DataForSEO Labs API offers three powerful keyword research algorithms and historical keyword data:
• Related Keywords from the “searches related to” element of Google SERP. • Keyword Suggestions that match the specified seed keyword with additional words before, after, or within the seed key phrase. • Keyword Ideas that fall into the same category as specified seed keywords. • Historical Search Volume with current cost-per-click, and competition values.
Based on in-market categories of Google Ads, you can get keyword ideas from the relevant Categories For Domain and discover relevant Keywords For Categories. You can also obtain Top Google Searches with AdWords and Bing Ads metrics, product categories, and Google SERP data.
You will find well-rounded ways to scout the competitors:
• Domain Whois Overview with ranking and traffic info from organic and paid search. • Ranked Keywords that any domain or URL has positions for in SERP. • SERP Competitors and the rankings they hold for the keywords you specify. • Competitors Domain with a full overview of its rankings and traffic from organic and paid search. • Domain Intersection keywords for which both specified domains rank within the same SERPs. • Subdomains for the target domain you specify along with the ranking distribution across organic and paid search. • Relevant Pages of the specified domain with rankings and traffic data. • Domain Rank Overview with ranking and traffic data from organic and paid search. • Historical Rank Overview with historical data on rankings and traffic of the specified domain from organic and paid search. • Page Intersection keywords for which the specified pages rank within the same SERP.
All DataForSEO Labs API endpoints function in the Live mode. This means you will be provided with the results in response right after sending the necessary parameters with a POST request.
The limit is 2000 API calls per minute, however, you can contact our support team if your project requires higher rates.
We offer well-rounded API documentation, GUI for API usage control, comprehensive client libraries for different programming languages, free sandbox API testing, ad hoc integration, and deployment support.
We have a pay-as-you-go pricing model. You simply add funds to your account and use them to get data. The account balance doesn't expire.
https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/
Web Analytics Market was valued at USD 6.16 Billion in 2024 and is projected to reach USD 13.6 Billion by 2032, growing at a CAGR of 18.58% from 2026 to 2032.
Web Analytics Market Drivers
Data-Driven Decision Making: Businesses increasingly rely on data-driven insights to optimize their online strategies. Web analytics provides valuable data on website traffic, user behavior, and conversion rates, enabling data-driven decision-making.
E-commerce Growth: The rapid growth of e-commerce has fueled the demand for web analytics tools to track online sales, customer behavior, and marketing campaign effectiveness.
Mobile Dominance: The increasing use of mobile devices for internet browsing has made mobile analytics a crucial aspect of web analytics. Businesses need to understand how users interact with their websites and apps on mobile devices.
analytics tools can be complex to implement and use, requiring technical expertise.
As of March 2025, Google represented 79.1 percent of the global online search engine market on desktop devices. Despite being much ahead of its competitors, this represents the lowest share ever recorded by the search engine in these devices for over two decades. Meanwhile, its long-time competitor Bing accounted for 12.21 percent, as tools like Yahoo and Yandex held shares of over 2.9 percent each. Google and the global search market Ever since the introduction of Google Search in 1997, the company has dominated the search engine market, while the shares of all other tools has been rather lopsided. The majority of Google revenues are generated through advertising. Its parent corporation, Alphabet, was one of the biggest internet companies worldwide as of 2024, with a market capitalization of 2.02 trillion U.S. dollars. The company has also expanded its services to mail, productivity tools, enterprise products, mobile devices, and other ventures. As a result, Google earned one of the highest tech company revenues in 2024 with roughly 348.16 billion U.S. dollars. Search engine usage in different countries Google is the most frequently used search engine worldwide. But in some countries, its alternatives are leading or competing with it to some extent. As of the last quarter of 2023, more than 63 percent of internet users in Russia used Yandex, whereas Google users represented little over 33 percent. Meanwhile, Baidu was the most used search engine in China, despite a strong decrease in the percentage of internet users in the country accessing it. In other countries, like Japan and Mexico, people tend to use Yahoo along with Google. By the end of 2024, nearly half of the respondents in Japan said that they had used Yahoo in the past four weeks. In the same year, over 21 percent of users in Mexico said they used Yahoo.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Monthly analytics reports for the Brisbane City Council website
Information regarding the sessions for Brisbane City Council website during the month including search terms used.
