100+ datasets found
  1. Monthly average daily temperatures in the United Kingdom 2015-2024

    • statista.com
    Updated Dec 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Monthly average daily temperatures in the United Kingdom 2015-2024 [Dataset]. https://www.statista.com/statistics/322658/monthly-average-daily-temperatures-in-the-united-kingdom-uk/
    Explore at:
    Dataset updated
    Dec 15, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2015 - Nov 2024
    Area covered
    United Kingdom
    Description

    The highest average temperature recorded in 2024 until November was in August, at 16.8 degrees Celsius. Since 2015, the highest average daily temperature in the UK was registered in July 2018, at 18.7 degrees Celsius. The summer of 2018 was the joint hottest since institutions began recording temperatures in 1910. One noticeable anomaly during this period was in December 2015, when the average daily temperature reached 9.5 degrees Celsius. This month also experienced the highest monthly rainfall in the UK since before 2014, with England, Wales, and Scotland suffering widespread flooding. Daily hours of sunshine Unsurprisingly, the heat wave that spread across the British Isles in 2018 was the result of particularly sunny weather. July 2018 saw an average of 8.7 daily sun hours in the United Kingdom. This was more hours of sun than was recorded in July 2024, which only saw 5.8 hours of sun. Temperatures are on the rise Since the 1960s, there has been an increase in regional temperatures across the UK. Between 1961 and 1990, temperatures in England averaged nine degrees Celsius, and from 2013 to 2022, average temperatures in the country had increased to 10.3 degrees Celsius. Due to its relatively southern location, England continues to rank as the warmest country in the UK.

  2. Monthly average temperature in the United States 2020-2024

    • statista.com
    Updated Dec 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Monthly average temperature in the United States 2020-2024 [Dataset]. https://www.statista.com/statistics/513628/monthly-average-temperature-in-the-us-fahrenheit/
    Explore at:
    Dataset updated
    Dec 15, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2020 - Dec 2024
    Area covered
    United States
    Description

    The average temperature in December 2024 was 38.25 degrees Fahrenheit in the United States, the fourth-largest country in the world. The country has extremely diverse climates across its expansive landmass. Temperatures in the United States On the continental U.S., the southern regions face warm to extremely hot temperatures all year round, the Pacific Northwest tends to deal with rainy weather, the Mid-Atlantic sees all four seasons, and New England experiences the coldest winters in the country. The North American country has experienced an increase in the daily minimum temperatures since 1970. Consequently, the average annual temperature in the United States has seen a spike in recent years. Climate Change The entire world has seen changes in its average temperature as a result of climate change. Climate change occurs due to increased levels of greenhouse gases which act to trap heat in the atmosphere, preventing it from leaving the Earth. Greenhouse gases are emitted from various sectors but most prominently from burning fossil fuels. Climate change has significantly affected the average temperature across countries worldwide. In the United States, an increasing number of people have stated that they have personally experienced the effects of climate change. Not only are there environmental consequences due to climate change, but also economic ones. In 2022, for instance, extreme temperatures in the United States caused over 5.5 million U.S. dollars in economic damage. These economic ramifications occur for several reasons, which include higher temperatures, changes in regional precipitation, and rising sea levels.

  3. Monthly Mean Temperature Data for Major US Cities

    • kaggle.com
    zip
    Updated Mar 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Garrick Hague (2023). Monthly Mean Temperature Data for Major US Cities [Dataset]. https://www.kaggle.com/datasets/garrickhague/temp-data-of-prominent-us-cities-from-1948-to-2022
    Explore at:
    zip(93354 bytes)Available download formats
    Dataset updated
    Mar 12, 2023
    Authors
    Garrick Hague
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    United States
    Description

    The monthly mean temperature data presented in this dataset was obtained from the Climate Prediction Center (CPC) Global Land Surface Air Temperature Analysis, which was loaded into Python using xarray. The data was then filtered to include only the latitude and longitude coordinates corresponding to each city in the dataset. In order to select the nearest location to each city, the 'select' method with the nearest point was used, resulting in temperature data that may not be exactly at the city location. The data is presented on a 0.5x0.5 degree grid across the globe.

    The temperature data provides a valuable resource for time series analysis, and if you are interested in obtaining temperature data for additional cities, please let me know. I will also be sharing the source code on GitHub for anyone who would like to reproduce the data or analysis.

