Web traffic statistics for the several City-Parish websites, brla.gov, city.brla.gov, Red Stick Ready, GIS, Open Data etc. Information provided by Google Analytics.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Explore our detailed website traffic dataset featuring key metrics like page views, session duration, bounce rate, traffic source, and conversion rates.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The Google Merchandise Store sells Google branded merchandise. The data is typical of what you would see for an ecommerce website.
The sample dataset contains Google Analytics 360 data from the Google Merchandise Store, a real ecommerce store. The Google Merchandise Store sells Google branded merchandise. The data is typical of what you would see for an ecommerce website. It includes the following kinds of information:
Traffic source data: information about where website visitors originate. This includes data about organic traffic, paid search traffic, display traffic, etc. Content data: information about the behavior of users on the site. This includes the URLs of pages that visitors look at, how they interact with content, etc. Transactional data: information about the transactions that occur on the Google Merchandise Store website.
Fork this kernel to get started.
Banner Photo by Edho Pratama from Unsplash.
What is the total number of transactions generated per device browser in July 2017?
The real bounce rate is defined as the percentage of visits with a single pageview. What was the real bounce rate per traffic source?
What was the average number of product pageviews for users who made a purchase in July 2017?
What was the average number of product pageviews for users who did not make a purchase in July 2017?
What was the average total transactions per user that made a purchase in July 2017?
What is the average amount of money spent per session in July 2017?
What is the sequence of pages viewed?
https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy
The Report Covers Web Analytics Companies and It is Segmented by Application (Online Marketing & Marketing Automation, Mobile Analytics, Content Marketing, Social Media Management, E-Mail Marketing, and Other Applications), Offering (Solution and Services), End-User Vertical (Retail, Manufacturing, Information Technology, BFSI, Healthcare, Transportation & Logistics, and Other End-User Verticals), and Geography (North America, Europe, Asia Pacific, Latin America, and Middle East and Africa). The Market Sizes and Forecasts are Provided in Terms of Value in USD Billion for all the Above Segments.
This dataset provides the Austin Google Analytic. Google Analytics is a freemium web analytics service offered by Google that tracks and reports website traffic.
Web traffic statistics for the top 2000 most visited pages on nyc.gov by month.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This traffic dataset contains a balance size of encrypted malicious and legitimate traffic for encrypted malicious traffic detection and analysis. The dataset is a secondary csv feature data that is composed of six public traffic datasets.
Our dataset is curated based on two criteria: The first criterion is to combine widely considered public datasets which contain enough encrypted malicious or encrypted legitimate traffic in existing works, such as Malware Capture Facility Project datasets. The second criterion is to ensure the final dataset balance of encrypted malicious and legitimate network traffic.
Based on the criteria, 6 public datasets are selected. After data pre-processing, details of each selected public dataset and the size of different encrypted traffic are shown in the “Dataset Statistic Analysis Document”. The document summarized the malicious and legitimate traffic size we selected from each selected public dataset, the traffic size of each malicious traffic type, and the total traffic size of the composed dataset. From the table, we are able to observe that encrypted malicious and legitimate traffic equally contributes to approximately 50% of the final composed dataset.
The datasets now made available were prepared to aim at encrypted malicious traffic detection. Since the dataset is used for machine learning or deep learning model training, a sample of train and test sets are also provided. The train and test datasets are separated based on 1:4. Such datasets can be used for machine learning or deep learning model training and testing based on selected features or after processing further data pre-processing.
https://www.thebusinessresearchcompany.com/privacy-policyhttps://www.thebusinessresearchcompany.com/privacy-policy
The Network Traffic Analytics Market is projected to grow at 13.4% CAGR, reaching $6.22 Billion by 2029. Where is the industry heading next? Get the sample report now!
https://www.researchnester.comhttps://www.researchnester.com
The network traffic analytics market size was valued at USD 3.44 billion in 2024 and is likely to cross USD 13.2 billion by 2037, registering more than 10.9% CAGR during the forecast period i.e., between 2025-2037. North America industry is expected to account for largest revenue share of 35% by 2037, due to presence of two significant economies, including the USA and Canada.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Code:
Packet_Features_Generator.py & Features.py
To run this code:
pkt_features.py [-h] -i TXTFILE [-x X] [-y Y] [-z Z] [-ml] [-s S] -j
-h, --help show this help message and exit -i TXTFILE input text file -x X Add first X number of total packets as features. -y Y Add first Y number of negative packets as features. -z Z Add first Z number of positive packets as features. -ml Output to text file all websites in the format of websiteNumber1,feature1,feature2,... -s S Generate samples using size s. -j
Purpose:
Turns a text file containing lists of incomeing and outgoing network packet sizes into separate website objects with associative features.
