100+ datasets found
  1. d

    Data from: Dynamically Downscaled Hourly Future Weather Data with 12-km...

    • catalog.data.gov
    • data.openei.org
    • +2more
    Updated Mar 12, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Argonne National Laboratory (2025). Dynamically Downscaled Hourly Future Weather Data with 12-km Resolution Covering Most of North America [Dataset]. https://catalog.data.gov/dataset/dynamically-downscaled-hourly-future-weather-data-with-12-km-resolution-covering-most-of-n
    Explore at:
    Dataset updated
    Mar 12, 2025
    Dataset provided by
    Argonne National Laboratory
    Area covered
    North America
    Description

    This is an hourly future weather dataset for energy modeling applications. The dataset is primarily based on the output of a regional climate model (RCM), i.e., the Weather Research and Forecasting (WRF) model version 3.3.1. The WRF simulations are driven by the output of a general circulation model (GCM), i.e., the Community Climate System Model version 4 (CCSM4). This dataset is in the EPW format, which can be read or translated by more than 25 building energy modeling programs (e.g., EnergyPlus, ESP-r, and IESVE), energy system modeling programs (e.g., System Advisor Model (SAM)), indoor air quality analysis programs (e.g., CONTAM), and hygrothermal analysis programs (e.g., WUFI). It contains 13 weather variables, which are the Dry-Bulb Temperature, Dew Point Temperature, Relative Humidity, Atmospheric Pressure, Horizontal Infrared Radiation Intensity from Sky, Global Horizontal Irradiation, Direct Normal Irradiation, Diffuse Horizontal Irradiation, Wind Speed, Wind Direction, Sky Cover, Albedo, and Liquid Precipitation Depth. The weather data is created for two emissions scenarios: RCP4.5 and RCP8.5 and spans two 10-year time slices in the future: 2045 - 2054 and 2085 - 2094. It offers a spatial resolution of 12 km by 12 km with extensive coverage across most of North America. Due to the enormous size of the entire dataset, in the first stage of its distribution, we provide 20 years of future weather data for the centroid of each Public Use Microdata Area (PUMA), excluding Hawaii. PUMAs are non-overlapping, statistical geographic areas that partition each state or equivalent entity into geographic areas containing no fewer than 100,000 people each. The 2,378 PUMAs as a whole cover the entirety of the U.S. The weather data can be utilized alongside the large-scale energy analysis tools, ResStock and ComStock, developed by National Renewable Energy Laboratory, whose smallest resolution is at the PUMA scale.

  2. k

    Saudi Arabia Hourly Climate Integrated Surface Data

    • datasource.kapsarc.org
    • data.kapsarc.org
    • +1more
    Updated Dec 15, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Saudi Arabia Hourly Climate Integrated Surface Data [Dataset]. https://datasource.kapsarc.org/explore/dataset/saudi-hourly-weather-data/
    Explore at:
    Dataset updated
    Dec 15, 2024
    Area covered
    Saudi Arabia
    Description

    Saudi Arabia hourly climate integrated surface data with the below data observations, WindSky conditionVisibilityAir temperatureDewSea level pressureNote: The dataset will contain the last 5 years hourly data, however, check the attachments section in this dataset if you need historical data.

  3. Daily Weather Records

    • catalog.data.gov
    • data.cnra.ca.gov
    • +4more
    Updated Sep 19, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA National Centers for Environmental Information (Point of Contact); DOC/NOAA/NESDIS/NCEI > National Centers for Environmental Information, NESDIS, NOAA, U.S. Department of Commerce (Point of Contact) (2023). Daily Weather Records [Dataset]. https://catalog.data.gov/dataset/daily-weather-records1
    Explore at:
    Dataset updated
    Sep 19, 2023
    Dataset provided by
    United States Department of Commercehttp://www.commerce.gov/
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    National Centers for Environmental Informationhttps://www.ncei.noaa.gov/
    National Environmental Satellite, Data, and Information Service
    Description

