82 datasets found
  1. g

    Web based mapping, GIS and image processing: the AGSO perspective

    • ecat.ga.gov.au
    Updated Jul 3, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Web based mapping, GIS and image processing: the AGSO perspective [Dataset]. https://ecat.ga.gov.au/geonetwork/eng/search?keyword=image%20processing
    Explore at:
    Dataset updated
    Jul 3, 2024
    Description

    The Australian Geological Survey Organisation (AGSO) presents its solutions to mapping, GIS and image processing on the Internet. Software used is based on commercial and open source products. A distributed web mapping system is demonstrated, and concepts of distributed web mapping discussed. A model and prototype system for online delivery of satellite image data is presented. AGSO has been providing Internet access to spatial data since 1996. AGSO is the main repository for national geoscientific data, and services a wide range of clients across industry, government and the general public. Data provided range from point data, such as site descriptions and scientific analysis of samples, to line polygon and grid data, such as geological and geophysical surveys and associated maps. AGSO currently holds 500 MB of GIS data and a similar amount of image data on its web site, these data are expected to expand to a number of terabytes over the next few years. A primary role of AGSO is to provide its data to clients and stakeholders in as efficient a way as possible, hence its choice of Internet delivery. The major obstacle for supplying data of large volume over the Internet is bandwidth. Many AGSO clients are in remote locations with low bandwidth connections to the Internet. Possible solutions to this problem are presented. Examples of AGSO web tools are available at http://www.agso.gov.au/map/

  2. H

    Data from: Clearing your Desk! Software and Data Services for Collaborative...

    • beta.hydroshare.org
    • hydroshare.org
    • +1more
    zip
    Updated Dec 18, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David Tarboton (2015). Clearing your Desk! Software and Data Services for Collaborative Web Based GIS Analysis [Dataset]. https://beta.hydroshare.org/resource/1302db3c1a76475ea7e87d7ba881f549/
    Explore at:
    zip(4.5 MB)Available download formats
    Dataset updated
    Dec 18, 2015
    Dataset provided by
    HydroShare
    Authors
    David Tarboton
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Can your desktop computer crunch the large GIS datasets that are becoming increasingly common across the geosciences? Do you have access to or the know-how to take advantage of advanced high performance computing (HPC) capability? Web based cyberinfrastructure takes work off your desk or laptop computer and onto infrastructure or "cloud" based data and processing servers. This talk will describe the HydroShare collaborative environment and web based services being developed to support the sharing and processing of hydrologic data and models. HydroShare supports the upload, storage, and sharing of a broad class of hydrologic data including time series, geographic features and raster datasets, multidimensional space-time data, and other structured collections of data. Web service tools and a Python client library provide researchers with access to HPC resources without requiring them to become HPC experts. This reduces the time and effort spent in finding and organizing the data required to prepare the inputs for hydrologic models and facilitates the management of online data and execution of models on HPC systems. This presentation will illustrate the use of web based data and computation services from both the browser and desktop client software. These web-based services implement the Terrain Analysis Using Digital Elevation Model (TauDEM) tools for watershed delineation, generation of hydrology-based terrain information, and preparation of hydrologic model inputs. They allow users to develop scripts on their desktop computer that call analytical functions that are executed completely in the cloud, on HPC resources using input datasets stored in the cloud, without installing specialized software, learning how to use HPC, or transferring large datasets back to the user's desktop. These cases serve as examples for how this approach can be extended to other models to enhance the use of web and data services in the geosciences.

    Slides for AGU 2015 presentation IN51C-03, December 18, 2015

  3. Creating and Hosting a School Locator in ArcGIS Online

    • hub.arcgis.com
    Updated Dec 15, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS Online for School Board Administration (2016). Creating and Hosting a School Locator in ArcGIS Online [Dataset]. https://hub.arcgis.com/documents/0c7a90f26568447f83459516c0959dcf
    Explore at:
    Dataset updated
    Dec 15, 2016
    Dataset provided by
    Authors
    ArcGIS Online for School Board Administration
    Description

    Learn how to create and host a school locator map using ArcGIS Online. This video demonstrates how to add data, create a map, and share a map into a website or web map application. It also provides an example of using the School Locator web mapping application template using Web App Builder by Esri's ArcGIS for Local Government team. Please contact k12@esri.ca for more information.

  4. d

    California State Waters Map Series--Offshore of Point Conception Web...

    • catalog.data.gov
    • data.usgs.gov
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). California State Waters Map Series--Offshore of Point Conception Web Services [Dataset]. https://catalog.data.gov/dataset/california-state-waters-map-series-offshore-of-point-conception-web-services
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Point Conception, California
    Description

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Offshore of Point Conception map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Offshore of Point Conception map area data layers. Data layers are symbolized as shown on the associated map sheets.

  5. Image Visit (Deprecated)

    • data-salemva.opendata.arcgis.com
    Updated Jun 26, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    esri_en (2018). Image Visit (Deprecated) [Dataset]. https://data-salemva.opendata.arcgis.com/items/eacb69e729ee40d5b71c0c6ef0d8980d
    Explore at:
    Dataset updated
    Jun 26, 2018
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    esri_en
    Description

    Image Visit is a configurable app template that allows users to quickly review the attributes of a predetermined sequence of locations in imagery. The app optimizes workflows by loading the next image while the user is still viewing the current image, reducing the delay caused by waiting for the next image to be returned from the server.Image Visit users can do the following:Navigate through a predetermined sequence of locations two ways: use features in a 'Visit' layer (an editable hosted feature layer), or use a web map's bookmarks.Use an optional 'Notes' layer (a second editable hosted feature layer) to add or edit features associated with the Visit locations.If the app uses a Visit layer for navigation, users can edit an optional 'Status' field to set the status of each Visit location as it's processed ('Complete' or 'Incomplete,'' for example).View metadata about the Imagery, Visit, and Notes layers in a dialog window (which displays information based on each layer's web map popup settings).Annotate imagery using editable feature layersPerform image measurement on imagery layers that have mensuration capabilitiesExport an imagery layer to the user's local machine, or as layer in the user’s ArcGIS accountUse CasesAn insurance company checking properties. An insurance company has a set of properties to review after an event like a hurricane. The app would drive the user to each property, and allow the operator to record attributes (the extent of damage, for example). Image analysts checking control points. Organizations that collect aerial photography often have a collection of marked or identifiable control points that they use to check their photographs. The app would drive the user to each of the known points, at a suitable scale, then allow the user to validate the location of the control point in the image. Checking automatically labeled features. In cases where AI is used for object identification, the app would drive the user to identified features to review/correct the classification. Supported DevicesThis application is responsively designed to support use in browsers on desktops, mobile phones, and tablets.Data RequirementsCreating an app with this template requires a web map with at least one imagery layer.Get Started This application can be created in the following ways:Click the Create a Web App button on this pageClick the Download button to access the source code. Do this if you want to host the app on your own server and optionally customize it to add features or change styling.