Web Analytics Market Size 2025-2029
The web analytics market size is forecast to increase by USD 3.63 billion, at a CAGR of 15.4% between 2024 and 2029.
The market is experiencing significant growth, driven by the rising preference for online shopping and the increasing adoption of cloud-based solutions. The shift towards e-commerce is fueling the demand for advanced web analytics tools that enable businesses to gain insights into customer behavior and optimize their digital strategies. Furthermore, cloud deployment models offer flexibility, scalability, and cost savings, making them an attractive option for businesses of all sizes. However, the market also faces challenges associated with compliance to data privacy and regulations. With the increasing amount of data being generated and collected, ensuring data security and privacy is becoming a major concern for businesses.
Regulatory compliance, such as GDPR and CCPA, adds complexity to the implementation and management of web analytics solutions. Companies must navigate these challenges effectively to maintain customer trust and avoid potential legal issues. To capitalize on market opportunities and address these challenges, businesses should invest in robust web analytics solutions that prioritize data security and privacy while providing actionable insights to inform strategic decision-making and enhance customer experiences.
What will be the Size of the Web Analytics Market during the forecast period?
Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
Request Free Sample
The market continues to evolve, with dynamic market activities unfolding across various sectors. Entities such as reporting dashboards, schema markup, conversion optimization, session duration, organic traffic, attribution modeling, conversion rate optimization, call to action, content calendar, SEO audits, website performance optimization, link building, page load speed, user behavior tracking, and more, play integral roles in this ever-changing landscape. Data visualization tools like Google Analytics and Adobe Analytics provide valuable insights into user engagement metrics, helping businesses optimize their content strategy, website design, and technical SEO. Goal tracking and keyword research enable marketers to measure the return on investment of their efforts and refine their content marketing and social media marketing strategies.
Mobile optimization, form optimization, and landing page optimization are crucial aspects of website performance optimization, ensuring a seamless user experience across devices and improving customer acquisition cost. Search console and page speed insights offer valuable insights into website traffic analysis and help businesses address technical issues that may impact user behavior. Continuous optimization efforts, such as multivariate testing, data segmentation, and data filtering, allow businesses to fine-tune their customer journey mapping and cohort analysis. Search engine optimization, both on-page and off-page, remains a critical component of digital marketing, with backlink analysis and page authority playing key roles in improving domain authority and organic traffic.
The ongoing integration of user behavior tracking, click-through rate, and bounce rate into marketing strategies enables businesses to gain a deeper understanding of their audience and optimize their customer experience accordingly. As market dynamics continue to evolve, the integration of these tools and techniques into comprehensive digital marketing strategies will remain essential for businesses looking to stay competitive in the digital landscape.
How is this Web Analytics Industry segmented?
The web analytics industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Deployment
Cloud-based
On-premises
Application
Social media management
Targeting and behavioral analysis
Display advertising optimization
Multichannel campaign analysis
Online marketing
Component
Solutions
Services
Geography
North America
US
Canada
Europe
France
Germany
Italy
UK
APAC
China
India
Japan
South Korea
Rest of World (ROW)
.
By Deployment Insights
The cloud-based segment is estimated to witness significant growth during the forecast period.
In today's digital landscape, web analytics plays a pivotal role in driving business growth and optimizing online performance. Cloud-based deployment of web analytics is a game-changer, enabling on-demand access to computing resources for data analysis. This model streamlines business intelligence processes by collecting,
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The Google Merchandise Store sells Google branded merchandise. The data is typical of what you would see for an ecommerce website.
The sample dataset contains Google Analytics 360 data from the Google Merchandise Store, a real ecommerce store. The Google Merchandise Store sells Google branded merchandise. The data is typical of what you would see for an ecommerce website. It includes the following kinds of information:
Traffic source data: information about where website visitors originate. This includes data about organic traffic, paid search traffic, display traffic, etc. Content data: information about the behavior of users on the site. This includes the URLs of pages that visitors look at, how they interact with content, etc. Transactional data: information about the transactions that occur on the Google Merchandise Store website.