Uses Features.py to calcualte the features.
startMachineLearning.sh & machineLearning.py
To run this code:
bash startMachineLearning.sh
This code then runs machineLearning.py in a tmux session with the nessisary file paths and flags
Options (to be edited within this file):
--evaluate-only to test 5 fold cross validation accuracy
--test-scaling-normalization to test 6 different combinations of scalers and normalizers
Note: once the best combination is determined, it should be added to the data_preprocessing function in machineLearning.py for future use
--grid-search to test the best grid search hyperparameters - note: the possible hyperparameters must be added to train_model under 'if not evaluateOnly:' - once best hyperparameters are determined, add them to train_model under 'if evaluateOnly:'
Purpose:
Using the .ml file generated by Packet_Features_Generator.py & Features.py, this program trains a RandomForest Classifier on the provided data and provides results using cross validation. These results include the best scaling and normailzation options for each data set as well as the best grid search hyperparameters based on the provided ranges.
Data
Encrypted network traffic was collected on an isolated computer visiting different Wikipedia and New York Times articles, different Google search queres (collected in the form of their autocomplete results and their results page), and different actions taken on a Virtual Reality head set.
Data for this experiment was stored and analyzed in the form of a txt file for each experiment which contains:
First number is a classification number to denote what website, query, or vr action is taking place.
The remaining numbers in each line denote:
The size of a packet,
and the direction it is traveling.
negative numbers denote incoming packets
positive numbers denote outgoing packets
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Preliminary research efforts regarding Social Media Platforms and their contribution to website traffic in LAMs. Through the Similar Web API, the leading social networks (Facebook, Twitter, Youtube, Instagram, Reddit, Pinterest, LinkedIn) that drove traffic to each one of the 220 cases in our dataset were identified and analyzed in the first sheet. Aggregated results proved that Facebook platform was responsible for 46.1% of social traffic (second sheet).
https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy
The report covers Global Network Traffic Analysis Market Share and it is segmented by Deployment (On-premise and Cloud-based), End-user Vertical (BFSI, IT and Telecom, Government, Energy and Power, and Retail), and Geography (North America, Europe, Asia-Pacific, Latin America, and Middle East and Africa). The market sizes and forecasts are provided in value (in USD million) for all the above segments.
In January 2024, Buzzfeed.com saw approximately 44.2 million visits from users worldwide. This represents a decrease from the previous year, when the entertainment portal reached between 50 and 60 million monthly visits throughout the middle of 2022 and 2023.
In March 2024, search platform Google.com generated approximately 85.5 billion visits, down from 87 billion platform visits in October 2023. Google is a global search platform and one of the biggest online companies worldwide.
https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy
The global website visitor tracking software market is experiencing robust growth, driven by the increasing need for businesses to understand online customer behavior and optimize their digital strategies. The market, estimated at $5 billion in 2025, is projected to expand at a Compound Annual Growth Rate (CAGR) of 15% from 2025 to 2033, reaching approximately $15 billion by 2033. This expansion is fueled by several key factors, including the rising adoption of digital marketing strategies, the growing importance of data-driven decision-making, and the increasing sophistication of website visitor tracking tools. Cloud-based solutions dominate the market due to their scalability, accessibility, and cost-effectiveness, particularly appealing to Small and Medium-sized Enterprises (SMEs). However, large enterprises continue to invest significantly in on-premise solutions for enhanced data security and control. The market is highly competitive, with numerous established players and emerging startups offering a range of features and functionalities. Technological advancements, such as AI-powered analytics and enhanced integration with other marketing tools, are shaping the future of the market. The market's geographical distribution reflects the global digital landscape. North America, with its mature digital economy and high adoption rates, holds a significant market share. However, regions like Asia-Pacific are showing rapid growth, driven by increasing internet penetration and digitalization across various industries. Despite the overall positive outlook, challenges such as data privacy regulations and the increasing complexity of website tracking technology are influencing market dynamics. The ongoing competition among vendors necessitates continuous innovation and the development of more user-friendly and insightful tools. The future growth of the website visitor tracking software market is promising, fueled by the continuing importance of data-driven decision-making within marketing and business strategies. A key factor will be the ongoing adaptation to evolving privacy regulations and user expectations.