  6. A

    Pattern-based GIS for understanding content of very large Earth Science...

    • data.amerigeoss.org
    • data.wu.ac.at
    html
    Updated Jul 19, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States (2018). Pattern-based GIS for understanding content of very large Earth Science datasets [Dataset]. https://data.amerigeoss.org/pl/dataset/pattern-based-gis-for-understanding-content-of-very-large-earth-science-datasets
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Jul 19, 2018
    Dataset provided by
    United States
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Area covered
    Earth
    Description

    The research focus in the field of remotely sensed imagery has shifted from collection and warehousing of data ' tasks for which a mature technology already exists, to auto-extraction of information and knowledge discovery from this valuable resource ' tasks for which technology is still under active development. In particular, intelligent algorithms for analysis of very large rasters, either high resolutions images or medium resolution global datasets, that are becoming more and more prevalent, are lacking. We propose to develop the Geospatial Pattern Analysis Toolbox (GeoPAT) a computationally efficient, scalable, and robust suite of algorithms that supports GIS processes such as segmentation, unsupervised/supervised classification of segments, query and retrieval, and change detection in giga-pixel and larger rasters. At the core of the technology that underpins GeoPAT is the novel concept of pattern-based image analysis. Unlike pixel-based or object-based (OBIA) image analysis, GeoPAT partitions an image into overlapping square scenes containing 1,000'100,000 pixels and performs further processing on those scenes using pattern signature and pattern similarity ' concepts first developed in the field of Content-Based Image Retrieval. This fusion of methods from two different areas of research results in orders of magnitude performance boost in application to very large images without sacrificing quality of the output.

    GeoPAT v.1.0 already exists as the GRASS GIS add-on that has been developed and tested on medium resolution continental-scale datasets including the National Land Cover Dataset and the National Elevation Dataset. Proposed project will develop GeoPAT v.2.0 ' much improved and extended version of the present software. We estimate an overall entry TRL for GeoPAT v.1.0 to be 3-4 and the planned exit TRL for GeoPAT v.2.0 to be 5-6. Moreover, several new important functionalities will be added. Proposed improvements includes conversion of GeoPAT from being the GRASS add-on to stand-alone software capable of being integrated with other systems, full implementation of web-based interface, writing new modules to extent it applicability to high resolution images/rasters and medium resolution climate data, extension to spatio-temporal domain, enabling hierarchical search and segmentation, development of improved pattern signature and their similarity measures, parallelization of the code, implementation of divide and conquer strategy to speed up selected modules.

    The proposed technology will contribute to a wide range of Earth Science investigations and missions through enabling extraction of information from diverse types of very large datasets. Analyzing the entire dataset without the need of sub-dividing it due to software limitations offers important advantage of uniformity and consistency. We propose to demonstrate the utilization of GeoPAT technology on two specific applications. The first application is a web-based, real time, visual search engine for local physiography utilizing query-by-example on the entire, global-extent SRTM 90 m resolution dataset. User selects region where process of interest is known to occur and the search engine identifies other areas around the world with similar physiographic character and thus potential for similar process. The second application is monitoring urban areas in their entirety at the high resolution including mapping of impervious surface and identifying settlements for improved disaggregation of census data.

  7. d

    AFSC/ABL: ShoreZone Ground Stations, web-posted database in ArcGIS

    • catalog.data.gov
    • gimi9.com
    • +5more
    Updated Apr 1, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (Point of Contact, Custodian) (2024). AFSC/ABL: ShoreZone Ground Stations, web-posted database in ArcGIS [Dataset]. https://catalog.data.gov/dataset/afsc-abl-shorezone-ground-stations-web-posted-database-in-arcgis1
    Explore at:
    Dataset updated
    Apr 1, 2024
    Dataset provided by
    (Point of Contact, Custodian)
    Description

    The web-posted Alaska Shore Station Database is a compilation of hundreds of intertidal sites that were visited and evaluated throughout the coastal waters of Alaska. At each station attempts are made to document all observed species and their assemblages, geomorphic features, measurements of beach length and slope, and gather photographic examples. This online database has been designed to integrate with the spatially explicit, Alaska ShoreZone web enabled GIS platform. The end result is a user friendly and accessible version of the Shore Station database with a queryable display of station locations, downloadable species lists and photos.

  8. Geodatabase for the Baltimore Ecosystem Study Spatial Data

    • search.dataone.org
    • portal.edirepository.org
    Updated Apr 1, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Spatial Analysis Lab; Jarlath O'Neal-Dunne; Morgan Grove (2020). Geodatabase for the Baltimore Ecosystem Study Spatial Data [Dataset]. https://search.dataone.org/view/https%3A%2F%2Fpasta.lternet.edu%2Fpackage%2Fmetadata%2Feml%2Fknb-lter-bes%2F3120%2F150
    Explore at:
    Dataset updated
    Apr 1, 2020
    Dataset provided by
    Long Term Ecological Research Networkhttp://www.lternet.edu/
    Authors
    Spatial Analysis Lab; Jarlath O'Neal-Dunne; Morgan Grove
    Time period covered
    Jan 1, 1999 - Jun 1, 2014
    Area covered
    Description