Fork this kernel to get started.
Banner Photo by Edho Pratama from Unsplash.
What is the total number of transactions generated per device browser in July 2017?
The real bounce rate is defined as the percentage of visits with a single pageview. What was the real bounce rate per traffic source?
What was the average number of product pageviews for users who made a purchase in July 2017?
What was the average number of product pageviews for users who did not make a purchase in July 2017?
What was the average total transactions per user that made a purchase in July 2017?
What is the average amount of money spent per session in July 2017?
What is the sequence of pages viewed?
Baidu Search Index is a big data analytics tool developed by Baidu, the most popular search engine in China, to reflect changes in search popularity for specific keywords.
Based on an ecosystem partnership with Baidu Search Index, Datago has direct access to keyword search index data from Baidu Index’s database. BSIA-Investor selects A-share stock codes in different formats as keywords, aggregates the corresponding Baidu Index data, and provides insights into the online search interest of Chinese investors for over 5,000 A-share stocks. This data helps investors better understand the market sentiment of millions of Chinese investors toward A-shares, including:
Investor Interest Measurement: A direct reflection of how Chinese investors’ interest in the A-share market fluctuates.
Cross-Comparison of Listed Companies: Search index data offers strong comparability, enabling users to assess differences in market attention among various listed companies and identify high-interest stocks.
Trend Tracking & Market Insights: By monitoring changes in the search popularity of individual stocks, investors can capture market hotspots, gain timely insights into potential investment opportunities, and leverage data for informed decision-making.
Coverage: 5000+ A-share stocks
History: 2016-01-01
Frequency: Daily
https://www.ibisworld.com/about/termsofuse/https://www.ibisworld.com/about/termsofuse/
Search engines, which collect, organize and display knowledge of the internet, are the backbone of the information age and have helped popularize the ad-supported attention economy that prevails throughout the internet. From 2019 to 2024, spending on internet advertising has maintained strong momentum as consumer demand for internet access continued to surge, driven by the adoption of LTE, 5G and unlimited mobile data plans. Despite COVID-19 depressing total advertising expenditure, digital advertising continued to grow as consumers practically lived online while stay-at-home orders were in place. As a result, search engine revenue from advertising is slated to mount at a CAGR of 10.4% to $287.5 billion, including an anticipated hike of 8.4% in 2024, with profit at 18.7%. The search engine industry is fundamentally differentiated from the rest of the economy by its advertising sales framework, market aggregation and high interconnection with other industries. While search is a consumer product, search revenue comes from a platform's desirability to advertisers, not users. Search platforms must balance providing the best search experience while integrating as many advertisements as possible. This difficult balance is challenging to achieve because advertising dollars tend to scale best on the leading search platform, increasing aggregation forces for search providers. The market leaders in search, Google and Microsoft, have met this balance by using advertising revenue to grow a suite of services designed to collect extensive behavior information on and off the search website. This data then targets ads to hyper-specific markets, funding the search business model. As the number of hours spent on the internet continues to mount, search engine revenue is poised to climb at a CAGR of 7.1% to $404.9 billion through the end of 2029. Advertisers will rely increasingly on search engine marketing due to its cost-effectiveness and efficiency advantages over traditional media. With proper analytics software installed, marketers can track which terms, advertisements and websites are the most effective, enabling incremental real-time tweaks and improvements in advertising campaigns. Artificial intelligence has promised to change the purpose of search from navigation to finding answers, which will change the structure of the internet, just as search engine providers have done many times before.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is available on Brisbane City Council’s open data website – data.brisbane.qld.gov.au. The site provides additional features for viewing and interacting with the data and for downloading the data in various formats.
Monthly analytics reports for the Brisbane City Council website
Information regarding the sessions for Brisbane City Council website during the month including search terms used.