    These daily weather records were compiled from a subset of stations in the Global Historical Climatological Network (GHCN)-Daily dataset. A weather record is considered broken if the value exceeds the maximum (or minimum) value recorded for an eligible station. A weather record is considered tied if the value is the same as the maximum (or minimum) value recorded for an eligible station. Daily weather parameters include Highest Min/Max Temperature, Lowest Min/Max Temperature, Highest Precipitation, Highest Snowfall and Highest Snow Depth. All stations meet defined eligibility criteria. For this application, a station is defined as the complete daily weather records at a particular location, having a unique identifier in the GHCN-Daily dataset. For a station to be considered for any weather parameter, it must have a minimum of 30 years of data with more than 182 days complete in each year. This is effectively a 30-year record of service requirement, but allows for inclusion of some stations which routinely shut down during certain seasons. Small station moves, such as a move from one property to an adjacent property, may occur within a station history. However, larger moves, such as a station moving from downtown to the city airport, generally result in the commissioning of a new station identifier. This tool treats each of these histories as a different station. In this way, it does not thread the separate histories into one record for a city. Records Timescales are characterized in three ways. In order of increasing noteworthiness, they are Daily Records, Monthly Records and All Time Records. For a given station, Daily Records refers to the specific calendar day: (e.g., the value recorded on March 7th compared to every other March 7th). Monthly Records exceed all values observed within the specified month (e.g., the value recorded on March 7th compared to all values recorded in every March). All-Time Records exceed the record of all observations, for any date, in a station's period of record. The Date Range and Location features are used to define the time and location ranges which are of interest to the user. For example, selecting a date range of March 1, 2012 through March 15, 2012 will return a list of records broken or tied on those 15 days. The Location Category and Country menus allow the user to define the geographic extent of the records of interest. For example, selecting Oklahoma will narrow the returned list of records to those that occurred in the state of Oklahoma, USA. The number of records broken for several recent periods is summarized in the table and updated daily. Due to late-arriving data, the number of recent records is likely underrepresented in all categories, but the ratio of records (warm to cold, for example) should be a fairly strong estimate of a final outcome. There are many more precipitation stations than temperature stations, so the raw number of precipitation records will likely exceed the number of temperature records in most climatic situations.

  4. Global Surface Summary of the Day - GSOD

    • ncei.noaa.gov
    • datadiscoverystudio.org
    • +3more
    csv
    Updated Aug 3, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DOC/NOAA/NESDIS/NCDC > National Climatic Data Center, NESDIS, NOAA, U.S. Department of Commerce (2023). Global Surface Summary of the Day - GSOD [Dataset]. https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C00516
    Explore at:
    csvAvailable download formats
    Dataset updated
    Aug 3, 2023
    Dataset provided by
    National Centers for Environmental Informationhttps://www.ncei.noaa.gov/
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Authors
    DOC/NOAA/NESDIS/NCDC > National Climatic Data Center, NESDIS, NOAA, U.S. Department of Commerce
    Time period covered
    Jan 1, 1929 - Present
    Area covered
    Description

    Global Surface Summary of the Day is derived from The Integrated Surface Hourly (ISH) dataset. The ISH dataset includes global data obtained from the USAF Climatology Center, located in the Federal Climate Complex with NCDC. The latest daily summary data are normally available 1-2 days after the date-time of the observations used in the daily summaries. The online data files begin with 1929 and are at the time of this writing at the Version 8 software level. Over 9000 stations' data are typically available. The daily elements included in the dataset (as available from each station) are: Mean temperature (.1 Fahrenheit) Mean dew point (.1 Fahrenheit) Mean sea level pressure (.1 mb) Mean station pressure (.1 mb) Mean visibility (.1 miles) Mean wind speed (.1 knots) Maximum sustained wind speed (.1 knots) Maximum wind gust (.1 knots) Maximum temperature (.1 Fahrenheit) Minimum temperature (.1 Fahrenheit) Precipitation amount (.01 inches) Snow depth (.1 inches) Indicator for occurrence of: Fog, Rain or Drizzle, Snow or Ice Pellets, Hail, Thunder, Tornado/Funnel Cloud Global summary of day data for 18 surface meteorological elements are derived from the synoptic/hourly observations contained in USAF DATSAV3 Surface data and Federal Climate Complex Integrated Surface Hourly (ISH). Historical data are generally available for 1929 to the present, with data from 1973 to the present being the most complete. For some periods, one or more countries' data may not be available due to data restrictions or communications problems. In deriving the summary of day data, a minimum of 4 observations for the day must be present (allows for stations which report 4 synoptic observations/day). Since the data are converted to constant units (e.g, knots), slight rounding error from the originally reported values may occur (e.g, 9.9 instead of 10.0). The mean daily values described below are based on the hours of operation for the station. For some stations/countries, the visibility will sometimes 'cluster' around a value (such as 10 miles) due to the practice of not reporting visibilities greater than certain distances. The daily extremes and totals--maximum wind gust, precipitation amount, and snow depth--will only appear if the station reports the data sufficiently to provide a valid value. Therefore, these three elements will appear less frequently than other values. Also, these elements are derived from the stations' reports during the day, and may comprise a 24-hour period which includes a portion of the previous day. The data are reported and summarized based on Greenwich Mean Time (GMT, 0000Z - 2359Z) since the original synoptic/hourly data are reported and based on GMT.