    The establishment of a BES Multi-User Geodatabase (BES-MUG) allows for the storage, management, and distribution of geospatial data associated with the Baltimore Ecosystem Study. At present, BES data is distributed over the internet via the BES website. While having geospatial data available for download is a vast improvement over having the data housed at individual research institutions, it still suffers from some limitations. BES-MUG overcomes these limitations; improving the quality of the geospatial data available to BES researches, thereby leading to more informed decision-making. BES-MUG builds on Environmental Systems Research Institute's (ESRI) ArcGIS and ArcSDE technology. ESRI was selected because its geospatial software offers robust capabilities. ArcGIS is implemented agency-wide within the USDA and is the predominant geospatial software package used by collaborating institutions. Commercially available enterprise database packages (DB2, Oracle, SQL) provide an efficient means to store, manage, and share large datasets. However, standard database capabilities are limited with respect to geographic datasets because they lack the ability to deal with complex spatial relationships. By using ESRI's ArcSDE (Spatial Database Engine) in conjunction with database software, geospatial data can be handled much more effectively through the implementation of the Geodatabase model. Through ArcSDE and the Geodatabase model the database's capabilities are expanded, allowing for multiuser editing, intelligent feature types, and the establishment of rules and relationships. ArcSDE also allows users to connect to the database using ArcGIS software without being burdened by the intricacies of the database itself. For an example of how BES-MUG will help improve the quality and timeless of BES geospatial data consider a census block group layer that is in need of updating. Rather than the researcher downloading the dataset, editing it, and resubmitting to through ORS, access rules will allow the authorized user to edit the dataset over the network. Established rules will ensure that the attribute and topological integrity is maintained, so that key fields are not left blank and that the block group boundaries stay within tract boundaries. Metadata will automatically be updated showing who edited the dataset and when they did in the event any questions arise. Currently, a functioning prototype Multi-User Database has been developed for BES at the University of Vermont Spatial Analysis Lab, using Arc SDE and IBM's DB2 Enterprise Database as a back end architecture. This database, which is currently only accessible to those on the UVM campus network, will shortly be migrated to a Linux server where it will be accessible for database connections over the Internet. Passwords can then be handed out to all interested researchers on the project, who will be able to make a database connection through the Geographic Information Systems software interface on their desktop computer. This database will include a very large number of thematic layers. Those layers are currently divided into biophysical, socio-economic and imagery categories. Biophysical includes data on topography, soils, forest cover, habitat areas, hydrology and toxics. Socio-economics includes political and administrative boundaries, transportation and infrastructure networks, property data, census data, household survey data, parks, protected areas, land use/land cover, zoning, public health and historic land use change. Imagery includes a variety of aerial and satellite imagery. See the readme: http://96.56.36.108/geodatabase_SAL/readme.txt See the file listing: http://96.56.36.108/geodatabase_SAL/diroutput.txt

  9. C

    GIS Final Project

    • data.cityofchicago.org
    Updated Mar 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chicago Police Department (2025). GIS Final Project [Dataset]. https://data.cityofchicago.org/Public-Safety/GIS-Final-Project/8n2i-4jmi
    Explore at:
    application/rdfxml, csv, tsv, xml, application/rssxml, kmz, application/geo+json, kmlAvailable download formats
    Dataset updated
    Mar 26, 2025
    Authors
    Chicago Police Department
    Description

    This dataset reflects reported incidents of crime (with the exception of murders where data exists for each victim) that occurred in the City of Chicago from 2001 to present, minus the most recent seven days. Data is extracted from the Chicago Police Department's CLEAR (Citizen Law Enforcement Analysis and Reporting) system. In order to protect the privacy of crime victims, addresses are shown at the block level only and specific locations are not identified. Should you have questions about this dataset, you may contact the Research & Development Division of the Chicago Police Department at 312.745.6071 or RandD@chicagopolice.org. Disclaimer: These crimes may be based upon preliminary information supplied to the Police Department by the reporting parties that have not been verified. The preliminary crime classifications may be changed at a later date based upon additional investigation and there is always the possibility of mechanical or human error. Therefore, the Chicago Police Department does not guarantee (either expressed or implied) the accuracy, completeness, timeliness, or correct sequencing of the information and the information should not be used for comparison purposes over time. The Chicago Police Department will not be responsible for any error or omission, or for the use of, or the results obtained from the use of this information. All data visualizations on maps should be considered approximate and attempts to derive specific addresses are strictly prohibited. The Chicago Police Department is not responsible for the content of any off-site pages that are referenced by or that reference this web page other than an official City of Chicago or Chicago Police Department web page. The user specifically acknowledges that the Chicago Police Department is not responsible for any defamatory, offensive, misleading, or illegal conduct of other users, links, or third parties and that the risk of injury from the foregoing rests entirely with the user. The unauthorized use of the words "Chicago Police Department," "Chicago Police," or any colorable imitation of these words or the unauthorized use of the Chicago Police Department logo is unlawful. This web page does not, in any way, authorize such use. Data is updated daily Tuesday through Sunday. The dataset contains more than 65,000 records/rows of data and cannot be viewed in full in Microsoft Excel. Therefore, when downloading the file, select CSV from the Export menu. Open the file in an ASCII text editor, such as Wordpad, to view and search. To access a list of Chicago Police Department - Illinois Uniform Crime Reporting (IUCR) codes, go to http://data.cityofchicago.org/Public-Safety/Chicago-Police-Department-Illinois-Uniform-Crime-R/c7ck-438e

  10. d

    California State Waters Map Series--Point Sur to Point Arguello Web Services...

    • catalog.data.gov
    • gimi9.com
    Updated Jul 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). California State Waters Map Series--Point Sur to Point Arguello Web Services [Dataset]. https://catalog.data.gov/dataset/california-state-waters-map-series-point-sur-to-point-arguello-web-services
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Point Arguello, California
    Description

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Point Sur to Point Arguello map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Point Sur to Point Arguello map area data layers. Data layers are symbolized as shown on the associated map sheets.

  11. GIS In Utility Industry Market Analysis North America, Europe, APAC, Middle...

    • technavio.com
    Updated Dec 31, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2024). GIS In Utility Industry Market Analysis North America, Europe, APAC, Middle East and Africa, South America - US, China, Canada, Japan, Germany, Russia, India, Brazil, France, UAE - Size and Forecast 2025-2029 [Dataset]. https://www.technavio.com/report/gis-market-in-the-utility-industry-analysis
    Explore at:
    Dataset updated
    Dec 31, 2024
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    Canada, Germany, United States, France, Global
    Description

    Snapshot img

    What is the GIS In Utility Industry Market Size?

    The GIS market in the utility industry size is forecast to increase by USD 3.55 billion at a CAGR of 19.8% between 2023 and 2028. Market expansion hinges on various factors, such as the rising adoption of Geographic Information System (GIS) solutions in the utility sector, the convergence of GIS with Building Information Modeling, and the fusion of Augmented Reality with GIS technology. These elements collectively drive market growth, reflecting advancements in spatial data analytics and technological convergence. The increased adoption of GIS solutions in the utility industry underscores the importance of geospatial data in optimizing infrastructure management. Simultaneously, the integration of GIS with BIM signifies the synergy between spatial and building information for enhanced project planning and management. Additionally, the integration of AR with GIS technology highlights the potential for interactive and interactive visualization experiences in spatial data analysis. Thus, the interplay of these factors delineates the landscape for the anticipated expansion of the market catering to GIS and related technologies.

    What will be the size of Market during the forecast period?

    Request Free GIS In Utility Industry Market Sample

    Market Segmentation

    The market research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2025-2029, as well as historical data from 2019 - 2023 for the following segments.

    Product
    
      Software
      Data
      Services
    
    
    Deployment
    
      On-premises
      Cloud
    
    
    Geography
    
      North America
    
        Canada
        US
    
    
      Europe
    
        Germany
        France
    
    
      APAC
    
        China
        India
        Japan
    
    
      Middle East and Africa
    
    
    
      South America
    
        Brazil
    

    Which is the largest segment driving market growth?