As of March 2025, Google continued to dominate the global search engine industry by far, with an 89.62 percent market share. However, this stronghold may be showing signs of erosion, with its share across all devices dipping to its lowest point in over two decades. Bing, Google's closest competitor, currently holds a market share of 4.01 percent across, while Russia-based Yandex hikes to the third place with a share of around 2.51 percent. Competitive landscape and regional variations While Google's overall dominance persists, other search engines carve out niches in various markets and platforms. Bing holds a 12.21 percent market share across desktop devices worldwide, as Yandex and Baidu have found success inside and outside of their home markets. Yandex is used by over 63 percent of Russian internet users, but Baidu has seen its market share significantly in China As regional variations highlight the importance of local players in challenging Google's global supremacy, the company is likely to face more challenges with the AI-powered online search trend and increasing regulatory scrutiny. Search behavior and antitrust concerns Despite facing more competition, Google remains deeply ingrained in users' online habits. In 2024, "Google" itself was the most popular search query on its own platform, followed by "YouTube" - another Google-owned property. This self-reinforcing ecosystem has drawn scrutiny from regulators, with the European Commission imposing millionaire antitrust fines on the company. As its influence extends beyond search into various online services, the company's market position continues to be a subject of debate among industry watchdogs and authorities worldwide.
This asset is a filter (derived view of a dataset) based on the system dataset, 'Site Analytics: Catalog Search Terms' which is automatically generated by the City of Austin Open Data Portal (data.austintexas.gov). It provides data on the words and phrases entered by site users of in search bars that look through the data catalog for relevant information. Catalog searches using the Discovery API are not included.
Each row in the dataset indicates the number of catalog searches made using the search term from the specified user segment during the noted hour.
Data are segmented into the following user types: • site member: users who have logged in and have been granted a role on the domain • community user: users who have logged in but do not have a role on the domain • anonymous: users who have not logged in to the domain
Data are updated by a system process at least once a day, if there is new data to record.
Data provided by: Tyler Technologies Creation date of data source: January 31, 2020
TagX Web Browsing Clickstream Data: Unveiling Digital Behavior Across North America and EU Unique Insights into Online User Behavior TagX Web Browsing clickstream Data offers an unparalleled window into the digital lives of 1 million users across North America and the European Union. This comprehensive dataset stands out in the market due to its breadth, depth, and stringent compliance with data protection regulations. What Makes Our Data Unique?
Extensive Geographic Coverage: Spanning two major markets, our data provides a holistic view of web browsing patterns in developed economies. Large User Base: With 300K active users, our dataset offers statistically significant insights across various demographics and user segments. GDPR and CCPA Compliance: We prioritize user privacy and data protection, ensuring that our data collection and processing methods adhere to the strictest regulatory standards. Real-time Updates: Our clickstream data is continuously refreshed, providing up-to-the-minute insights into evolving online trends and user behaviors. Granular Data Points: We capture a wide array of metrics, including time spent on websites, click patterns, search queries, and user journey flows.
Data Sourcing: Ethical and Transparent Our web browsing clickstream data is sourced through a network of partnered websites and applications. Users explicitly opt-in to data collection, ensuring transparency and consent. We employ advanced anonymization techniques to protect individual privacy while maintaining the integrity and value of the aggregated data. Key aspects of our data sourcing process include:
Voluntary user participation through clear opt-in mechanisms Regular audits of data collection methods to ensure ongoing compliance Collaboration with privacy experts to implement best practices in data anonymization Continuous monitoring of regulatory landscapes to adapt our processes as needed
Primary Use Cases and Verticals TagX Web Browsing clickstream Data serves a multitude of industries and use cases, including but not limited to:
Digital Marketing and Advertising:
Audience segmentation and targeting Campaign performance optimization Competitor analysis and benchmarking
E-commerce and Retail:
Customer journey mapping Product recommendation enhancements Cart abandonment analysis
Media and Entertainment:
Content consumption trends Audience engagement metrics Cross-platform user behavior analysis
Financial Services:
Risk assessment based on online behavior Fraud detection through anomaly identification Investment trend analysis
Technology and Software:
User experience optimization Feature adoption tracking Competitive intelligence
Market Research and Consulting:
Consumer behavior studies Industry trend analysis Digital transformation strategies
Integration with Broader Data Offering TagX Web Browsing clickstream Data is a cornerstone of our comprehensive digital intelligence suite. It seamlessly integrates with our other data products to provide a 360-degree view of online user behavior:
Social Media Engagement Data: Combine clickstream insights with social media interactions for a holistic understanding of digital footprints. Mobile App Usage Data: Cross-reference web browsing patterns with mobile app usage to map the complete digital journey. Purchase Intent Signals: Enrich clickstream data with purchase intent indicators to power predictive analytics and targeted marketing efforts. Demographic Overlays: Enhance web browsing data with demographic information for more precise audience segmentation and targeting.