  4. Monthly average temperature in the United States 2020-2025

    • statista.com
    Updated Jan 15, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2020). Monthly average temperature in the United States 2020-2025 [Dataset]. https://www.statista.com/statistics/513644/monthly-average-temperature-in-the-us-celsius/
    Explore at:
    Dataset updated
    Jan 15, 2020
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2020 - Aug 2025
    Area covered
    United States
    Description

    The monthly average temperature in the United States between 2020 and 2025 shows distinct seasonal variation, following similar patterns. For instance, in August 2025, the average temperature across the North American country stood at 22.98 degrees Celsius. Rising temperatures Globally, 2016, 2019, 2021 and 2024 were some of the warmest years ever recorded since 1880. Overall, there has been a dramatic increase in the annual temperature since 1895. Within the U.S. annual temperatures show a great deal of variation depending on region. For instance, Florida tends to record the highest maximum temperatures across the North American country, while Wyoming recorded the lowest minimum average temperature in recent years. Carbon dioxide emissions Carbon dioxide is a known driver of climate change, which impacts average temperatures. Global historical carbon dioxide emissions from fossil fuels have been on the rise since the industrial revolution. In recent years, carbon dioxide emissions from fossil fuel combustion and industrial processes reached over 37 billion metric tons. Among all countries globally, China was the largest emitter of carbon dioxide in 2023.

  5. Monthly Climate Observation Summaries

    • open.canada.ca
    • catalogue.arctic-sdi.org
    • +2more
    csv, geojson, html
    Updated Apr 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Environment and Climate Change Canada (2024). Monthly Climate Observation Summaries [Dataset]. https://open.canada.ca/data/en/dataset/b24efb37-11b6-5d03-ab19-5759f83db546
    Explore at:
    html, csv, geojsonAvailable download formats
    Dataset updated
    Apr 4, 2024
    Dataset provided by
    Environment And Climate Change Canadahttps://www.canada.ca/en/environment-climate-change.html
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    A cross-country summary of the averages and extremes for the month, including precipitation totals, max-min temperatures, and degree days. This data is available from stations that produce daily data.

  6. Monthly Near-Surface Air Temperature Averages

    • data.nasa.gov
    • s.cnmilf.com
    • +2more
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nasa.gov, Monthly Near-Surface Air Temperature Averages [Dataset]. https://data.nasa.gov/dataset/monthly-near-surface-air-temperature-averages
    Explore at:
    Dataset provided by
    NASAhttp://nasa.gov/
    Description

    Global surface temperatures in 2010 tied 2005 as the warmest on record. The International Satellite Cloud Climatology Project (ISCCP) was established in 1982 as part of the World Climate Research Programme (WCRP) to collect and analyze the global distribution of clouds, their properties, and their diurnal, seasonal, and interannual variations. The LAS provides data for Monthly Near-Surface Air Temperature Averages from 1994 to 2008.

  7. Average monthly temperature Germany 2024-2025

    • statista.com
    Updated Jan 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Average monthly temperature Germany 2024-2025 [Dataset]. https://www.statista.com/statistics/982472/average-monthly-temperature-germany/
    Explore at:
    Dataset updated
    Jan 31, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2024 - Jan 2025
    Area covered
    Germany
    Description

    Based on current monthly figures, on average, German climate has gotten a bit warmer. The average temperature for January 2025 was recorded at around 2 degrees Celsius, compared to 1.5 degrees a year before. In the broader context of climate change, average monthly temperatures are indicative of where the national climate is headed and whether attempts to control global warming are successful. Summer and winter Average summer temperature in Germany fluctuated in recent years, generally between 18 to 19 degrees Celsius. The season remains generally warm, and while there may not be as many hot and sunny days as in other parts of Europe, heat waves have occurred. In fact, 2023 saw 11.5 days with a temperature of at least 30 degrees, though this was a decrease compared to the year before. Meanwhile, average winter temperatures also fluctuated, but were higher in recent years, rising over four degrees on average in 2024. Figures remained in the above zero range since 2011. Numbers therefore suggest that German winters are becoming warmer, even if individual regions experiencing colder sub-zero snaps or even more snowfall may disagree. Rain, rain, go away Average monthly precipitation varied depending on the season, though sometimes figures from different times of the year were comparable. In 2024, the average monthly precipitation was highest in May and September, although rainfalls might increase in October and November with the beginning of the cold season. In the past, torrential rains have led to catastrophic flooding in Germany, with one of the most devastating being the flood of July 2021. Germany is not immune to the weather changing between two extremes, e.g. very warm spring months mostly without rain, when rain might be wished for, and then increased precipitation in other months where dry weather might be better, for example during planting and harvest seasons. Climate change remains on the agenda in all its far-reaching ways.

  8. f

    Monthly Temperature and Precipitation Records for Mexico by State...