    The software segment is estimated to witness significant growth during the forecast period. In the utility industry, the spatial context of geographic information systems (GIS) plays a pivotal role in site selection, land acquisition, planning, designing, visualizing, building, and project management. Utilities, including electricity, gas, water, and telecommunications providers, leverage GIS software to efficiently manage their assets and infrastructure. This technology enables the collection, management, analysis, and visualization of geospatial data, derived from satellite imaging, aerial photography, remote sensors, and artificial intelligence. Geospatial AI, sensor technology, and digital reality solutions are integral components of GIS, enhancing capabilities for smart city planning, urban planning, water management, mapping systems, grid modernization, transportation, and green buildings.

    Get a glance at the market share of various regions. Download the PDF Sample

    The software segment was valued at USD 541.50 million in 2018. Moreover, the geospatial industry continues to evolve, with startups and software solutions driving innovation in hardware, smart city planning, land use management, smart infrastructure planning, and smart utilities. GIS solutions facilitate 4D visualization, enabling stakeholders to overcome geospatial data barriers and make informed decisions. The utility industry's reliance on GIS extends to building information modeling, augmented reality, and smart urban planning, ultimately contributing to the growth of the geospatial technology market.

    Which region is leading the market?

    For more insights on the market share of various regions, Request Free Sample

    North America is estimated to contribute 37% to the growth of the global market during the forecast period. Technavio's analysts have elaborately explained the regional trends and drivers that shape the market during the forecast period.

    How do company ranking index and market positioning come to your aid?

    Companies are implementing various strategies, such as strategic alliances, partnerships, mergers and acquisitions, geographical expansion, and product/service launches, to enhance their presence in the market.

    AABSyS IT Pvt. Ltd. - The company offers GIS solutions such as remote sensing and computer aided design and drafting solutions for electric and gas utility.

    Technavio provides the ranking index for the top 20 companies along with insights on the market positioning of:

    AABSyS IT Pvt. Ltd.
    Autodesk Inc.
    Avineon Inc.
    Bentley Systems Inc.
    Blue Marble Geographics
    Cadcorp Ltd.
    Caliper Corp.
    Environmental Systems Research Institute Inc.
    General Electric Co.
    Hexagon AB
    Mapbox Inc.
    Maxar Technologies Inc.
    Mobile GIS Services Ltd.
    NV5 Global Inc.
    Orbital Insight Inc.
    Pitney Bowes Inc.
    Schneider Electric SE
    SuperMap Software Co. Ltd.
    Trimble Inc.
    VertiGIS Ltd.
    

    Explore our company rankings and market positioning. Request Free Sample

    How can Technavio assist you in ma

  12. Vietnam Geospatial Analytics Market Report by Component (Solution,...

    • imarcgroup.com
    pdf,excel,csv,ppt
    Updated Dec 26, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IMARC Group (2023). Vietnam Geospatial Analytics Market Report by Component (Solution, Services), Type (Surface and Field Analytics, Network and Location Analytics, Geovisualization, and Others), Technology (Remote Sensing, GIS, GPS, and Others), Enterprise Size (Large Enterprises, Small and Medium-sized Enterprises), Deployment Mode (On-premises, Cloud-based), Vertical (Automotive, Energy and Utilities, Government, Defense and Intelligence, Smart Cities, Insurance, Natural Resources, and Others), and Region 2024-2032 [Dataset]. https://www.imarcgroup.com/vietnam-geospatial-analytics-market
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Dec 26, 2023
    Dataset provided by
    Imarc Group
    Authors
    IMARC Group
    License

    https://www.imarcgroup.com/privacy-policyhttps://www.imarcgroup.com/privacy-policy

    Time period covered
    2024 - 2032
    Area covered
    Vietnam, Global
    Description

    Market Overview:

    The Vietnam geospatial analytics market size is projected to exhibit a growth rate (CAGR) of 8.90% during 2024-2032. The increasing product utilization by government authorities in various sectors, various technological advancements in satellite technology, remote sensing, and data collection methods, and the rising development of smart cities represent some of the key factors driving the market.

    Report Attribute
    Key Statistics
    Base Year
    2023
    Forecast Years
    2024-2032
    Historical Years
    2018-2023
    Market Growth Rate (2024-2032)8.90%


    Geospatial analytics is a field of data analysis that focuses on the interpretation and analysis of geographic and spatial data to gain valuable insights and make informed decisions. It combines geographical information systems (GIS), advanced data analysis techniques, and visualization tools to analyze and interpret data with a spatial or geographic component. It also enables the collection, storage, analysis, and visualization of geospatial data. It provides tools and software for managing and manipulating spatial data, allowing users to create maps, perform spatial queries, and conduct spatial analysis. In addition, geospatial analytics often involves integrating geospatial data with other types of data, such as demographic data, environmental data, or economic data. This integration helps in gaining a more comprehensive understanding of complex phenomena. Moreover, geospatial analytics has a wide range of applications. For example, it can be used in urban planning to optimize transportation routes, in agriculture to manage crop yield and soil quality, in disaster management to assess and respond to natural disasters, in wildlife conservation to track animal migrations, and in business for location-based marketing and site selection.

    Vietnam Geospatial Analytics Market Trends:

    The Vietnamese government has recognized the importance of geospatial analytics in various sectors, including urban planning, agriculture, disaster management, and environmental monitoring. Initiatives to develop and utilize geospatial data for public projects and policy-making have spurred demand for geospatial analytics solutions. In addition, Vietnam is experiencing rapid urbanization and infrastructure development. Geospatial analytics is critical for effective urban planning, transportation management, and infrastructure optimization. This trend is driving the adoption of geospatial solutions in cities and regions across the country. Besides, Vietnam's agriculture sector is a significant driver of its economy. Geospatial analytics helps farmers and agricultural businesses optimize crop management, soil health, and resource allocation. Consequently, precision farming techniques, enabled by geospatial data, are becoming increasingly popular, which is also propelling the market. Moreover, the development of smart cities in Vietnam relies on geospatial analytics for various applications, such as traffic management, public safety, and energy efficiency. Geospatial data is central to building the infrastructure needed for smart city initiatives. Furthermore, advances in satellite technology, remote sensing, and data collection methods have made geospatial data more accessible and affordable. This has lowered barriers to entry and encouraged the use of geospatial analytics in various sectors. Additionally, the telecommunications sector in Vietnam is expanding, and location-based services, such as navigation and advertising, rely on geospatial analytics. This creates opportunities for geospatial data providers and analytics solutions in the telecommunications industry.