  5. World Weather Records

    • ncei.noaa.gov
    • data.cnra.ca.gov
    • +2more
    Updated May 31, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA National Centers for Environmental Information (NCEI) (2017). World Weather Records [Dataset]. http://doi.org/10.7289/v5222rt1
    Explore at:
    Dataset updated
    May 31, 2017
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    National Centers for Environmental Informationhttps://www.ncei.noaa.gov/
    Time period covered
    Jan 1, 1755 - Present
    Area covered
    Continent > Europe, Continent > Antarctica, Geographic Region > Oceania, Continent > Australia/New Zealand, geographic bounding box, Continent > South America, Continent > North America > Central America, Continent > Asia, Continent > Africa, Continent > North America
    Description

    World Weather Records (WWR) is an archived publication and digital data set. WWR is meteorological data from locations around the world. Through most of its history, WWR has been a publication, first published in 1927. Data includes monthly mean values of pressure, temperature, precipitation, and where available, station metadata notes documenting observation practices and station configurations. In recent years, data were supplied by National Meteorological Services of various countries, many of which became members of the World Meteorological Organization (WMO). The First Issue included data from earliest records available at that time up to 1920. Data have been collected for periods 1921-30 (2nd Series), 1931-40 (3rd Series), 1941-50 (4th Series), 1951-60 (5th Series), 1961-70 (6th Series), 1971-80 (7th Series), 1981-90 (8th Series), 1991-2000 (9th Series), and 2001-2011 (10th Series). The most recent Series 11 continues, insofar as possible, the record of monthly mean values of station pressure, sea-level pressure, temperature, and monthly total precipitation for stations listed in previous volumes. In addition to these parameters, mean monthly maximum and minimum temperatures have been collected for many stations and are archived in digital files by NCEI. New stations have also been included. In contrast to previous series, the 11th Series is available for the partial decade, so as to limit waiting period for new records. It begins in 2010 and is updated yearly, extending into the entire decade.

  6. Open data

    • ecmwf.int
    application/x-grib
    Updated Nov 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    European Centre for Medium-Range Weather Forecasts (2024). Open data [Dataset]. https://www.ecmwf.int/en/forecasts/datasets/open-data
    Explore at:
    application/x-grib(1 datasets)Available download formats
    Dataset updated
    Nov 3, 2024
    Dataset authored and provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    subject to appropriate attribution.

  7. g

    Severe Weather Data Inventory (SWDI)

    • data.globalchange.gov
    • datadiscoverystudio.org
    • +4more
    Updated May 12, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2013). Severe Weather Data Inventory (SWDI) [Dataset]. https://data.globalchange.gov/dataset/noaa-ncdc-c00773
    Explore at:
    Dataset updated
    May 12, 2013
    Description

    The Severe Weather Data Inventory (SWDI) is an integrated database of severe weather records for the United States. SWDI enables a user to search through a variety of source data sets in the NCDC (now NCEI) archive in order to find records covering a particular time period and geographic region, and then to download the results of the search in a variety of formats. The formats currently supported are Shapefile (for GIS), KMZ (for Google Earth), CSV (comma-separated), and XML. The current data layers in SWDI are: Storm Cells from NEXRAD (Level-III Storm Structure Product); Hail Signatures from NEXRAD (Level-III Hail Product); Mesocyclone Signatures from NEXRAD (Level-III Meso Product); Digital Mesocyclone Detection Algorithm from NEXRAD (Level-III MDA Product); Tornado Signature from NEXRAD (Level-III TVS Product); Preliminary Local Storm Reports from the NOAA National Weather Service; Lightning Strikes from Vaisala NLDN.

  8. d

    SEAN weather station data download (WC_F)

    • catalog.data.gov
    • data.amerigeoss.org
    Updated Jun 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SEAN weather station data download (WC_F) [Dataset]. https://catalog.data.gov/dataset/sean-weather-station-data-download-wc-f
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Service
    Description

    The cumulative collection of RAWS station observations in Campbell Scientific .DAT format. It is extracted from the station datalogger during each visit to each site. Multiple years are stored in a ring buffer in the station and the entire buffer is captured on each visit. No data corrections are directly applied to this Processing Level 0 product.