    • figshare.com
    txt
    Updated Oct 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Montserrat Mora (2025). Monthly Temperature and Precipitation Records for Mexico by State (1985-2025) [Dataset]. http://doi.org/10.6084/m9.figshare.28636565.v3
    Explore at:
    txtAvailable download formats
    Dataset updated
    Oct 9, 2025
    Dataset provided by
    figshare
    Authors
    Montserrat Mora
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Mexico
    Description

    This dataset contains monthly climate records for all states in Mexico from January 1985 to September 2025. It includes both temperature and precipitation data, with values provided in metric and imperial units. The dataset was compiled to support climate analysis, trend studies, and data visualization projects related to environmental conditions across Mexico.Temperature Data:Provided in both Celsius and Fahrenheit, with three key metrics:Minimum average temperature for the monthMaximum average temperature for the monthOverall mean temperature for the monthPrecipitation Data:Available in both millimeters and inches:Monthly total precipitation in millimetersMonthly total precipitation in inchesAdditional Components:A visualization script for generating temperature trend charts efficientlyA sample chart illustrating temperature evolution in Mexico CityA requirements.txt file listing dependencies for running the visualization scriptData Source:The temperature and precipitation data were sourced from the Mexican National Meteorological Service (SMN):https://smn.conagua.gob.mx/es/climatologia/temperaturas-y-lluvias/resumenes-mensuales-de-temperaturas-y-lluviasThis dataset is valuable for:Long-term climate change analysisRegional environmental studiesData-driven policy planningEducational and research purposes in meteorology and climatology

  9. T

    TEMPERATURE by Country Dataset

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Oct 27, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). TEMPERATURE by Country Dataset [Dataset]. https://tradingeconomics.com/country-list/temperature
    Explore at:
    xml, csv, json, excelAvailable download formats
    Dataset updated
    Oct 27, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    World
    Description

    This dataset provides values for TEMPERATURE reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  10. e

    Monthly weather averages for Palmer Station, Antarctica (1974-2024)

    • portal.edirepository.org
    • search.dataone.org
    csv, text/x-python
    Updated Jun 27, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Palmer Station Antarctica LTER (2024). Monthly weather averages for Palmer Station, Antarctica (1974-2024) [Dataset]. http://doi.org/10.6073/pasta/499f9fe0ac882f41c7b92e465a31291c
    Explore at:
    csv(36760 byte), text/x-python(3209 byte)Available download formats
    Dataset updated
    Jun 27, 2024
    Dataset provided by
    EDI
    Authors
    Palmer Station Antarctica LTER
    Time period covered
    1974 - 2024
    Area covered
    Variables measured
    Date, Pressure Count, Windspeed Count, Temperature Count, Precipitation Count, Mean Pressure (mbar), Mean Temperature (C), Mean Windspeed (knots), Sum Precipitation (mm), Mean Precipitation (mm), and 2 more
    Description

    A long-term timeseries of monthly averaged weather at Palmer Station, Antarctic, was created by combining calculated averages of daily weather from 1989-present with additional historical temperature measurements made between 1974-1989. The selected variables in this dataset include temperature, air pressure, precipitation, sea surface temperature, and wind speed. Monthly averages (means) are made for each calendar month, and dated with the month's start date. Historical monthly average temperatures (through March 1989) are from "Baker, K.S. (1996), Palmer LTER: Palmer Station air temperature 1974 to 1996." Monthly averages from April 1989 onwards are computed from the daily weather averages calculated at Palmer Station and made available by the Antarctic Meteorological Research Center (AMRC) archive at https://amrdcdata.ssec.wisc.edu/group/palmer-station/ The daily averages are available in aggregate form as PAL dataset #28 (knb-lter-pal.28.10), from which this dataset was generated.

  11. Climate.gov Data Snapshots: Temperature - Global Monthly, Difference from...

    • datalumos.org
    Updated Jun 18, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Oceanic and Atmospheric Administration (2025). Climate.gov Data Snapshots: Temperature - Global Monthly, Difference from Average [Dataset]. http://doi.org/10.3886/E233461V1
    Explore at:
    Dataset updated
    Jun 18, 2025
    Dataset authored and provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Global
    Description