    Vietnam Geospatial Analytics Market Segmentation:

    IMARC Group provides an analysis of the key trends in each segment of the market, along with forecasts at the country level for 2024-2032. Our report has categorized the market based on component, type, technology, enterprise size, deployment mode, and vertical.

    Component Insights:

    Vietnam Geospatial Analytics Market Reporthttps://www.imarcgroup.com/CKEditor/2e6fe72c-0238-4598-8c62-c08c0e72a138other-regions1.webp" style="height:450px; width:800px" />

    • Solution
    • Services

    The report has provided a detailed breakup and analysis of the market based on the component. This includes solution and services.

    Type Insights:

    • Surface and Field Analytics
    • Network and Location Analytics
    • Geovisualization
    • Others

    A detailed breakup and analysis of the market based on the type have also been provided in the report. This includes surface and field analytics, network and location analytics, geovisualization, and others.

    Technology Insights:

    • Remote Sensing
    • GIS
    • GPS
    • Others

    The report has provided a detailed breakup and analysis of the market based on the technology. This includes remote sensing, GIS, GPS, and others.

    Enterprise Size Insights:

    • Large Enterprises
    • Small and Medium-sized Enterprises

    A detailed breakup and analysis of the market based on the enterprise size have also been provided in the report. This includes large enterprises and small and medium-sized enterprises.

    Deployment Mode Insights:

    • On-premises
    • Cloud-based

    The report has provided a detailed breakup and analysis of the market based on the deployment mode. This includes on-premises and cloud-based.

    Vertical Insights:

    • Automotive
    • Energy and Utilities
    • Government
    • Defense and Intelligence
    • Smart Cities
    • Insurance
    • Natural Resources
    • Others

    A detailed breakup and analysis of the market based on the vertical have also been provided in the report. This includes automotive, energy and utilities, government, defense and intelligence, smart cities, insurance, natural resources, and others.

    Regional Insights:

    Vietnam Geospatial Analytics Market Reporthttps://www.imarcgroup.com/CKEditor/bbfb54c8-5798-401f-ae74-02c90e137388other-regions6.webp" style="height:450px; width:800px" />

    • Northern Vietnam
    • Central Vietnam
    • Southern Vietnam

    The report has also provided a comprehensive analysis of all the major regional markets, which include Northern Vietnam, Central Vietnam, and Southern Vietnam.

    Competitive Landscape:

    The market research report has also provided a comprehensive analysis of the competitive landscape in the market. Competitive analysis such as market structure, key player positioning, top winning strategies, competitive dashboard, and company evaluation quadrant has been covered in the report. Also, detailed profiles of all major companies have been provided.

    Vietnam Geospatial Analytics Market Report Coverage:

    <td

    Report FeaturesDetails
    Base Year of the Analysis2023
    Historical Period
  13. Geospatial Analytics Market Analysis North America, Europe, APAC, Middle...

    • technavio.com
    Updated Jul 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Geospatial Analytics Market Analysis North America, Europe, APAC, Middle East and Africa, South America - US, China, Canada, UK, Germany - Size and Forecast 2024-2028 [Dataset]. https://www.technavio.com/report/geospatial-analytics-market-industry-analysis
    Explore at:
    Dataset updated
    Jul 15, 2024
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    United Kingdom, United States, Global
    Description

    Snapshot img

    Geospatial Analytics Market Size 2024-2028

    The geospatial analytics market size is forecast to increase by USD 127.2 billion at a CAGR of 18.68% between 2023 and 2028.

    The market is experiencing significant growth due to the increasing adoption of geospatial data analytics in sectors such as healthcare and insurance. This trend is driven by the abundance of data being generated through emerging methods like remote sensing, IoT, and drones. However, data privacy and security concerns remain a challenge, as geospatial data can reveal sensitive information.
    Organizations must implement robust security measures to protect this valuable information. In the US and North America, the market is expected to grow steadily, driven by the region's advanced technological infrastructure and increasing focus on data-driven decision-making. Companies in this space should stay abreast of emerging trends and address concerns related to data security to remain competitive.
    

    What will be the Size of the Geospatial Analytics Market During the Forecast Period?

    Request Free Sample

    The market is experiencing significant growth due to the increasing demand for location intelligence in various industries, particularly Medium Scale Enterprises (MSEs). This market is driven by the integration of Artificial Intelligence (AI) and machine learning (ML), enabling advanced data analysis and prediction capabilities. The Internet of Things (IoT) is also fueling market growth, as real-time location data is collected and analyzed for various applications, including disaster risk reduction. Hexagon and Luciad are among the key players in this market, offering advanced geospatial analytics solutions. Big data analysis, digital globe imagery, and Pitney Bowes' location intelligence offerings are also contributing to market expansion.
    The integration of AI, ML, and 5G technology is expected to further accelerate growth, with applications ranging from supply chain optimization to web-based GIS platforms built using JavaScript and HTML5.
    

    How is this Geospatial Analytics Industry segmented and which is the largest segment?

    The geospatial analytics industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2024-2028, as well as historical data from 2017-2022 for the following segments.

    Technology
    
      GPS
      GIS
      Remote sensing
      Others
    
    
    End-user
    
      BFSI
      Government and utilities
      Telecom
      Manufacturing and automotive
      Others
    
    
    Component
    
      Software
      Service
    
    
    Type
    
      Surface & Field Analytics
      Network & Location Analytics
      Geovisualization
      Others
    
    
    Geography
    
      North America
    
        Canada
        US
    
    
      Europe
    
        Germany
        UK
    
    
      APAC
    
        China
    
    
      Middle East and Africa
    
    
    
      South America
    

    By Technology Insights

    The GPS segment is estimated to witness significant growth during the forecast period. The market is driven by various sectors including Defense & Internal Security, Retail & Logistics, Energy & Utilities, Agriculture, Healthcare & Life Sciences, Infrastructure, and GIS. Among these, GPS, a satellite-based radio navigation system, was the largest segment in 2023. Operated by the US Space Force, GPS enables geolocation and time information transmission to receivers, facilitating georeferencing, positioning, navigation, and time and frequency control. This technology is widely used in industries such as logistics, transportation, and surveying, making it a significant contributor to the market's growth. The Energy & Utilities sector also leverages geospatial analytics for infrastructure planning, asset management, and maintenance, further fueling market expansion.

    Get a glance at the share of various segments. Request Free Sample

    The GPS segment was valued at USD 29.90 billion in 2018 and showed a gradual increase during the forecast period.

    Regional Analysis

    North America is estimated to contribute 36% to the growth of the global market during the forecast period. Technavio's analysts have elaborately explained the regional trends and drivers that shape the market during the forecast period.