By leveraging these complementary datasets, businesses can unlock deeper insights and drive more impactful strategies across their digital initiatives. Data Quality and Scale We pride ourselves on delivering high-quality, reliable data at scale:
Rigorous Data Cleaning: Advanced algorithms filter out bot traffic, VPNs, and other non-human interactions. Regular Quality Checks: Our data science team conducts ongoing audits to ensure data accuracy and consistency. Scalable Infrastructure: Our robust data processing pipeline can handle billions of daily events, ensuring comprehensive coverage. Historical Data Availability: Access up to 24 months of historical data for trend analysis and longitudinal studies. Customizable Data Feeds: Tailor the data delivery to your specific needs, from raw clickstream events to aggregated insights.
Empowering Data-Driven Decision Making In today's digital-first world, understanding online user behavior is crucial for businesses across all sectors. TagX Web Browsing clickstream Data empowers organizations to make informed decisions, optimize their digital strategies, and stay ahead of the competition. Whether you're a marketer looking to refine your targeting, a product manager seeking to enhance user experience, or a researcher exploring digital trends, our cli...
As of June 2024, global Google searches for the word "ChatGPT" increased again after a slight decline by the end of 2024. Interest in the chatbot, developed by the U.S.-based OpenAI and launched in November 2022, started rising in the week ending December 3, 2022. Recently, growing demand for information on ChatGPT made the keyword hit a peak of 100 index points during the week ending on June 2, 2024. ChatGPT, which stands for Chat Generative Pre-trained Transformer, is a chatbot and AI-powered auto-generative text system able to give human-sounding replies and reproduce human-like interactions when prompted.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Code:
Packet_Features_Generator.py & Features.py
To run this code:
pkt_features.py [-h] -i TXTFILE [-x X] [-y Y] [-z Z] [-ml] [-s S] -j
-h, --help show this help message and exit -i TXTFILE input text file -x X Add first X number of total packets as features. -y Y Add first Y number of negative packets as features. -z Z Add first Z number of positive packets as features. -ml Output to text file all websites in the format of websiteNumber1,feature1,feature2,... -s S Generate samples using size s. -j
Purpose:
Turns a text file containing lists of incomeing and outgoing network packet sizes into separate website objects with associative features.
Uses Features.py to calcualte the features.
startMachineLearning.sh & machineLearning.py
To run this code:
bash startMachineLearning.sh
This code then runs machineLearning.py in a tmux session with the nessisary file paths and flags
Options (to be edited within this file):
--evaluate-only to test 5 fold cross validation accuracy
--test-scaling-normalization to test 6 different combinations of scalers and normalizers
Note: once the best combination is determined, it should be added to the data_preprocessing function in machineLearning.py for future use
--grid-search to test the best grid search hyperparameters - note: the possible hyperparameters must be added to train_model under 'if not evaluateOnly:' - once best hyperparameters are determined, add them to train_model under 'if evaluateOnly:'
Purpose:
Using the .ml file generated by Packet_Features_Generator.py & Features.py, this program trains a RandomForest Classifier on the provided data and provides results using cross validation. These results include the best scaling and normailzation options for each data set as well as the best grid search hyperparameters based on the provided ranges.
Data
Encrypted network traffic was collected on an isolated computer visiting different Wikipedia and New York Times articles, different Google search queres (collected in the form of their autocomplete results and their results page), and different actions taken on a Virtual Reality head set.
Data for this experiment was stored and analyzed in the form of a txt file for each experiment which contains:
First number is a classification number to denote what website, query, or vr action is taking place.
The remaining numbers in each line denote:
The size of a packet,
and the direction it is traveling.
negative numbers denote incoming packets
positive numbers denote outgoing packets
Figure 4 Data
This data uses specific lines from the Virtual Reality.txt file.