    Q: Where was the monthly temperature warmer or cooler than usual? A: Colors show where average monthly temperature was above or below its 1991-2020 average. Blue areas experienced cooler-than-usual temperatures while areas shown in red were warmer than usual. The darker the color, the larger the difference from the long-term average temperature. Q: Where do these measurements come from? A: Weather stations on every continent record temperatures over land, and ocean surface temperatures come from measurements made by ships and buoys. NOAA scientists merge the readings from land and ocean into a single dataset. To calculate difference-from-average temperatures—also called temperature anomalies—scientists calculate the average monthly temperature across hundreds of small regions, and then subtract each region’s 1991-2020 average for the same month. If the result is a positive number, the region was warmer than the long-term average. A negative result from the subtraction means the region was cooler than usual. To generate the source images, visualizers apply a mathematical filter to the results to produce a map that has smooth color transitions and no gaps. Q: What do the colors mean? A: Shades of red show where average monthly temperature was warmer than the 1991-2020 average for the same month. Shades of blue show where the monthly average was cooler than the long-term average. The darker the color, the larger the difference from average temperature. White and very light areas were close to their long-term average temperature. Gray areas near the North and South Poles show where no data are available. Q: Why do these data matter? A: Over time, these data give us a planet-wide picture of how climate varies over months and years and changes over decades. Each month, some areas are cooler than the long-term average and some areas are warmer. Though we don’t see an increase in temperature at every location every month, the long-term trend shows a growing portion of Earth’s surface is warmer than it was during the base period. Q: How did you produce these snapshots? A: Data Snapshots are derivatives of existing data products: to meet the needs of a broad audience, we present the source data in a simplified visual style. NOAA's Environmental Visualization Laboratory (NNVL) produces the source images for the Difference from Average Temperature – Monthly maps. To produce our images, we run a set of scripts that access the source images, re-project them into desired projections at various sizes, and output them with a custom color bar. Additional information Source images available through NOAA's Environmental Visualization Lab (NNVL) are interpolated from data originally provided by the National Center for Environmental Information (NCEI) - Weather and Climate. NNVL images are based on NOAA Merged Land Ocean Global Surface Temperature Analysis data (NOAAGlobalTemp, formerly known as MLOST). References NCEI Monthly Global Analysis NOAA View Temperature Anomaly Merged Land Ocean Global Surface Temperature Analysis Global Surface Temperature Anomalies Climate at a Glance - Data Information Source: https://www.climate.gov/maps-data/data-snapshots/data-source/temperature-global-monthly-difference-a...This upload includes two additional files:* Temperature - Global Monthly, Difference from Average _NOAA Climate.gov.pdf is a screenshot of the main Climate.gov site for these snapshots (https://www.climate.gov/maps-data/data-snapshots/data-source/temperature-global-monthly-difference-a...)* Cimate_gov_ Data Snapshots.pdf is a screenshot of the data download page for the full-resolution files.

  12. Average annual temperature in the United States 1895-2024

    • statista.com
    Updated Aug 26, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2020). Average annual temperature in the United States 1895-2024 [Dataset]. https://www.statista.com/statistics/500472/annual-average-temperature-in-the-us/
    Explore at:
    Dataset updated
    Aug 26, 2020
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The average temperature in the contiguous United States reached 55.5 degrees Fahrenheit (13 degrees Celsius) in 2024, approximately 3.5 degrees Fahrenheit higher than the 20th-century average. These levels represented a record since measurements started in ****. Monthly average temperatures in the U.S. were also indicative of this trend. Temperatures and emissions are on the rise The rise in temperatures since 1975 is similar to the increase in carbon dioxide emissions in the U.S. Although CO₂ emissions in recent years were lower than when they peaked in 2007, they were still generally higher than levels recorded before 1990. Carbon dioxide is a greenhouse gas and is the main driver of climate change. Extreme weather Scientists worldwide have found links between the rise in temperatures and changing weather patterns. Extreme weather in the U.S. has resulted in natural disasters such as hurricanes and extreme heat waves becoming more likely. Economic damage caused by extreme temperatures in the U.S. has amounted to hundreds of billions of U.S. dollars over the past few decades.

  13. NOAA Monthly U.S. Climate Divisional Database (NClimDiv)

    • catalog.data.gov
    • s.cnmilf.com
    Updated Sep 19, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA National Centers for Environmental Information (Point of Contact); DOC/NOAA/NESDIS/NCEI > National Centers for Environmental Information, NESDIS, NOAA, U.S. Department of Commerce (Point of Contact) (2023). NOAA Monthly U.S. Climate Divisional Database (NClimDiv) [Dataset]. https://catalog.data.gov/dataset/noaa-monthly-u-s-climate-divisional-database-nclimdiv1
    Explore at:
    Dataset updated
    Sep 19, 2023
    Dataset provided by
    United States Department of Commercehttp://commerce.gov/
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    National Centers for Environmental Informationhttps://www.ncei.noaa.gov/
    National Environmental Satellite, Data, and Information Service
    Area covered
    United States
    Description

