100+ datasets found
  1. P

    Common Crawl Dataset

    • paperswithcode.com
    • opendatalab.com
    Updated Oct 7, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2014). Common Crawl Dataset [Dataset]. https://paperswithcode.com/dataset/common-crawl
    Explore at:
    Dataset updated
    Oct 7, 2014
    Description

    The Common Crawl corpus contains petabytes of data collected over 12 years of web crawling. The corpus contains raw web page data, metadata extracts and text extracts. Common Crawl data is stored on Amazon Web Services’ Public Data Sets and on multiple academic cloud platforms across the world.

  2. W

    Web Crawler Tool Report

    • marketresearchforecast.com
    doc, pdf, ppt
    Updated Apr 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Research Forecast (2025). Web Crawler Tool Report [Dataset]. https://www.marketresearchforecast.com/reports/web-crawler-tool-542102
    Explore at:
    pdf, doc, pptAvailable download formats
    Dataset updated
    Apr 26, 2025
    Dataset authored and provided by
    Market Research Forecast
    License

    https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global web crawler tool market is experiencing robust growth, driven by the increasing need for data extraction and analysis across diverse sectors. The market's expansion is fueled by the exponential growth of online data, the rise of big data analytics, and the increasing adoption of automation in business processes. Businesses leverage web crawlers for market research, competitive intelligence, price monitoring, and lead generation, leading to heightened demand. While cloud-based solutions dominate due to scalability and cost-effectiveness, on-premises deployments remain relevant for organizations prioritizing data security and control. The large enterprise segment currently leads in adoption, but SMEs are increasingly recognizing the value proposition of web crawling tools for improving business decisions and operations. Competition is intense, with established players like UiPath and Scrapy alongside a growing number of specialized solutions. Factors such as data privacy regulations and the complexity of managing web crawlers pose challenges to market growth, but ongoing innovation in areas such as AI-powered crawling and enhanced data processing capabilities are expected to mitigate these restraints. We estimate the market size in 2025 to be $1.5 billion, growing at a CAGR of 15% over the forecast period (2025-2033). The geographical distribution of the market reflects the global nature of internet usage, with North America and Europe currently holding the largest market share. However, the Asia-Pacific region is anticipated to witness significant growth driven by increasing internet penetration and digital transformation initiatives across countries like China and India. The ongoing development of more sophisticated and user-friendly web crawling tools, coupled with decreasing implementation costs, is projected to further stimulate market expansion. Future growth will depend heavily on the ability of vendors to adapt to evolving web technologies, address increasing data privacy concerns, and provide robust solutions that cater to the specific needs of various industry verticals. Further research and development into AI-driven crawling techniques will be pivotal in optimizing efficiency and accuracy, which in turn will encourage wider adoption.

  3. The Global Anti crawling Techniques Market is Growing at Compound Annual...

    • cognitivemarketresearch.com
    pdf,excel,csv,ppt
    Updated Mar 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cognitive Market Research (2025). The Global Anti crawling Techniques Market is Growing at Compound Annual Growth Rate of 6.00% from 2023 to 2030. [Dataset]. https://www.cognitivemarketresearch.com/anti-crawling-techniques-market-report
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Mar 15, 2025
    Dataset authored and provided by
    Cognitive Market Research
    License

    https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy

    Time period covered
    2021 - 2033
    Area covered
    Global
    Description

    According to Cognitive Market Research, The Global Anti crawling Techniques market size is USD XX million in 2023 and will expand at a compound annual growth rate (CAGR) of 6.00% from 2023 to 2030.

    North America Anti crawling Techniques held the major market of more than 40% of the global revenue and will grow at a compound annual growth rate (CAGR) of 4.2% from 2023 to 2030.
    Europe Anti crawling Techniques accounted for a share of over 30% of the global market and are projected to expand at a compound annual growth rate (CAGR) of 4.5% from 2023 to 2030.
    Asia Pacific Anti crawling Techniques held the market of more than 23% of the global revenue and will grow at a compound annual growth rate (CAGR) of 8.0% from 2023 to 2030.
    South American Anti crawling Techniques market of more than 5% of the global revenue and will grow at a compound annual growth rate (CAGR) of 5.4% from 2023 to 2030.
    Middle East and Africa Anti crawling Techniques held the major market of more than 2% of the global revenue and will grow at a compound annual growth rate (CAGR) of 5.7% from 2023 to 2030.
    The market for anti-crawling techniques has grown dramatically as a result of the increasing number of data breaches and public awareness of the need to protect sensitive data. 
    Demand for bot fingerprint databases remains higher in the anti crawling techniques market.
    The content protection category held the highest anti crawling techniques market revenue share in 2023.
    