    For more insights on the market share of various regions, Request Free Sample

    The North American region dominates the market due to the region's early adoption of advanced technologies and the maturity of industries, particularly in healthcare and the industrial sector. The healthcare industry's need for high-level analytics, driven by the COVID-19 pandemic, is a significant factor fueling market growth. In the industrial sector, the abundance of successful technology implementations leads to a faster rate of adoption. Geospatial analytics plays a crucial role in various applications. These applications provide valuable insights for businesses and governments, enabling informed decision-making and improving operational efficien

  14. A

    Asia Pacific GIS Market Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Dec 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2024). Asia Pacific GIS Market Report [Dataset]. https://www.datainsightsmarket.com/reports/asia-pacific-gis-market-11571
    Explore at:
    ppt, doc, pdfAvailable download formats
    Dataset updated
    Dec 6, 2024
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Asia–Pacific
    Variables measured
    Market Size
    Description

    The size of the Asia Pacific GIS market was valued at USD XXX Million in 2023 and is projected to reach USD XXX Million by 2032, with an expected CAGR of 9.08% during the forecast period.Geographic Information Systems are very powerful tools for capturing, storing, analyzing, and visualizing geographic data. The technology integrates maps with databases that assist organizations in understanding spatial relationships, patterns, and trends. Applications can be found across a broad spectrum of industries, such as urban planning, environmental management, agriculture, and public health.Asia Pacific is growing most rapidly in the regions relevant to the global market for Asia Pacific GIS. Growth is encouraged by factors like increasing levels of urbanization, increased infrastructures investments, and growth levels of awareness about GIS and what benefits it can offer to any organization. Lately, with the advancement of GIS technology like GIS solutions offered both on cloud and mobile environment has made access and usabilities much easier to the organizations.The applications of GIS in solving problems such as disaster management and climate change in the Asia Pacific region have become incredibly extensive. Examples of using GIS include mapping flood-prone areas, monitoring deforestation, and improving transportation networks. The greater the environmental and social challenge that faces this developing region, the more GIS is going to play a significant role in the discovery of meaningful insights for the guidance of informed decisions. Recent developments include: February 2024 - John Deere announced a strategic partnership with Hexagon’s Leica Geosystems to accelerate the digital transformation of the heavy construction industry. John Deere and Hexagon joined forces to bring cutting-edge technologies and solutions to construction professionals worldwide., January 2024 - BlackSky Technology Inc. won a first-in-class contract to support the Indonesian Ministry of Defence (MoD), supplying Gen-3 earth observation satellites, ground station capabilities, and flight operations support. BlackSky also won a multi-year contract to support the MoD in the supply of assured subscription-based real-time imagery (RTI) and analytics services. The multi-year contract was won by BlackSky Technology Inc. in partnership with Alenia Space, a subsidiary of Thales Group, to supply Assured subscription-based RTI and analytics services to the Indonesian Ministry of Defense. The total value of the two contracts is approximately USD 50 million.. Key drivers for this market are: Ease of Convenience of Shoppers Elevated Through No Traveling and Simpler Access Across Global Borders, Higher Return on Investment. Potential restraints include: Incidents of Fraudulent Transactions and Cyber Crime, Opening of Physical Spaces, Galleries, and Auctions Impacting Online Sales. Notable trends are: Cloud Deployment Segment to Hold Significant Market Share.

  15. 15 - Urban areas and edge cities - Esri GeoInquiries™ collection for Human...

    • hub.arcgis.com
    • geoinquiries-education.hub.arcgis.com
    Updated Nov 18, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri GIS Education (2015). 15 - Urban areas and edge cities - Esri GeoInquiries™ collection for Human Geography [Dataset]. https://hub.arcgis.com/documents/e93c03ea01a0467f83b6fc09da4f4a3f
    Explore at:
    Dataset updated
    Nov 18, 2015
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri GIS Education
    Description

    Explore urban areas around the world, including their layout, size, and other factors. The activity uses a web-based map and is tied to the AP Human Geography benchmarks. Learning outcomes:Students will be able to locate urban areas and factors of urbanization.Students will be able to identify characteristics and examples of edge cities.Find more advanced human geography geoinquiries and explore all geoinquiries at http://www.esri.com/geoinquiries

  16. d

    Data from: Hydrologic Terrain Analysis Using Web Based Tools

    • search.dataone.org
    • hydroshare.org
    • +1more
    Updated Dec 5, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David Tarboton; Nazmus Sazib; Anthony Michael Castronova; Yan Liu; Xing Zheng; David Maidment; Anthony Keith Aufdenkampe; Shaowen Wang (2021). Hydrologic Terrain Analysis Using Web Based Tools [Dataset]. https://search.dataone.org/view/sha256%3A4e0ca3ae3aedba068a9076647acee3e98f41e2a86fe5e18e9f90e1a7d6f0c867
    Explore at:
    Dataset updated
    Dec 5, 2021
    Dataset provided by
    Hydroshare
    Authors
    David Tarboton; Nazmus Sazib; Anthony Michael Castronova; Yan Liu; Xing Zheng; David Maidment; Anthony Keith Aufdenkampe; Shaowen Wang
    Description

    Digital Elevation Models (DEM) are widely used to derive information for the modeling of hydrologic processes. The basic model for hydrologic terrain analysis involving hydrologic conditioning, determination of flow field (flow directions) and derivation of hydrologic derivatives is available in multiple software packages and GIS systems. However as areas of interest for terrain analysis have increased and DEM resolutions become finer there remain challenges related to data size, software and a platform to run it on, as well as opportunities to derive new kinds of information useful for hydrologic modeling. This presentation will illustrate new functionality associated with the TauDEM software (http://hydrology.usu.edu/taudem) and new web based deployments of TauDEM to make this capability more accessible and easier to use. Height Above Nearest Drainage (HAND) is a special case of distance down the flow field to an arbitrary target, with the target being a stream and distance measured vertically. HAND is one example of a general class of hydrologic proximity measures available in TauDEM. As we have implemented it, HAND uses multi-directional flow directions derived from a digital elevation model (DEM) using the Dinifinity method in TauDEM to determine the height of each grid cell above the nearest stream along the flow path from that cell to the stream. With this information, and the depth of flow in the stream, the potential for, and depth of flood inundation can be determined. Furthermore, by dividing streams into reaches or segments, the area draining to each reach can be isolated and a series of threshold depths applied to the grid of HAND values in that isolated reach catchment, to determine inundation volume, surface area and wetted bed area. Dividing these by length yields reach average cross section area, width, and wetted perimeter, information that is useful for hydraulic routing and stage-discharge rating calculations in hydrologic modeling. This presentation will describe the calculation of HAND and its use to determine hydraulic properties across the US for prediction of stage and flood inundation in each NHDPlus reach modeled by the US NOAA’s National Water Model. This presentation will also describe two web based deployments of TauDEM functionality. The first is within a Jupyter Notebook web application attached to HydroShare that provides users the ability to execute TauDEM on this cloud infrastructure without the limitations associated with desktop software installation and data/computational capacity. The second is a web based rapid watershed delineation function deployed as part of Model My Watershed (https://app.wikiwatershed.org/) that enables delineation of watersheds, based on NHDPlus gridded data anywhere in the continental US for watershed based hydrologic modeling and analysis.