    This dataset replaces the previous Time Bias Corrected Divisional Temperature-Precipitation Drought Index. The new divisional data set (NClimDiv) is based on the Global Historical Climatological Network-Daily (GHCN-D) and makes use of several improvements to the previous data set. For the input data, improvements include additional station networks, quality assurance reviews and temperature bias adjustments. Perhaps the most extensive improvement is to the computational approach, which now employs climatologically aided interpolation. This 5km grid based calculation nCLIMGRID helps to address topographic and network variability. This data set is primarily used by the National Oceanic and Atmospheric Administration (NOAA) National Climatic Data Center (NCDC) to issue State of the Climate Reports on a monthly basis. These reports summarize recent temperature and precipitation conditions and long-term trends at a variety of spatial scales, the smallest being the climate division level. Data at the climate division level are aggregated to compute statewide, regional and national snapshots of climate conditions. For CONUS, the period of record is from 1895-present. Derived quantities such as Standardized precipitation Index (SPI), Palmer Drought Indices (PDSI, PHDI, PMDI, and ZNDX) and degree days are also available for the CONUS sites. In March 2015, data for thirteen Alaskan climate divisions were added to the NClimDiv data set. Data for the new Alaskan climate divisions begin in 1925 through the present and are included in all monthly updates. Alaskan climate data include the following elements for divisional and statewide coverage: average temperature, maximum temperature (highs), minimum temperature (lows), and precipitation. The Alaska NClimDiv data were created and updated using similar methodology as that for the CONUS, but with a different approach to establishing the underlying climatology. The Alaska data are built upon the 1971-2000 PRISM averages whereas the CONUS values utilize a base climatology derived from the NClimGrid data set. As of November 2018, NClimDiv includes county data and additional inventory files.

  14. Monthly temperature in Spain (1996-2023)

    • kaggle.com
    zip
    Updated Sep 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alex Garayoa (2024). Monthly temperature in Spain (1996-2023) [Dataset]. https://www.kaggle.com/datasets/alexgczs/monthly-temperature-in-spain-1996-2023
    Explore at:
    zip(4874 bytes)Available download formats
    Dataset updated
    Sep 24, 2024
    Authors
    Alex Garayoa
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    Spain
    Description

    The dataset contains observations representing the average monthly climate for each city. Since the data in this dataset are monthly averages, the time period covered by the data spans from creating the website where data is scraped (1996) to this year (2023). This dataset consists of 481 observations and 8 variables per observation. Below is a small extract of them:

    o month: Refers to the month being described.

    o temp_media: The average of the average temperatures for that month (for the specific location being described).

    o temp_max: The average of the maximum temperatures for that month (for the specific location being described).

    o temp_min: The average of the minimum temperatures for that month (for the specific location being described).

    o rain_days: Average number of rainy days for that month (for the specific location being described).

    o rain_accum: Average rain accumulation for that month (for the specific location being described).

    o avg_wind: Average wind speed for that month (for the specific location being described).

    o place: The city to which the observation refers.

  15. Average Monthly surface temperature (1940-2024)

    • kaggle.com
    zip
    Updated Jan 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Samith Chimminiyan (2025). Average Monthly surface temperature (1940-2024) [Dataset]. https://www.kaggle.com/datasets/samithsachidanandan/average-monthly-surface-temperature-1940-2024
    Explore at:
    zip(1656850 bytes)Available download formats
    Dataset updated
    Jan 26, 2025
    Authors
    Samith Chimminiyan
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Description

    This Dataset contains details of Average Monthly surface temperature (1940-2024). Current climate change is primarily caused by human emissions of greenhouse gases. This warming can drive large changes in sea level, sea ice and glacier balances, rainfall patterns, and extreme temperatures. This has potentially devastating impacts on human health, farming systems, the stability of societies, and other species.

    Attribute Information

    • Country Name : The name of the countries.
    • Country Code : Code of the countries.
    • Year : Years
    • Day: Date
    • Average surface temperature : Daily Average surface temperature
    • Average surface temperature : Monthly Average surface temperature

    Acknowledgements

    https://data.worldbank.org/indicator

    Photo by Annelize De Waal on Unsplash

  16. Record High Temperatures for US Cities

    • kaggle.com
    zip
    Updated Jan 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). Record High Temperatures for US Cities [Dataset]. https://www.kaggle.com/datasets/thedevastator/record-high-temperatures-for-us-cities-in-2015
    Explore at:
    zip(9955 bytes)Available download formats
    Dataset updated
    Jan 18, 2023
    Authors
    The Devastator
    Area covered
    United States
    Description

    Record High Temperatures for US Cities

    Clearly Defined Monthly Data

    By Gary Hoover [source]

    About this dataset

    This dataset contains all the record-breaking temperatures for your favorite US cities in 2015. With this information, you can prepare for any unexpected weather that may come your way in the future, or just revel in the beauty of these high heat spells from days past! With record highs spanning from January to December, stay warm (or cool) with these handy historical temperature data points

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    This dataset contains the record high temperatures for various US cities during the year of 2015. The dataset includes columns for each individual month, along with column for the records highs over the entire year. This data is sourced from www.weatherbase.com and can be used to analyze which cities experienced hot summers, or compare temperature variations between different regions.

