3 datasets found
  1. f

    Data_Sheet_1_iMAP: A Web Server for Metabolomics Data Integrative...

    • frontiersin.figshare.com
    pdf
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Di Zhou; Wenjia Zhu; Tao Sun; Yang Wang; Yi Chi; Tianlu Chen; Jingchao Lin (2023). Data_Sheet_1_iMAP: A Web Server for Metabolomics Data Integrative Analysis.PDF [Dataset]. http://doi.org/10.3389/fchem.2021.659656.s001
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    Frontiers
    Authors
    Di Zhou; Wenjia Zhu; Tao Sun; Yang Wang; Yi Chi; Tianlu Chen; Jingchao Lin
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Metabolomics data analysis depends on the utilization of bioinformatics tools. To meet the evolving needs of metabolomics research, several integrated platforms have been developed. Our group has developed a desktop platform IP4M (integrated Platform for Metabolomics Data Analysis) which allows users to perform a nearly complete metabolomics data analysis in one-stop. With the extensive usage of IP4M, more and more demands were raised from users worldwide for a web version and a more customized workflow. Thus, iMAP (integrated Metabolomics Analysis Platform) was developed with extended functions, improved performances, and redesigned structures. Compared with existing platforms, iMAP has more methods and usage modes. A new module was developed with an automatic pipeline for train-test set separation, feature selection, and predictive model construction and validation. A new module was incorporated with sufficient editable parameters for network construction, visualization, and analysis. Moreover, plenty of plotting tools have been upgraded for highly customized publication-ready figures. Overall, iMAP is a good alternative tool with complementary functions to existing metabolomics data analysis platforms. iMAP is freely available for academic usage at https://imap.metaboprofile.cloud/ (License MPL 2.0).

  2. Table_4_Hotspot and Frontier Analysis of Exercise Training Therapy for Heart...

    • frontiersin.figshare.com
    pdf
    Updated Jun 11, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yan Wang; Yuhong Jia; Molin Li; Sirui Jiao; Henan Zhao (2023). Table_4_Hotspot and Frontier Analysis of Exercise Training Therapy for Heart Failure Complicated With Depression Based on Web of Science Database and Big Data Analysis.pdf [Dataset]. http://doi.org/10.3389/fcvm.2021.665993.s004
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 11, 2023
    Dataset provided by
    Frontiers Mediahttp://www.frontiersin.org/
    Authors
    Yan Wang; Yuhong Jia; Molin Li; Sirui Jiao; Henan Zhao
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Background: Exercise training has been extensively studied in heart failure (HF) and psychological disorders, which has been shown to worsen each other. However, our understanding of how exercise simultaneously protect heart and brain of HF patients is still in its infancy. The purpose of this study was to take advantage of big data techniques to explore hotspots and frontiers of mechanisms that protect the heart and brain simultaneously through exercise training.Methods: We studied the scientific publications on related research between January 1, 2003 to December 31, 2020 from the WoS Core Collection. Research hotspots were assessed through open-source software, CiteSpace, Pajek, and VOSviewer. Big data analysis and visualization were carried out using R, Cytoscape and Origin.Results: From 2003 to 2020, the study on HF, depression, and exercise simultaneously was the lowest of all research sequences (two-way ANOVAs, p < 0.0001). Its linear regression coefficient r was 0.7641. The result of hotspot analysis of related keyword-driven research showed that inflammation and stress (including oxidative stress) were the common mechanisms. Through the further analyses, we noted that inflammation, stress, oxidative stress, apoptosis, reactive oxygen species, cell death, and the mechanisms related to mitochondrial biogenesis/homeostasis, could be regarded as the primary mechanism targets to study the simultaneous intervention of exercise on the heart and brain of HF patients with depression.Conclusions: Our findings demonstrate the potential mechanism targets by which exercise interferes with both the heart and brain for HF patients with depression. We hope that they can boost the attention of other researchers and clinicians, and open up new avenues for designing more novel potential drugs to block heart-brain axis vicious circle.