  9. ERA5 post-processed daily statistics on single levels from 1940 to present

    • cds.climate.copernicus.eu
    grib
    Updated Mar 26, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF (2025). ERA5 post-processed daily statistics on single levels from 1940 to present [Dataset]. http://doi.org/10.24381/cds.4991cf48
    Explore at:
    gribAvailable download formats
    Dataset updated
    Mar 26, 2025
    Dataset provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    Authors
    ECMWF
    License

    https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/licence-to-use-copernicus-products/licence-to-use-copernicus-products_b4b9451f54cffa16ecef5c912c9cebd6979925a956e3fa677976e0cf198c2c18.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/licence-to-use-copernicus-products/licence-to-use-copernicus-products_b4b9451f54cffa16ecef5c912c9cebd6979925a956e3fa677976e0cf198c2c18.pdf

    Time period covered
    Jan 1, 1940 - Mar 20, 2025
    Description

    ERA5 is the fifth generation ECMWF reanalysis for the global climate and weather for the past 8 decades. Data is available from 1940 onwards. ERA5 replaces the ERA-Interim reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. This principle, called data assimilation, is based on the method used by numerical weather prediction centres, where every so many hours (12 hours at ECMWF) a previous forecast is combined with newly available observations in an optimal way to produce a new best estimate of the state of the atmosphere, called analysis, from which an updated, improved forecast is issued. Reanalysis works in the same way, but at reduced resolution to allow for the provision of a dataset spanning back several decades. Reanalysis does not have the constraint of issuing timely forecasts, so there is more time to collect observations, and when going further back in time, to allow for the ingestion of improved versions of the original observations, which all benefit the quality of the reanalysis product. This catalogue entry provides post-processed ERA5 hourly single-level data aggregated to daily time steps. In addition to the data selection options found on the hourly page, the following options can be selected for the daily statistic calculation:

    The daily aggregation statistic (daily mean, daily max, daily min, daily sum*) The sub-daily frequency sampling of the original data (1 hour, 3 hours, 6 hours) The option to shift to any local time zone in UTC (no shift means the statistic is computed from UTC+00:00)

    *The daily sum is only available for the accumulated variables (see ERA5 documentation for more details). Users should be aware that the daily aggregation is calculated during the retrieval process and is not part of a permanently archived dataset. For more details on how the daily statistics are calculated, including demonstrative code, please see the documentation. For more details on the hourly data used to calculate the daily statistics, please refer to the ERA5 hourly single-level data catalogue entry and the documentation found therein.

  10. Complete ERA5 global atmospheric reanalysis

    • cds.climate.copernicus.eu
    netcdf
    Updated May 25, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF (2023). Complete ERA5 global atmospheric reanalysis [Dataset]. http://doi.org/10.24381/cds.143582cf
    Explore at:
    netcdfAvailable download formats
    Dataset updated
    May 25, 2023
    Dataset provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    Authors
    ECMWF
    License

    https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/licence-to-use-copernicus-products/licence-to-use-copernicus-products_b4b9451f54cffa16ecef5c912c9cebd6979925a956e3fa677976e0cf198c2c18.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/licence-to-use-copernicus-products/licence-to-use-copernicus-products_b4b9451f54cffa16ecef5c912c9cebd6979925a956e3fa677976e0cf198c2c18.pdf

    Time period covered
    Jan 1, 1949
    Description

    ERA5 is the fifth generation ECMWF atmospheric reanalysis of the global climate covering the period from January 1940 to present. It is produced by the Copernicus Climate Change Service (C3S) at ECMWF and provides hourly estimates of a large number of atmospheric, land and oceanic climate variables. The data cover the Earth on a 31km grid and resolve the atmosphere using 137 levels from the surface up to a height of 80km. ERA5 includes an ensemble component at half the resolution to provide information on synoptic uncertainty of its products. ERA5.1 is a dedicated product with the same horizontal and vertical resolution that was produced for the years 2000 to 2006 inclusive to significantly improve a discontinuity in global-mean temperature in the stratosphere and uppermost troposphere that ERA5 suffers from during that period. Users that are interested in this part of the atmosphere in this era are advised to access ERA5.1 rather than ERA5. ERA5 and ERA5.1 use a state-of-the-art numerical weather prediction model to assimilate a variety of observations, including satellite and ground-based measurements, and produces a comprehensive and consistent view of the Earth's atmosphere. These products are widely used by researchers and practitioners in various fields, including climate science, weather forecasting, energy production and machine learning among others, to understand and analyse past and current weather and climate conditions.

