microdata to researchers around the world; - enable interdisciplinary cross-national social science research covering 45+ countries, including the UK; - aim to broaden its reach and impact in academic and non-academic circles through focused communications strategies and collaborations.

  20. N

    Rich Hill, MO Age Group Population Dataset: A Complete Breakdown of Rich...

    • neilsberg.com
    csv, json
    Updated Feb 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Rich Hill, MO Age Group Population Dataset: A Complete Breakdown of Rich Hill Age Demographics from 0 to 85 Years and Over, Distributed Across 18 Age Groups // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/4541f261-f122-11ef-8c1b-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 22, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Missouri, Rich Hill
    Variables measured
    Population Under 5 Years, Population over 85 years, Population Between 5 and 9 years, Population Between 10 and 14 years, Population Between 15 and 19 years, Population Between 20 and 24 years, Population Between 25 and 29 years, Population Between 30 and 34 years, Population Between 35 and 39 years, Population Between 40 and 44 years, and 9 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Rich Hill population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Rich Hill. The dataset can be utilized to understand the population distribution of Rich Hill by age. For example, using this dataset, we can identify the largest age group in Rich Hill.

    Key observations

    The largest age group in Rich Hill, MO was for the group of age 55 to 59 years years with a population of 146 (10.34%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in Rich Hill, MO was the 85 years and over years with a population of 10 (0.71%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Variables / Data Columns

    • Age Group: This column displays the age group in consideration
    • Population: The population for the specific age group in the Rich Hill is shown in this column.
    • % of Total Population: This column displays the population of each age group as a proportion of Rich Hill total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Rich Hill Population by Age. You can refer the same here

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2025). Net Worth Held by the Top 0.1% (99.9th to 100th Wealth Percentiles) [Dataset]. https://fred.stlouisfed.org/series/WFRBLTP1246

Net Worth Held by the Top 0.1% (99.9th to 100th Wealth Percentiles)

WFRBLTP1246

Explore at:
jsonAvailable download formats
Dataset updated
Mar 21, 2025
License

https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

Description

Graph and download economic data for Net Worth Held by the Top 0.1% (99.9th to 100th Wealth Percentiles) (WFRBLTP1246) from Q3 1989 to Q4 2024 about net worth, wealth, percentile, Net, and USA.

Search
Clear search
Close search
Google apps
Main menu