    Presentation for European Geophysical Union Meeting, April 2018, Vienna. Tarboton, D. G., N. Sazib, A. Castronova, Y. Liu, X. Zheng, D. Maidment, A. Aufdenkampe and S. Wang, (2018), "Hydrologic Terrain Analysis Using Web Based Tools," European Geophysical Union General Assembly, Vienna, April 12, Geophysical Research Abstracts 20, EGU2018-10337, https://meetingorganizer.copernicus.org/EGU2018/EGU2018-10337.pdf.

  17. D

    Detroit Street View Terrestrial LiDAR (2020-2022)

    • detroitdata.org
    • data.detroitmi.gov
    • +1more
    Updated Apr 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Detroit (2023). Detroit Street View Terrestrial LiDAR (2020-2022) [Dataset]. https://detroitdata.org/dataset/detroit-street-view-terrestrial-lidar-2020-2022
    Explore at:
    geojson, html, gpkg, gdb, zip, kml, txt, xlsx, arcgis geoservices rest api, csvAvailable download formats
    Dataset updated
    Apr 18, 2023
    Dataset provided by
    City of Detroit
    Area covered
    Detroit
    Description

    Detroit Street View (DSV) is an urban remote sensing program run by the Enterprise Geographic Information Systems (EGIS) Team within the Department of Innovation and Technology at the City of Detroit. The mission of Detroit Street View is ‘To continuously observe and document Detroit’s changing physical environment through remote sensing, resulting in freely available foundational data that empowers effective city operations, informed decision making, awareness, and innovation.’ LiDAR (as well as panoramic imagery) is collected using a vehicle-mounted mobile mapping system.

    Due to variations in processing, index lines are not currently available for all existing LiDAR datasets, including all data collected before September 2020. Index lines represent the approximate path of the vehicle within the time extent of the given LiDAR file. The actual geographic extent of the LiDAR point cloud varies dependent on line-of-sight.

    Compressed (LAZ format) point cloud files may be requested by emailing gis@detroitmi.gov with a description of the desired geographic area, any specific dates/file names, and an explanation of interest and/or intended use. Requests will be filled at the discretion and availability of the Enterprise GIS Team. Deliverable file size limitations may apply and requestors may be asked to provide their own online location or physical media for transfer.

    LiDAR was collected using an uncalibrated Trimble MX2 mobile mapping system. The data is not quality controlled, and no accuracy assessment is provided or implied. Results are known to vary significantly. Users should exercise caution and conduct their own comprehensive suitability assessments before requesting and applying this data.

    Sample Dataset: https://detroitmi.maps.arcgis.com/home/item.html?id=69853441d944442f9e79199b57f26fe3

    DSV Logo

  18. a

    Data from: Google Earth Engine (GEE)

    • amerigeo.org
    • data.amerigeoss.org
    • +1more
    Updated Nov 28, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AmeriGEOSS (2018). Google Earth Engine (GEE) [Dataset]. https://www.amerigeo.org/datasets/google-earth-engine-gee
    Explore at:
    Dataset updated
    Nov 28, 2018
    Dataset authored and provided by
    AmeriGEOSS
    Description

    Meet Earth EngineGoogle Earth Engine combines a multi-petabyte catalog of satellite imagery and geospatial datasets with planetary-scale analysis capabilities and makes it available for scientists, researchers, and developers to detect changes, map trends, and quantify differences on the Earth's surface.SATELLITE IMAGERY+YOUR ALGORITHMS+REAL WORLD APPLICATIONSLEARN MOREGLOBAL-SCALE INSIGHTExplore our interactive timelapse viewer to travel back in time and see how the world has changed over the past twenty-nine years. Timelapse is one example of how Earth Engine can help gain insight into petabyte-scale datasets.EXPLORE TIMELAPSEREADY-TO-USE DATASETSThe public data archive includes more than thirty years of historical imagery and scientific datasets, updated and expanded daily. It contains over twenty petabytes of geospatial data instantly available for analysis.EXPLORE DATASETSSIMPLE, YET POWERFUL APIThe Earth Engine API is available in Python and JavaScript, making it easy to harness the power of Google’s cloud for your own geospatial analysis.EXPLORE THE APIGoogle Earth Engine has made it possible for the first time in history to rapidly and accurately process vast amounts of satellite imagery, identifying where and when tree cover change has occurred at high resolution. Global Forest Watch would not exist without it. For those who care about the future of the planet Google Earth Engine is a great blessing!-Dr. Andrew Steer, President and CEO of the World Resources Institute.CONVENIENT TOOLSUse our web-based code editor for fast, interactive algorithm development with instant access to petabytes of data.LEARN ABOUT THE CODE EDITORSCIENTIFIC AND HUMANITARIAN IMPACTScientists and non-profits use Earth Engine for remote sensing research, predicting disease outbreaks, natural resource management, and more.SEE CASE STUDIESREADY TO BE PART OF THE SOLUTION?SIGN UP NOWTERMS OF SERVICE PRIVACY ABOUT GOOGLE

  19. MAP for website - Satellite Maps Global Archive

    • noaa.hub.arcgis.com
    Updated Aug 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA GeoPlatform (2023). MAP for website - Satellite Maps Global Archive [Dataset]. https://noaa.hub.arcgis.com/maps/9990fe7bfb164529b6840ef56d25d916
    Explore at:
    Dataset updated
    Aug 4, 2023
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Authors
    NOAA GeoPlatform
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Philippine Sea
    Description