  11. CIMIS Weather Station Data

    • data.cnra.ca.gov
    • data.ca.gov
    • +1more
    csv
    Updated Oct 3, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Water Resources (2022). CIMIS Weather Station Data [Dataset]. https://data.cnra.ca.gov/dataset/cimis-weather-station-data
    Explore at:
    csvAvailable download formats
    Dataset updated
    Oct 3, 2022
    Dataset authored and provided by
    California Department of Water Resourceshttp://www.water.ca.gov/
    Description

    Weather Data collected by CIMIS automatic weather stations. The data is available in CSV format. Station data include measured parameters such as solar radiation, air temperature, soil temperature, relative humidity, precipitation, wind speed and wind direction as well as derived parameters such as vapor pressure, dew point temperature, and grass reference evapotranspiration (ETo).

  12. Historical NOAA Daily Weather

    • data.wu.ac.at
    • data.smartidf.services
    • +1more
    Updated Jan 24, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA (2018). Historical NOAA Daily Weather [Dataset]. https://data.wu.ac.at/schema/public_opendatasoft_com/bm9hYS1kYWlseS13ZWF0aGVyLWRhdGE=
    Explore at:
    kml, xls, csv, application/vnd.geo+json, jsonAvailable download formats
    Dataset updated
    Jan 24, 2018
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    Note that 2013 and 2014 datasets are available for download in the attachment tab below.

    The journal article describing GHCN-Daily is: Menne, M.J., I. Durre, R.S. Vose, B.E. Gleason, and T.G. Houston, 2012: An overview of the Global Historical Climatology Network-Daily Database. Journal of Atmospheric and Oceanic Technology, 29, 897-910, doi:10.1175/JTECH-D-11-00103.1.

    Menne, M.J., I. Durre, B. Korzeniewski, S. McNeal, K. Thomas, X. Yin, S. Anthony, R. Ray, R.S. Vose, B.E.Gleason, and T.G. Houston, 2012: Global Historical Climatology Network - Daily (GHCN-Daily), Version 3. [indicate subset used following decimal, e.g. Version 3.12]. NOAA National Climatic Data Center. http://doi.org/10.7289/V5D21VHZ

  13. U.S. 15 Minute Precipitation Data

    • ncei.noaa.gov
    • s.cnmilf.com
    • +4more
    csv, dat, kmz, pdf
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DOC/NOAA/NESDIS/NCDC > National Climatic Data Center, NESDIS, NOAA, U.S. Department of Commerce, U.S. 15 Minute Precipitation Data [Dataset]. https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C00505
    Explore at:
    dat, kmz, csv, pdfAvailable download formats
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    National Centers for Environmental Informationhttps://www.ncei.noaa.gov/
    Authors
    DOC/NOAA/NESDIS/NCDC > National Climatic Data Center, NESDIS, NOAA, U.S. Department of Commerce
    Time period covered
    Jan 1, 1970 - Present
    Area covered
    Description

    U.S. 15 Minute Precipitation Data is digital data set DSI-3260, archived at the National Climatic Data Center (NCDC). This is precipitation data. The primary source of data for this file is approximately 2,000 mostly U.S. weather stations operated or managed by the U.S. National Weather Service. Stations are primary, secondary, or cooperative observer sites that have the capability to measure precipitation at 15 minute intervals. This dataset contains 15-minute precipitation data (reported 4 times per hour, if precip occurs) for U.S. stations along with selected non-U.S. stations in U.S. territories and associated nations. It includes major city locations and many small town locations. Daily total precipitation is also included as part of the data record. NCDC has in archive data from most states as far back as 1970 or 1971, and continuing to the present day. The major parameter is precipitation amounts at 15 minute intervals, when precipitation actually occurs.

  14. U.S. Local Climatological Data (LCD)

    • catalog.data.gov
    • datadiscoverystudio.org
    • +4more
    Updated Oct 28, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DOC/NOAA/NESDIS/NCEI > National Centers for Environmental Information, NESDIS, NOAA, U.S. Department of Commerce (Point of Contact) (2022). U.S. Local Climatological Data (LCD) [Dataset]. https://catalog.data.gov/dataset/u-s-local-climatological-data-lcd2
    Explore at:
    Dataset updated
    Oct 28, 2022
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    United States Department of Commercehttp://www.commerce.gov/
    National Centers for Environmental Informationhttps://www.ncei.noaa.gov/
    National Environmental Satellite, Data, and Information Service
    Area covered
    United States
    Description

    Local Climatological Data (LCD) are summaries of climatological conditions from airport and other prominent weather stations managed by NWS, FAA, and DOD. The product includes hourly observations and associated remarks, and a record of hourly precipitation for the entire month. Also included are daily summaries summarizing temperature extremes, degree days, precipitation amounts and winds. The tabulated monthly summaries in the product include maximum, minimum, and average temperature, temperature departure from normal, dew point temperature, average station pressure, ceiling, visibility, weather type, wet bulb temperature, relative humidity, degree days (heating and cooling), daily precipitation, average wind speed, fastest wind speed/direction, sky cover, and occurrences of sunshine, snowfall and snow depth. The source data is global hourly (DSI 3505) which includes a number of quality control checks.