  3. r

    Online survey data for the 2017 Aesthetic value project (NESP 3.2.3,...

    • researchdata.edu.au
    bin
    Updated 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Becken, Susanne, Professor; Connolly, Rod, Professor; Stantic, Bela, Professor; Scott, Noel, Professor; Mandal, Ranju, Dr; Le, Dung (2019). Online survey data for the 2017 Aesthetic value project (NESP 3.2.3, Griffith Institute for Tourism Research) [Dataset]. https://researchdata.edu.au/online-survey-2017-tourism-research/1440092
    Explore at:
    binAvailable download formats
    Dataset updated
    2019
    Dataset provided by
    eAtlas
    Authors
    Becken, Susanne, Professor; Connolly, Rod, Professor; Stantic, Bela, Professor; Scott, Noel, Professor; Mandal, Ranju, Dr; Le, Dung
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Time period covered
    Jan 28, 2017 - Jan 28, 2018
    Description

    This dataset consists of three data folders including all related documents of the online survey conducted within the NESP 3.2.3 project (Tropical Water Quality Hub) and a survey format document representing how the survey was designed. Apart from participants’ demographic information, the survey consists of three sections: conjoint analysis, picture rating and open question. Correspondent outcome of these three sections are downloaded from Qualtrics website and used for three different data analysis processes.

    Related data to the first section “conjoint analysis” is saved in the Conjoint analysis folder which contains two sub-folders. The first one includes a plan file of SAV. Format representing the design suggestion by SPSS orthogonal analysis for testing beauty factors and 9 photoshoped pictures used in the survey. The second (i.e. Final results) contains 1 SAV. file named “data1” which is the imported results of conjoint analysis section in SPSS, 1 SPS. file named “Syntax1” representing the code used to run conjoint analysis, 2 SAV. files as the output of conjoint analysis by SPSS, and 1 SPV file named “Final output” showing results of further data analysis by SPSS on the basis of utility and importance data.

    Related data to the second section “Picture rating” is saved into Picture rating folder including two subfolders. One subfolder contains 2500 pictures of Great Barrier Reef used in the rating survey section. These pictures are organised by named and stored in two folders named as “Survey Part 1” and “Survey Part 2” which are correspondent with two parts of the rating survey sections. The other subfolder “Rating results” consist of one XLSX. file representing survey results downloaded from Qualtric website.

    Finally, related data to the open question is saved in “Open question” folder. It contains one csv. file and one PDF. file recording participants’ answers to the open question as well as one PNG. file representing a screenshot of Leximancer analysis outcome.

    Methods: This dataset resulted from the input and output of an online survey regarding how people assess the beauty of Great Barrier Reef. This survey was designed for multiple purposes including three main sections: (1) conjoint analysis (ranking 9 photoshopped pictures to determine the relative importance weights of beauty attributes), (2) picture rating (2500 pictures to be rated) and (3) open question on the factors that makes a picture of the Great Barrier Reef beautiful in participants’ opinion (determining beauty factors from tourist perspective). Pictures used in this survey were downloaded from public sources such as websites of the Tourism and Events Queensland and Tropical Tourism North Queensland as well as tourist sharing sources (i.e. Flickr). Flickr pictures were downloaded using the key words “Great Barrier Reef”. About 10,000 pictures were downloaded in August and September 2017. 2,500 pictures were then selected based on several research criteria: (1) underwater pictures of GBR, (2) without humans, (3) viewed from 1-2 metres from objects and (4) of high resolution.

    The survey was created on Qualtrics website and launched on 4th October 2017 using Qualtrics survey service. Each participant rated 50 pictures randomly selected from the pool of 2500 survey pictures. 772 survey completions were recorded and 705 questionnaires were eligible for data analysis after filtering unqualified questionnaires. Conjoint analysis data was imported to IBM SPSS using SAV. format and the output was saved using SPV. format. Automatic aesthetic rating of 2500 Great Barrier Reef pictures –all these pictures are rated (1 – 10 scale) by at least 10 participants and this dataset was saved in a XLSX. file which is used to train and test an Artificial Intelligence (AI)-based system recognising and assessing the beauty of natural scenes. Answers of the open-question were saved in a XLSX. file and a PDF. file to be employed for theme analysis by Leximancer software.