    Here are some useful tips on how to work with this dataset: - Analyze individual monthly temperatures - this dataset allows you to compare high temperatures across months and locations in order to identify which areas experienced particularly hot summers or colder winters.
    - Compare annual versus monthly data - use this data to compare average annual highs against monthly highs in order to understand temperature trends at a given location throughout all four seasons of a single year, or explore how different regions vary based on yearly weather patterns as well as across given months within any one year; - Heatmap analysis - use this data plot temperature information in an interactive heatmap format in order to pinpoint particular regions that experience unique weather conditions or higher-than-average levels of warmth compared against cooler pockets of similar size geographic areas; - Statistically model the relationships between independent variables (temperature variations by month, region/city and more!) and dependent variables (e.g., tourism volumes). Use regression techniques such as linear models (OLS), ARIMA models/nonlinear transformations and other methods through statistical software such as STATA or R programming language;
    - Look into climate trends over longer periods - adjust time frames included in analyses beyond 2018 when possible by expanding upon the monthly station observations already present within the study timeframe utilized here; take advantage of digitally available historical temperature readings rather than relying only upon printed reports

    With these helpful tips, you can get started analyzing record high temperatures for US cities during 2015 using our 'Record High Temperatures for US Cities' dataset!

    Research Ideas

    • Create a heat map chart of US cities representing the highest temperature on record for each city from 2015.
    • Analyze trends in monthly high temperatures in order to predict future climate shifts and weather patterns across different US cities.
    • Track and compare monthly high temperature records for all US cities to identify regional hot spots with higher than average records and potential implications for agriculture and resource management planning

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    Unknown License - Please check the dataset description for more information.

    Columns

    File: Highest temperature on record through 2015 by US City.csv | Column name | Description | |:--------------|:--------------------------------------------------------------| | CITY | Name of the city. (String) | | JAN | Record high temperature for the month of January. (Integer) | | FEB | Record high temperature for the month of February. (Integer) | | MAR | Record high temperature for the month of March. (Integer) | | APR | Record high temperature for the month of April. (Integer) | | MAY | Record high temperature for the month of May. (Integer) | | JUN | Record high temperature for the month of June. (Integer) | | JUL | Record high temperature for the month of July. (Integer) | | AUG | Record high temperature for the month of August. (Integer) | | SEP | Record high temperature for the month of September. (Integer) | | OCT | Record high temperature for the month of October. (Integer) | | ...

  17. Global Yearly Temperature Anomaly (1850 - present)

    • climate-arcgis-content.hub.arcgis.com
    • cacgeoportal.com
    • +9more
    Updated Dec 15, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2020). Global Yearly Temperature Anomaly (1850 - present) [Dataset]. https://climate-arcgis-content.hub.arcgis.com/maps/861938b2dd3747789c144350048a838c
    Explore at:
    Dataset updated
    Dec 15, 2020
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Measurements of surface air and ocean temperature are compiled from around the world each month by NOAA’s National Centers for Environmental Information and are analyzed and compared to the 1971-2000 average temperature for each location. The resulting temperature anomaly (or difference from the average) is shown in this feature service, which includes an archive going back to 1880. The mean of the 12 months each year is displayed here. Each annual update is available around the 15th of the following January (e.g., 2020 is available Jan 15th, 2021). The NOAAGlobalTemp dataset is the official U.S. long-term record of global temperature data and is often used to show trends in temperature change around the world. It combines thousands of land-based station measurements from the Global Historical Climatology Network (GHCN) along with surface ocean temperature from the Extended Reconstructed Sea Surface Temperature (ERSST) analysis. These two datasets are merged into a 5-degree resolution product. A report summary report by NOAA NCEI is available here. GHCN monthly mean station averages for temperature and precipitation for the 1981-2010 period are also available in Living Atlas here.What can you do with this layer? Visualization: This layer can be used to plot areas where temperature was higher or lower than the historical average for each year since 1880. Be sure to configure the time settings in your web map to view the timeseries correctly. Analysis: This layer can be used as an input to a variety of geoprocessing tools, such as Space Time Cubes and other trend analyses. For a more detailed temporal analysis, a monthly mean is available here.