  15. NOAA Weather Data 2004

    • academictorrents.com
    bittorrent
    Updated Jun 14, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA Weather Data 2004 [Dataset]. https://academictorrents.com/details/b5a6d86ec233fedd303b1a2ef265c182d8b90cb8
    Explore at:
    bittorrentAvailable download formats
    Dataset updated
    Jun 14, 2014
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    National Climatic Data Centerhttp://ncdc.noaa.gov/
    Authors
    NOAA's National Climatic Data Center
    License

    https://academictorrents.com/nolicensespecifiedhttps://academictorrents.com/nolicensespecified

    Description

    A BitTorrent file to download data with the title 'NOAA Weather Data 2004'

  16. d

    Automatic Rainfall Station - Rainfall Observation Data

    • data.gov.tw
    api, json, xml
    Updated Jan 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Central Weather Administration Ministry of Transportation and Communications (2025). Automatic Rainfall Station - Rainfall Observation Data [Dataset]. https://data.gov.tw/en/datasets/9177
    Explore at:
    xml, api, jsonAvailable download formats
    Dataset updated
    Jan 23, 2025
    Dataset authored and provided by
    Central Weather Administration Ministry of Transportation and Communications
    License

    https://data.gov.tw/licensehttps://data.gov.tw/license

    Description

    Weather station data *The download URL will be changed from September 15, 112 to December 31, 112. Please change the link before the deadline, otherwise the old version will be invalid. If you need to download a large amount of data, please apply for membership at the Weather Data Open Platform. https://opendata.cwa.gov.tw/index

  17. Weather History Download New Delhi

    • hub.tumidata.org
    csv, url, xlsx
    Updated Jun 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TUMI (2024). Weather History Download New Delhi [Dataset]. https://hub.tumidata.org/dataset/weather_history_download_new_delhi_delhi
    Explore at:
    url, csv(1082), xlsx(3446)Available download formats
    Dataset updated
    Jun 4, 2024
    Dataset provided by
    Tumi Inc.http://www.tumi.com/
    Area covered
    New Delhi, Delhi
    Description

    Weather History Download New Delhi
    This dataset falls under the category Environmental Data Climate Data.
    It contains the following data: Climate datasets - historical datasets
    This dataset was scouted on 2022-02-05 as part of a data sourcing project conducted by TUMI. License information might be outdated: Check original source for current licensing. The data can be accessed using the following URL / API Endpoint: https://www.meteoblue.com/en/weather/archive/export/new-delhi_india_1261481

  18. Temperature and precipitation gridded data for global and regional domains...

    • cds.climate.copernicus.eu
    netcdf
    Updated Mar 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF (2025). Temperature and precipitation gridded data for global and regional domains derived from in-situ and satellite observations [Dataset]. http://doi.org/10.24381/cds.11dedf0c
    Explore at:
    netcdfAvailable download formats
    Dataset updated
    Mar 9, 2025
    Dataset provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    Authors
    ECMWF
    License

    https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/insitu-gridded-observations-global-and-regional/insitu-gridded-observations-global-and-regional_15437b363f02bf5e6f41fc2995e3d19a590eb4daff5a7ce67d1ef6c269d81d68.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/insitu-gridded-observations-global-and-regional/insitu-gridded-observations-global-and-regional_15437b363f02bf5e6f41fc2995e3d19a590eb4daff5a7ce67d1ef6c269d81d68.pdf