    Further information can be found in the following publication: Becken, S., Connolly R., Stantic B., Scott N., Mandal R., Le D., (2018), Monitoring aesthetic value of the Great Barrier Reef by using innovative technologies and artificial intelligence, Griffith Institute for Tourism Research Report No 15.

    Format: The Online survey dataset includes one PDF file representing the survey format with all sections and questions. It also contains three subfolders, each has multiple files. The subfolder of Conjoint analysis contains an image of the 9 JPG. Pictures, 1 SAV. format file for the Orthoplan subroutine outcome and 5 outcome documents (i.e. 3 SAV. files, 1 SPS. file, 1 SPV. file). The subfolder of Picture rating contains a capture of the 2500 pictures used in the survey, 1 excel file for rating results. The subfolder of Open question includes 1 CSV. file, 1 PDF. file representing participants’ answers and one PNG. file for the analysis outcome.

    Data Dictionary:

    Card 1: Picture design option number 1 suggested by SPSS orthogonal analysis. Importance value: The relative importance weight of each beauty attribute calculated by SPSS conjoint analysis. Utility: Score reflecting influential valence and degree of each beauty attribute on beauty score. Syntax: Code used to run conjoint analysis by SPSS Leximancer: Specialised software for qualitative data analysis. Concept map: A map showing the relationship between concepts identified Q1_1: Beauty score of the picture Q1_1 by the correspondent participant (i.e. survey part 1) Q2.1_1: Beauty score of the picture Q2.1_1 by the correspondent participant (i.e. survey part 2) Conjoint _1: Ranking of the picture 1 designed for conjoint analysis by the correspondent participant

    References: Becken, S., Connolly R., Stantic B., Scott N., Mandal R., Le D., (2018), Monitoring aesthetic value of the Great Barrier Reef by using innovative technologies and artificial intelligence, Griffith Institute for Tourism Research Report No 15.

    Data Location:

    This dataset is filed in the eAtlas enduring data repository at: data esp3\3.2.3_Aesthetic-value-GBR

  4. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Di Zhou; Wenjia Zhu; Tao Sun; Yang Wang; Yi Chi; Tianlu Chen; Jingchao Lin (2023). Data_Sheet_1_iMAP: A Web Server for Metabolomics Data Integrative Analysis.PDF [Dataset]. http://doi.org/10.3389/fchem.2021.659656.s001

Data_Sheet_1_iMAP: A Web Server for Metabolomics Data Integrative Analysis.PDF

Related Article
Explore at:
pdfAvailable download formats
Dataset updated
Jun 1, 2023
Dataset provided by
Frontiers
Authors
Di Zhou; Wenjia Zhu; Tao Sun; Yang Wang; Yi Chi; Tianlu Chen; Jingchao Lin
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Metabolomics data analysis depends on the utilization of bioinformatics tools. To meet the evolving needs of metabolomics research, several integrated platforms have been developed. Our group has developed a desktop platform IP4M (integrated Platform for Metabolomics Data Analysis) which allows users to perform a nearly complete metabolomics data analysis in one-stop. With the extensive usage of IP4M, more and more demands were raised from users worldwide for a web version and a more customized workflow. Thus, iMAP (integrated Metabolomics Analysis Platform) was developed with extended functions, improved performances, and redesigned structures. Compared with existing platforms, iMAP has more methods and usage modes. A new module was developed with an automatic pipeline for train-test set separation, feature selection, and predictive model construction and validation. A new module was incorporated with sufficient editable parameters for network construction, visualization, and analysis. Moreover, plenty of plotting tools have been upgraded for highly customized publication-ready figures. Overall, iMAP is a good alternative tool with complementary functions to existing metabolomics data analysis platforms. iMAP is freely available for academic usage at https://imap.metaboprofile.cloud/ (License MPL 2.0).

Search
Clear search
Close search
Google apps
Main menu