    This application is intended for informational purposes only and is not an operational product. The tool provides the capability to access, view and interact with satellite imagery, and shows the latest view of Earth as it appears from space.This website should not be used to support operational observation, forecasting, emergency, or disaster mitigation operations, either public or private. In addition, we do not provide weather forecasts on this site — that is the mission of the National Weather Service. Please contact them for any forecast questions or issues.Using the Maps​What does the Layering Options icon mean?The Layering Options widget provides a list of operational layers and their symbols, and allows you to turn individual layers on and off. The order in which layers appear in this widget corresponds to the layer order in the map. The top layer ‘checked’ will indicate what you are viewing in the map, and you may be unable to view the layers below.Layers with expansion arrows indicate that they contain sublayers or subtypes.Do these maps work on mobile devices and different browsers?Yes!Why are there black stripes / missing data on the map?NOAA Satellite Maps is for informational purposes only and is not an operational product; there are times when data is not available.Why are the North and South Poles dark?The raw satellite data used in these web map apps goes through several processing steps after it has been acquired from space. These steps translate the raw data into geospatial data and imagery projected onto a map. NOAA Satellite Maps uses the Mercator projection to portray the Earth's 3D surface in two dimensions. This Mercator projection does not include data at 80 degrees north and south latitude due to distortion, which is why the poles appear black in these maps. NOAA's polar satellites are a critical resource in acquiring operational data at the poles of the Earth and some of this imagery is available on our website (for example, here ).Why does the imagery load slowly?This map viewer does not load pre-generated web-ready graphics and animations like many satellite imagery apps you may be used to seeing. Instead, it downloads geospatial data from our data servers through a Map Service, and the app in your browser renders the imagery in real-time. Each pixel needs to be rendered and geolocated on the web map for it to load.How can I get the raw data and download the GIS World File for the images I choose?The geospatial data Map Service for the NOAA Satellite Maps GOES satellite imagery is located on our Satellite Maps ArcGIS REST Web Service ( available here ).We support open information sharing and integration through this RESTful Service, which can be used by a multitude of GIS software packages and web map applications (both open and licensed).Data is for display purposes only, and should not be used operationally.Are there any restrictions on using this imagery?NOAA supports an open data policy and we encourage publication of imagery from NOAA Satellite Maps; when doing so, please cite it as "NOAA" and also consider including a permalink (such as this one) to allow others to explore the imagery.For acknowledgment in scientific journals, please use:We acknowledge the use of imagery from the NOAA Satellite Maps application: LINKThis imagery is not copyrighted. You may use this material for educational or informational purposes, including photo collections, textbooks, public exhibits, computer graphical simulations and internet web pages. This general permission extends to personal web pages.About this satellite imageryWhat am I seeing in the Global Archive Map?In this map, you will see the whole Earth as captured each day by our polar satellites, based on our multi-year archive of data. This data is provided by NOAA’s polar orbiting satellites (NOAA/NASA Suomi NPP from January 2014 to April 19, 2018 and NOAA-20 from April 20, 2018 to today). The polar satellites circle the globe 14 times a day taking in one complete view of the Earth every 24 hours. This complete view is what is projected onto the flat map scene each morning.What is global true color imagery?The global ‘true color’ map displays land, water and clouds as they would appear to our eye from space, captured each day by NOAA-20.This ‘true color’ imagery is created using the VIIRS sensors onboard the NOAA-20 and Suomi NPP polar orbiting satellites. Although true-color images like this may appear to be photographs of Earth, they aren't. They are created by combining data from the three color bands on the VIIRS instrument sensitive to the red, green and blue (or RGB) wavelengths of light into one composite image. In addition, data from several other bands are often also included to cancel out or correct atmospheric interference that may blur parts of the image. Learn more about the VIIRS sensor here.About the satellitesWhat is the NOAA-20 satellite?Launched in November 2017, NOAA-20 is NOAA's newest polar-orbiting satellite, and the first of the Joint Polar Satellite System (JPSS) series, a collaborative effort between NOAA and NASA. As the backbone of the global satellite observing system, NOAA-20 circles the Earth from pole to pole and crosses the equator about 14 times daily, providing full global coverage twice daily - from 512 miles away. The satellite's instruments measure temperature, water vapor, ozone, precipitation, fire and volcanic eruptions, and can distinguish snow and ice cover under clouds. This data enables more accurate weather forecasting for the United States and the world.

  20. n

    SOFIA - Metadata - Development of an Internet-Based GIS to Visualize ATLSS...

    • cmr.earthdata.nasa.gov
    • datadiscoverystudio.org
    • +1more
    Updated Apr 20, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). SOFIA - Metadata - Development of an Internet-Based GIS to Visualize ATLSS Datasets for Resource Managers [Dataset]. https://cmr.earthdata.nasa.gov/search/concepts/C2231550677-CEOS_EXTRA.html
    Explore at:
    Dataset updated
    Apr 20, 2017
    Time period covered
    Jan 1, 2003 - Dec 31, 2004
    Area covered
    Description

    The ATLSS Data Visualization System was designed to make it simple to view and analyze Spatially-Explicit Species Index (SESI) models.

    An essential aspect of the ATLSS Program is making model output easily accessed and used by client agencies. For this purpose an ATLSS Data Viewer (ADV) has been developed. Based in part around the ADV, background work for a spatial decision support system (SDSS) is proposed in which the decision models are tightly integrated with, or directly generated from, geographic information systems (GIS) analyses and display. Spatially-explicit knowledge from which decisions made at specific sites are within the context of conditions proximate and regional to those sites are essential for intelligent ecological restoration and permitting. Examples include determination of areas suitable for viable and sustainable populations (habitat and risk assessment), areas of socioeconomic and environmental conflict, optimization of development footprints to protect natural systems, and hydrological and successional feedback dynamics that influence the landscape.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2024). Web based mapping, GIS and image processing: the AGSO perspective [Dataset]. https://ecat.ga.gov.au/geonetwork/eng/search?keyword=image%20processing

Web based mapping, GIS and image processing: the AGSO perspective

Explore at:
Dataset updated
Jul 3, 2024
Description

The Australian Geological Survey Organisation (AGSO) presents its solutions to mapping, GIS and image processing on the Internet. Software used is based on commercial and open source products. A distributed web mapping system is demonstrated, and concepts of distributed web mapping discussed. A model and prototype system for online delivery of satellite image data is presented. AGSO has been providing Internet access to spatial data since 1996. AGSO is the main repository for national geoscientific data, and services a wide range of clients across industry, government and the general public. Data provided range from point data, such as site descriptions and scientific analysis of samples, to line polygon and grid data, such as geological and geophysical surveys and associated maps. AGSO currently holds 500 MB of GIS data and a similar amount of image data on its web site, these data are expected to expand to a number of terabytes over the next few years. A primary role of AGSO is to provide its data to clients and stakeholders in as efficient a way as possible, hence its choice of Internet delivery. The major obstacle for supplying data of large volume over the Internet is bandwidth. Many AGSO clients are in remote locations with low bandwidth connections to the Internet. Possible solutions to this problem are presented. Examples of AGSO web tools are available at http://www.agso.gov.au/map/

Search
Clear search
Close search
Google apps
Main menu