    Time period covered
    Jan 1, 1750 - Mar 1, 2021
    Description

    This dataset provides high-resolution gridded temperature and precipitation observations from a selection of sources. Additionally the dataset contains daily global average near-surface temperature anomalies. All fields are defined on either daily or monthly frequency. The datasets are regularly updated to incorporate recent observations. The included data sources are commonly known as GISTEMP, Berkeley Earth, CPC and CPC-CONUS, CHIRPS, IMERG, CMORPH, GPCC and CRU, where the abbreviations are explained below. These data have been constructed from high-quality analyses of meteorological station series and rain gauges around the world, and as such provide a reliable source for the analysis of weather extremes and climate trends. The regular update cycle makes these data suitable for a rapid study of recently occurred phenomena or events. The NASA Goddard Institute for Space Studies temperature analysis dataset (GISTEMP-v4) combines station data of the Global Historical Climatology Network (GHCN) with the Extended Reconstructed Sea Surface Temperature (ERSST) to construct a global temperature change estimate. The Berkeley Earth Foundation dataset (BERKEARTH) merges temperature records from 16 archives into a single coherent dataset. The NOAA Climate Prediction Center datasets (CPC and CPC-CONUS) define a suite of unified precipitation products with consistent quantity and improved quality by combining all information sources available at CPC and by taking advantage of the optimal interpolation (OI) objective analysis technique. The Climate Hazards Group InfraRed Precipitation with Station dataset (CHIRPS-v2) incorporates 0.05° resolution satellite imagery and in-situ station data to create gridded rainfall time series over the African continent, suitable for trend analysis and seasonal drought monitoring. The Integrated Multi-satellitE Retrievals dataset (IMERG) by NASA uses an algorithm to intercalibrate, merge, and interpolate “all'' satellite microwave precipitation estimates, together with microwave-calibrated infrared (IR) satellite estimates, precipitation gauge analyses, and potentially other precipitation estimators over the entire globe at fine time and space scales for the Tropical Rainfall Measuring Mission (TRMM) and its successor, Global Precipitation Measurement (GPM) satellite-based precipitation products. The Climate Prediction Center morphing technique dataset (CMORPH) by NOAA has been created using precipitation estimates that have been derived from low orbiter satellite microwave observations exclusively. Then, geostationary IR data are used as a means to transport the microwave-derived precipitation features during periods when microwave data are not available at a location. The Global Precipitation Climatology Centre dataset (GPCC) is a centennial product of monthly global land-surface precipitation based on the ~80,000 stations world-wide that feature record durations of 10 years or longer. The data coverage per month varies from ~6,000 (before 1900) to more than 50,000 stations. The Climatic Research Unit dataset (CRU v4) features an improved interpolation process, which delivers full traceability back to station measurements. The station measurements of temperature and precipitation are public, as well as the gridded dataset and national averages for each country. Cross-validation was performed at a station level, and the results have been published as a guide to the accuracy of the interpolation. This catalogue entry complements the E-OBS record in many aspects, as it intends to provide high-resolution gridded meteorological observations at a global rather than continental scale. These data may be suitable as a baseline for model comparisons or extreme event analysis in the CMIP5 and CMIP6 dataset.

  19. NCEP ADP Global Surface Observational Weather Data, October 1999 -...

    • rda.ucar.edu
    • rda-web-prod.ucar.edu
    • +3more
    Updated Feb 23, 2004
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NCEP ADP Global Surface Observational Weather Data, October 1999 - continuing [Dataset]. https://rda.ucar.edu/datasets/d461000/
    Explore at:
    Dataset updated
    Feb 23, 2004
    Dataset provided by
    University Corporation for Atmospheric Research
    Authors
    National Centers for Environmental Prediction/National Weather Service/NOAA/U.S. Department of Commerce
    Time period covered
    Sep 30, 1999 - Mar 25, 2025
    Description

    NCEP ADP Global Surface Observational Weather Data are composed of surface weather reports operationally collected by the National Centers for Environmental Prediction (NCEP). The data includes land and marine surface reports received via the Global Telecommunications System (GTS). Variables recorded in the reports include pressure, air temperature, dew point temperature, wind direction and speed. Precipitation data has been decoded for the U.S. and Canada. Report intervals range from hourly to 3 hourly. These data are the primary input to the NCEP Global Data Assimilation System (GDAS).

    Full daily data can be downloaded in BUFR or LITTLE_R format. Spatial subsets decoded into ASCII can also be selected by latitude/longitude or station ID.

  20. Data from: Standard Quality Controlled Research Weather Data – USDA-ARS,...

    • catalog.data.gov
    • agdatacommons.nal.usda.gov
    Updated Mar 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agricultural Research Service (2024). Standard Quality Controlled Research Weather Data – USDA-ARS, Bushland, Texas [Dataset]. https://catalog.data.gov/dataset/standard-quality-controlled-research-weather-data-usda-ars-bushland-texas-f4f0b
    Explore at:
    Dataset updated
    Mar 30, 2024
    Dataset provided by
    Agricultural Research Servicehttps://www.ars.usda.gov/
    Area covered
    Texas, Bushland
    Description