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The global website analytics market, encompassing solutions for large enterprises and SMEs, is poised for significant growth. While the provided data lacks specific market size and CAGR figures, a reasonable estimation based on industry trends suggests a 2025 market size of approximately $15 billion, experiencing a compound annual growth rate (CAGR) of 12% from 2025 to 2033. This robust growth is fueled by several key drivers: the increasing reliance on data-driven decision-making across businesses, the escalating need for enhanced website performance optimization, and the growing adoption of sophisticated analytics tools offering deeper insights into user behavior and conversion rates. Market segmentation reveals strong demand across diverse analytics types, including product, traffic, and sales analytics. The competitive landscape is intensely dynamic, with established players like Google, SEMrush, and SimilarWeb vying for market share alongside emerging innovative companies like Owletter and TrendSource. These companies are constantly innovating to provide more comprehensive and user-friendly analytics platforms, leading to increased competition. This competitive pressure fosters innovation, but also necessitates strategic differentiation, focusing on specific niche markets or offering unique features to attract and retain customers. The market’s geographic distribution shows significant traction in North America and Europe, but emerging markets in Asia Pacific are also exhibiting substantial growth potential, driven by increasing internet penetration and digital transformation initiatives. While data security concerns and the complexity of implementing analytics tools present some restraints, the overall market outlook remains highly positive, promising considerable opportunities for market participants in the coming years.
https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/
Web Analytics Market Valuation – 2024-2031
Web Analytics Market was valued at USD 6.16 Billion in 2024 and is projected to reach USD 13.6 Billion by 2031, growing at a CAGR of 18.58% from 2024 to 2031.
Web Analytics Market Drivers
Data-Driven Decision Making: Businesses increasingly rely on data-driven insights to optimize their online strategies. Web analytics provides valuable data on website traffic, user behavior, and conversion rates, enabling data-driven decision-making.
E-commerce Growth: The rapid growth of e-commerce has fueled the demand for web analytics tools to track online sales, customer behavior, and marketing campaign effectiveness.
Mobile Dominance: The increasing use of mobile devices for internet browsing has made mobile analytics a crucial aspect of web analytics. Businesses need to understand how users interact with their websites and apps on mobile devices.
Web Analytics Market Restraints
Data Privacy and Security Concerns: As data privacy regulations become stricter, businesses must ensure that they collect and process user data ethically and securely.
Complex Web Analytics Tools: Some web analytics tools can be complex to implement and use, requiring technical expertise.
As of March 2024, click.appcast.io accounted for 8.54 percent of referral traffic to LinkedIn.com. LinkedIn's second-largest referral traffic driver was statics.teams.cdn.office.net, which generated 7.89 percent of referral traffic to the professional networking platform.
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
Market Analysis for Network Traffic Analysis Tools The global Network Traffic Analysis (NTA) Tool market is projected to reach a valuation of USD XXX million by 2033, exhibiting a CAGR of XX% during the forecast period (2025-2033). The rising need to monitor and secure network traffic, coupled with increased adoption of cloud-based and hybrid network environments, is driving the market growth. Key industry players include Cisco, ExtraHop, ManageEngine, Netreo, Noction, Packetbeat, SolarWinds, and Splunk. The NTA tool market is segmented by type (cloud-based and on-premises) and application (BFSI, healthcare, government, retail, and others). Cloud-based solutions are gaining traction due to their scalability, flexibility, and cost-effectiveness. Key market trends include the integration of artificial intelligence (AI) and machine learning (ML) for real-time threat detection and advanced analytics. However, data privacy concerns and deployment costs may pose restraints. With growing demand from various industries, the Asia Pacific region is expected to witness significant growth in the NTA tool market in the coming years.
From February to July 2024, February was the month that had the most website traffic to ebay.com. The consumer-to-consumer (C2C) e-commerce website reached a total of over 693 million visits in that month, with the majority being from mobile devices. Popularity on multiple fronts Although eBay is popular on mobile devices, monthly downloads of its mobile app have been trending in the wrong direction since peaking in June 2020 at 5.16 million. Still, in April 2023, ebay.com was the second most popular e-commerce and shopping website worldwide, accounting for more than three percent of visits to sites in this category. Big numbers declining In the second quarter of 2023, eBay’s gross merchandise volume (GMV) amounted to nearly 18.2 billion U.S. dollars. That is no small number, but is only a small increase compared to the lowest GMV recorded by the company since the first quarter of 2020 - 17.7 billion U.S. dollars in the third quarter of 2022 - and that’s not the only figure on the decline for eBay. The e-commerce platform had approximately 138 million active buyers in the second quarter of 2022, and a year later that number was down 4.3 percent to 132 million.
Web traffic statistics for the several City-Parish websites, brla.gov, city.brla.gov, Red Stick Ready, GIS, Open Data etc. Information provided by Google Analytics.