  18. Data from: Daymet: Monthly Climate Summaries on a 1-km Grid for North...

    • data.nasa.gov
    • s.cnmilf.com
    • +5more
    Updated Apr 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nasa.gov (2025). Daymet: Monthly Climate Summaries on a 1-km Grid for North America, Version 4 R1 [Dataset]. https://data.nasa.gov/dataset/daymet-monthly-climate-summaries-on-a-1-km-grid-for-north-america-version-4-r1-977a2
    Explore at:
    Dataset updated
    Apr 1, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Area covered
    North America
    Description

    This dataset provides Daymet Version 4 R1 monthly climate summaries derived from Daymet Version 4 R1 daily data at a 1 km x 1 km spatial resolution for five Daymet variables: minimum and maximum temperature, precipitation, vapor pressure, and snow water equivalent. Monthly averages are provided for minimum and maximum temperature, vapor pressure, and snow water equivalent, and monthly totals are provided for the precipitation variable. Each data file is yearly by variable with 12 monthly time steps and covers the same period of record as the Daymet V4 R1 daily data. The monthly climatology files are derived from the larger datasets of daily weather parameters produced on a 1 km x 1 km grid for North America, Hawaii, and Puerto Rico. Separate monthly files are provided for the land areas of continental North America (Canada, the United States, and Mexico), Hawaii, and Puerto Rico. Data are distributed in standardized Climate and Forecast (CF)-compliant netCDF (.nc) and Cloud-Optimized GeoTIFF (.tif) formats. In Version 4 R1 (ver 4.1), all 2020 and 2021 files (60 total) were updated to improve predictions especially in high-latitude areas. It was found that input files used for deriving 2020 and 2021 data had, for a significant portion of Canadian weather stations, missing daily variable readings for the month of January. NCEI has corrected issues with the Environment Canada ingest feed which led to the missing readings. The revised 2020 and 2021 Daymet V4 R1 files were derived with new GHCNd inputs. Files outside of 2020 and 2021 have not changed from the previous V4 release.

  19. D

    Climate.gov Data Snapshots: Temperature - US Monthly Average

    • datalumos.org
    Updated Jun 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Oceanic and Atmospheric Administration (2025). Climate.gov Data Snapshots: Temperature - US Monthly Average [Dataset]. http://doi.org/10.3886/E233201V1
    Explore at:
    Dataset updated
    Jun 17, 2025
    Dataset authored and provided by
    National Oceanic and Atmospheric Administration
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    Q: What was the average temperature for the month? A: Colors show the average monthly temperature across the contiguous United States. White and very light areas had average temperatures near 50°F. Blue areas on the map were cooler than 50°F; the darker the blue, the cooler the average temperature. Orange to red areas were warmer than 50°F; the darker the shade, the warmer the monthly average temperature. Q: Where do these measurements come from? A: Daily temperature readings come from weather stations in the Global Historical Climatology Network (GHCN-D). Volunteer observers or automated instruments collect the highest and lowest temperature of the day at each station over the entire month, and submit them to the National Centers for Environmental Information (NCEI). After scientists check the quality of the data to omit any systematic errors, they calculate each station’s monthly average of daily mean temperatures, then plot it on a 5x5 km gridded map. To fill in the grid at locations without stations, a computer program interpolates (or estimates) values, accounting for the distribution of stations and various physical relationships, such as the way temperature changes with elevation. The resulting product is the NOAA Monthly U.S. Climate Gridded Dataset (NClimGrid). Q: What do the colors mean? A: Shades of blue show areas that had monthly average temperatures below 50°F. The darker the shade of blue, the lower the average temperature. Areas shown in shades of orange and red had average temperatures above 50°F. The darker the shade of orange or red, the higher the average temperature. White or very light colors show areas where the average temperature was near 50°F. Q: Why do these data matter? A: The 5x5km NClimGrid data allow scientists to report on recent temperature conditions and track long-term trends at a variety of spatial scales. The gridded cells are used to create statewide, regional and national snapshots of climate conditions. Energy companies use this information to estimate demand for heating and air conditioning. Agricultural businesses also use these data to optimize timing of planting, harvesting, and putting livestock to pasture. Q: How did you produce these snapshots? A: Data Snapshots are derivatives of existing data products; to meet the needs of a broad audience, we present the source data in a simplified visual style. This set of snapshots is based on NClimGrid climate data produced by and available from the National Centers for Environmental Information (NCEI). To produce our images, we invoke a set of scripts that access the source data and represent them according to our selected color ramps on our base maps. Additional information The data used in these snapshots can be downloaded from different places and in different formats. We used these specific data sources: NClimGrid Average Temperature References NOAA Monthly U.S. Climate Gridded Dataset (NClimGrid) NOAA Monthly U.S. Climate Divisional Database (NClimDiv) Improved Historical Temperature and Precipitation Time Series for U.S. Climate Divisions) NCEI Monthly National Analysis) Climate at a Glance - Data Information) NCEI Climate Monitoring - All Products Source: https://www.climate.gov/maps-data/data-snapshots/data-source/temperature-us-monthly-averageThis upload includes two additional files:* Temperature - US Monthly Average _NOAA Climate.gov.pdf is a screenshot of the main Climate.gov site for these snapshots.* Cimate_gov_ Data Snapshots.pdf is a screenshot of the data download page for the full-resolution files.