    [ NOTE – 2022/05/06: this dataset supersedes the earlier versions https://doi.org/10.15482/USDA.ADC/1482548 and https://doi.org/10.15482/USDA.ADC/1526329 ]. This dataset contains 15-minute mean weather data from the USDA-ARS Conservation and Production Laboratory (CPRL), Soil and Water Management Research Unit (SWMRU) research weather station, Bushland, Texas (Lat. 35.186714°, Long. -102.094189°, elevation 1170 m above MSL) for all days in each year. The data are from sensors placed at 2-m height over a level, grass surface mowed to not exceed 12 cm height and irrigated and fertilized to maintain reference conditions as promulgated by Allen et al. (2005, 1998). Irrigation was by surface flood in 1989 through 1994, and by subsurface drip irrigation after 1994. Sensors were replicated and intercompared between replicates and with data from nearby weather stations, which were sometimes used for gap filling. Quality control and assurance methods are described by Evett et al. (2018). Data from a duplicate sensor were used to fill gaps in data from the primary sensor using appropriate regression relationships. Gap filling was also accomplished using sensors deployed at one of the four large weighing lysimeters immediately west of the weather station, or using sensors at other nearby stations when reliable regression relationships could be developed. The primary paper describes details of the sensors used and methods of testing, calibration, inter-comparison, and use. The weather data include air temperature (C) and relative humidity (%), wind speed (m/s), solar irradiance (W m-2), barometric pressure (kPa), and precipitation (rain and snow in mm). Because the large (3 m by 3 m surface area) weighing lysimeters are better rain gages than are tipping bucket gages, the 15-minute precipitation data are derived for each lysimeter from changes in lysimeter mass. The land slope is <0.3% and flat. The mean annual precipitation is ~470 mm, the 20-year pan evaporation record indicates ~2,600 mm Class A pan evaporation per year, and winds are typically from the South and Southwest. The climate is semi-arid with ~70% (350 mm) of the annual precipitation occurring from May to September, during which period the pan evaporation averages ~1520 mm. These datasets originate from research aimed at determining crop water use (ET), crop coefficients for use in ET-based irrigation scheduling based on a reference ET, crop growth, yield, harvest index, and crop water productivity as affected by irrigation method, timing, amount (full or some degree of deficit), agronomic practices, cultivar, and weather. The data have utility for testing simulation models of crop ET, growth, and yield and have been used by the Agricultural Model Intercomparison and Improvement Project (AgMIP), by OPENET, and by many others for testing, and calibrating models of ET that use satellite and/or weather data. See the README for details of each data resource.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Argonne National Laboratory (2025). Dynamically Downscaled Hourly Future Weather Data with 12-km Resolution Covering Most of North America [Dataset]. https://catalog.data.gov/dataset/dynamically-downscaled-hourly-future-weather-data-with-12-km-resolution-covering-most-of-n

Data from: Dynamically Downscaled Hourly Future Weather Data with 12-km Resolution Covering Most of North America

Related Article
Explore at:
Dataset updated
Mar 12, 2025
Dataset provided by
Argonne National Laboratory
Area covered
North America
Description

This is an hourly future weather dataset for energy modeling applications. The dataset is primarily based on the output of a regional climate model (RCM), i.e., the Weather Research and Forecasting (WRF) model version 3.3.1. The WRF simulations are driven by the output of a general circulation model (GCM), i.e., the Community Climate System Model version 4 (CCSM4). This dataset is in the EPW format, which can be read or translated by more than 25 building energy modeling programs (e.g., EnergyPlus, ESP-r, and IESVE), energy system modeling programs (e.g., System Advisor Model (SAM)), indoor air quality analysis programs (e.g., CONTAM), and hygrothermal analysis programs (e.g., WUFI). It contains 13 weather variables, which are the Dry-Bulb Temperature, Dew Point Temperature, Relative Humidity, Atmospheric Pressure, Horizontal Infrared Radiation Intensity from Sky, Global Horizontal Irradiation, Direct Normal Irradiation, Diffuse Horizontal Irradiation, Wind Speed, Wind Direction, Sky Cover, Albedo, and Liquid Precipitation Depth. The weather data is created for two emissions scenarios: RCP4.5 and RCP8.5 and spans two 10-year time slices in the future: 2045 - 2054 and 2085 - 2094. It offers a spatial resolution of 12 km by 12 km with extensive coverage across most of North America. Due to the enormous size of the entire dataset, in the first stage of its distribution, we provide 20 years of future weather data for the centroid of each Public Use Microdata Area (PUMA), excluding Hawaii. PUMAs are non-overlapping, statistical geographic areas that partition each state or equivalent entity into geographic areas containing no fewer than 100,000 people each. The 2,378 PUMAs as a whole cover the entirety of the U.S. The weather data can be utilized alongside the large-scale energy analysis tools, ResStock and ComStock, developed by National Renewable Energy Laboratory, whose smallest resolution is at the PUMA scale.

Search
Clear search
Close search
Google apps
Main menu