The action 'LongText Search' refers to a user searching for "Saint Basils Cathedral" with text in the Wander app.
The action 'ShortText Search' refers to a user searching for "Mexico" with text in the Wander app.
The .xlsx and .csv file are identical
Each file includes (from right to left):
The origional packet data,
each line of data organized from smallest to largest packet size in order to calculate the mean and standard deviation of each packet capture,
and the final Cumulative Distrubution Function (CDF) caluclation that generated the Figure 4 Graph.
Success.ai's Web and Search Trends Intent Data equips businesses with the cutting-edge capability to track and analyze online behaviors and search engine data effectively. This service is essential for understanding current market trends, optimizing advertising strategies, and enhancing B2B marketing efforts. By capturing and analyzing data from across the web, including search engine behaviors and purchase intent signals, Success.ai offers invaluable insights that can drastically improve your strategic outcomes.
Harness the Power of Web Search Data: Gain access to vast amounts of web search data to understand what your potential customers are searching for and how they interact with the web. This information is crucial for refining SEO strategies, improving website content, and creating more engaging user experiences.
Advanced Analysis of Online Search Trends: Stay ahead of the competition by leveraging detailed insights into online search trends. Success.ai helps you identify emerging trends, monitor industry movements, and anticipate market changes with precision.
Drive Marketing and Advertising Success: Utilize detailed search trend data to tailor your marketing and advertising campaigns. By understanding the specific interests and needs of your target audience, you can create more effective campaigns that resonate with potential customers and result in higher conversion rates.
B2B Intent Data to Fuel Sales Strategies: Our B2B intent data provides a deep dive into the purchase intentions of businesses, helping sales teams prioritize leads that show a high likelihood of conversion. This targeted approach ensures that your sales efforts are focused and efficient.
Key Benefits of Choosing Success.ai:
Use Cases for Success.ai's Web Search and Intent Data:
Get started with Success.ai today to leverage our advanced web and search trends intent data, and take your business to new heights with insights that drive real results.
Contact us now to learn more about our services and how we can help you capitalize on the latest online trends, for the best possible price.
An interactive dashboard that showcases the City of Austin Open Data Portal (data.austintexas.gov) web traffic and search-term performance metrics. *City of Austin Open Data Terms of Use https://data.austintexas.gov/stories/s/ranj‐cccq
https://www.ibisworld.com/about/termsofuse/https://www.ibisworld.com/about/termsofuse/
The Search Engine industry is highly concentrated, with three companies controlling almost the entire industry; the largest company, Alphabet Inc., has a market share greater than 96%. Search engines provide web portals that generate and maintain extensive databases of internet addresses. Industry companies generate most, if not all, of their revenue from advertising. Technological growth has resulted in more households being connected to the Internet, and a boom in e-commerce has made the industry increasingly innovative. Over the past decade, a climb in the percentage of households with internet access has supported revenue growth, while increasing technological integration with daily life has increased demand for industry services. A greater proportion of transactions being carried out online has driven innovation in targeted digital advertising, with declines in rival advertising formats like print media and television increasing the focus on digital marketing as a core strategy. Industry revenue is expected to increase at a compound annual rate of 4.7%, to reach £5.1 billion over the five years through 2024-25. Revenue is forecast to climb by 4.7% in 2024-25. Industry profit has remained high, expanding to 34.2% in 2024-25. The rise of the mobile advertising market and the proliferation of mobile devices mean there are plenty of opportunities for search engines, which are expected to capitalise on these trends further moving forward. Smartphones could disrupt the industry's status quo, as the rising popularity of devices that do not use Google as the default engine benefits other search providers. Technological advancements that incorporate user data are anticipated to make it easier to tailor advertisements and develop new ways of using consumer data. Industry revenue is forecast to jump at a compound annual rate of 6% over the five years through 2029-30, to reach £6.8 billion.