  20. U.S. Climate Normals 2020: U.S. Monthly Climate Normals (2006-2020)

    • catalog.data.gov
    • datasets.ai
    • +1more
    Updated Sep 19, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Centers for Environmental Information/NOAA (Principal Investigator) (2023). U.S. Climate Normals 2020: U.S. Monthly Climate Normals (2006-2020) [Dataset]. https://catalog.data.gov/dataset/u-s-climate-normals-2020-u-s-monthly-climate-normals-2006-20202
    Explore at:
    Dataset updated
    Sep 19, 2023
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    National Centers for Environmental Informationhttps://www.ncei.noaa.gov/
    Area covered
    United States
    Description

    The U.S. Monthly Climate Normals for 2006 to 2020 are 15-year averages of meteorological parameters that provide users supplemental normals for specialized applications for thousands of locations across the United States, as well as U.S. Territories and Commonwealths, and the Compact of Free Association nations. The stations used include those from the NWS Cooperative Observer Program (COOP) Network as well as some additional stations that have a Weather Bureau Army-Navy (WBAN) station identification number, including stations from the U.S. Climate Reference Network (USCRN) and other automated observation stations. In addition, precipitation normals for stations from the U.S. Snow Telemetry (SNOTEL) Network and the citizen-science Community Collaborative Rain, Hail and Snow (CoCoRaHS) Network are also available. The Monthly Climate Normals dataset includes various derived products such as air temperature normals (including maximum and minimum temperature normals, heating and cooling degree day normals, and others), precipitation normals (including precipitation and snowfall totals, and percentiles, frequencies and other statistics of precipitation, snowfall, and snow depth), and agricultural normals (growing degree days (GDDs)). All data utilized in the computation of the 2006-2020 Climate Normals were taken from the Global Historical Climatology Network-Daily and -Monthly datasets. Temperatures were homogenized, adjusted for time-of-observation, and made serially complete where possible based on information from nearby stations. Precipitation totals were also made serially complete where possible based using nearby stations. The source datasets (including intermediate datasets used in the computation of products) are also archived at NOAA NCEI. A comparatively small number of station normals sets (~50) have been added as Version 1.0.1 to correct quality issues or because additional historical data during the 1991-2020 period has been ingested.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2024). Monthly average daily temperatures in the United Kingdom 2015-2024 [Dataset]. https://www.statista.com/statistics/322658/monthly-average-daily-temperatures-in-the-united-kingdom-uk/
Organization logo

Monthly average daily temperatures in the United Kingdom 2015-2024

Explore at:
12 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Dec 15, 2024
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
Jan 2015 - Nov 2024
Area covered
United Kingdom
Description

The highest average temperature recorded in 2024 until November was in August, at 16.8 degrees Celsius. Since 2015, the highest average daily temperature in the UK was registered in July 2018, at 18.7 degrees Celsius. The summer of 2018 was the joint hottest since institutions began recording temperatures in 1910. One noticeable anomaly during this period was in December 2015, when the average daily temperature reached 9.5 degrees Celsius. This month also experienced the highest monthly rainfall in the UK since before 2014, with England, Wales, and Scotland suffering widespread flooding. Daily hours of sunshine Unsurprisingly, the heat wave that spread across the British Isles in 2018 was the result of particularly sunny weather. July 2018 saw an average of 8.7 daily sun hours in the United Kingdom. This was more hours of sun than was recorded in July 2024, which only saw 5.8 hours of sun. Temperatures are on the rise Since the 1960s, there has been an increase in regional temperatures across the UK. Between 1961 and 1990, temperatures in England averaged nine degrees Celsius, and from 2013 to 2022, average temperatures in the country had increased to 10.3 degrees Celsius. Due to its relatively southern location, England continues to rank as the warmest country in the UK.

Search
Clear search
Close search
Google apps
Main menu