https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy
The Search as a Service (SaaS) market is experiencing robust growth, driven by the increasing demand for advanced search capabilities across various industries. Businesses are increasingly adopting SaaS solutions to enhance their search functionalities, improve user experience, and gain valuable insights from their data. This shift is fueled by the limitations of traditional, on-premise search solutions, which often lack scalability, flexibility, and the advanced features offered by cloud-based SaaS platforms. The market is segmented by deployment (public, private, and hybrid cloud) and user type (large enterprises and SMEs), with large enterprises currently dominating due to their higher budgets and more complex search needs. However, SMEs are rapidly adopting SaaS solutions as they become more affordable and accessible. Key players such as Amazon Web Services, IBM, Google, and Microsoft are driving innovation and competition, resulting in a wide range of options available to businesses of all sizes. The market's growth is further facilitated by increasing adoption of AI and machine learning in search algorithms, enhancing search accuracy and relevance. This leads to improved customer engagement and better business outcomes. Geographic distribution reveals a strong presence in North America and Europe, driven by early adoption and advanced technological infrastructure. However, Asia Pacific is projected to experience significant growth in the coming years due to increasing digitalization and expanding internet penetration. While data privacy concerns and security challenges represent potential restraints, ongoing advancements in security technologies and robust compliance frameworks are mitigating these risks. The forecast for the Search as a Service market indicates a sustained period of high growth, driven by factors such as increasing cloud adoption, rising demand for advanced search analytics, and the growing need for efficient data management across various industries, including e-commerce, healthcare, and finance. The continued innovation in AI and machine learning within search functionalities will only accelerate this expansion.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Five files, one of which is a ZIP archive, containing data that support the findings of this study. PDF file "IA screenshots CSU Libraries search config" contains screenshots captured from the Internet Archive's Wayback Machine for all 24 CalState libraries' homepages for years 2017 - 2019. Excel file "CCIHE2018-PublicDataFile" contains Carnegie Classifications data from the Indiana University Center for Postsecondary Research for all of the CalState campuses from 2018. CSV file "2017-2019_RAW" contains the raw data exported from Ex Libris Primo Analytics (OBIEE) for all 24 CalState libraries for calendar years 2017 - 2019. CSV file "clean_data" contains the cleaned data from Primo Analytics which was used for all subsequent analysis such as charting and import into SPSS for statistical testing. ZIP archive file "NonparametricStatisticalTestsFromSPSS" contains 23 SPSS files [.spv format] reporting the results of testing conducted in SPSS. This archive includes things such as normality check, descriptives, and Kruskal-Wallis H-test results.
DataForSEO Labs API offers three powerful keyword research algorithms and historical keyword data:
• Related Keywords from the “searches related to” element of Google SERP. • Keyword Suggestions that match the specified seed keyword with additional words before, after, or within the seed key phrase. • Keyword Ideas that fall into the same category as specified seed keywords. • Historical Search Volume with current cost-per-click, and competition values.
Based on in-market categories of Google Ads, you can get keyword ideas from the relevant Categories For Domain and discover relevant Keywords For Categories. You can also obtain Top Google Searches with AdWords and Bing Ads metrics, product categories, and Google SERP data.
You will find well-rounded ways to scout the competitors:
• Domain Whois Overview with ranking and traffic info from organic and paid search. • Ranked Keywords that any domain or URL has positions for in SERP. • SERP Competitors and the rankings they hold for the keywords you specify. • Competitors Domain with a full overview of its rankings and traffic from organic and paid search. • Domain Intersection keywords for which both specified domains rank within the same SERPs. • Subdomains for the target domain you specify along with the ranking distribution across organic and paid search. • Relevant Pages of the specified domain with rankings and traffic data. • Domain Rank Overview with ranking and traffic data from organic and paid search. • Historical Rank Overview with historical data on rankings and traffic of the specified domain from organic and paid search. • Page Intersection keywords for which the specified pages rank within the same SERP.
All DataForSEO Labs API endpoints function in the Live mode. This means you will be provided with the results in response right after sending the necessary parameters with a POST request.
The limit is 2000 API calls per minute, however, you can contact our support team if your project requires higher rates.
We offer well-rounded API documentation, GUI for API usage control, comprehensive client libraries for different programming languages, free sandbox API testing, ad hoc integration, and deployment support.
We have a pay-as-you-go pricing model. You simply add funds to your account and use them to get data. The account balance doesn't expire.