    Increasing Demand for Protection and Security of Online Data to Provide Viable Market Output

    The market for anti-crawling techniques is expanding due in large part to the growing requirement for online data security and protection. Due to an increase in digital activity, organizations are processing and storing enormous volumes of sensitive data online. Organizations are being forced to invest in strong anti-crawling techniques due to the growing threat of data breaches, illegal access, and web scraping occurrences. By protecting online data from harmful activity and guaranteeing its confidentiality and integrity, these technologies advance the industry. Moreover, the significance of protecting digital assets is increased by the widespread use of the Internet for e-commerce, financial transactions, and sensitive data transfers. Anti-crawling techniques are essential for reducing the hazards connected to online scraping, which is a tactic often used by hackers to obtain important data.

    Increasing Incidence of Cyber Threats to Propel Market Growth
    

    The growing prevalence of cyber risks, such as site scraping and data harvesting, is driving growth in the market for anti-crawling techniques. Organizations that rely significantly on digital platforms run a higher risk of having illicit data extracted. In order to safeguard sensitive data and preserve the integrity of digital assets, organizations have been forced to invest in sophisticated anti-crawling techniques that strengthen online defenses. Moreover, the market's growth is a reflection of growing awareness of cybersecurity issues and the need to put effective defenses in place against changing cyber threats. Moreover, cybersecurity is constantly challenged by the spread of advanced and automated crawling programs. The ever-changing threat landscape forces enterprises to implement anti-crawling techniques, which use a variety of tools like rate limitation, IP blocking, and CAPTCHAs to prevent fraudulent scraping efforts.

    Market Restraints of the Anti crawling Techniques

    Increasing Demand for Ethical Web Scraping to Restrict Market Growth
    

    The growing desire for ethical web scraping presents a unique challenge to the anti-crawling techniques market. Ethical web scraping is the process of obtaining data from websites for lawful objectives, such as market research or data analysis, but without breaching the terms of service. Furthermore, the restraint arises because anti-crawling techniques must distinguish between criminal and ethical scraping operations, finding a balance between preventing websites from misuse and permitting authorized data harvest. This dynamic calls for more complex and adaptable anti-crawling techniques to distinguish between destructive and ethical scrapping actions.

    Impact of COVID-19 on the Anti Crawling Techniques Market

    The demand for online material has increased as a result of the COVID-19 pandemic, which has...

  4. E

    Data from: R crawlers for five Slovenian web media 1.0

    • live.european-language-grid.eu
    Updated Apr 22, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). R crawlers for five Slovenian web media 1.0 [Dataset]. https://live.european-language-grid.eu/catalogue/tool-service/20080
    Explore at:
    Dataset updated
    Apr 22, 2017
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    Five web-crawlers written in the R language for retrieving Slovenian texts from the news portals 24ur, Dnevnik, Finance, Rtvslo, and Žurnal24. These portals contain political, business, economic and financial content.

  5. d

    PolarHub: A service-oriented cyberinfrastructure portal to support sustained...

    • search.dataone.org
    • arcticdata.io
    • +1more
    Updated May 20, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wenwen Li (2020). PolarHub: A service-oriented cyberinfrastructure portal to support sustained polar sciences [Dataset]. http://doi.org/10.18739/A2K649T2G
    Explore at:
    Dataset updated
    May 20, 2020
    Dataset provided by
    Arctic Data Center
    Authors
    Wenwen Li
    Time period covered
    Jan 1, 2013 - Jan 1, 2016
    Area covered
    Description

    This project develop components of a polar cyberinfrastructure (CI) to support researchers and users for data discovery and access. The main goal is to provide tools that will enable a better access to polar data and information, hence allowing to spend more time on analysis and research, and significantly less time on discovery and searching. A large-scale web crawler, PolarHub, is developed to continuously mine the Internet to discover dispersed polar data. Beside identifying polar data in major data repositories, PolarHub is also able to bring individual hidden resources forward, hence increasing the discoverability of polar data. Quality and assessment of data resources are analyzed inside of PolarHub, providing a key tool for not only identifying issues but also to connect the research community with optimal data resources.

    In the current PolarHub system, seven different types of geospatial data and processing services that are compliant with OGC (Open Geospatial Consortium) are supported in the system. They are: -- OGC Web Map Service (WMS): is a standard protocol for serving (over the Internet)georeferenced map images which a map server generates using data from a GIS database. -- OGC Web Feature Service (WFS): provides an interface allowing requests for geographical features across the web using platform-independent calls. -- OGC Web Coverage Service (WCS): Interface Standard defines Web-based retrieval of coverages; that is, digital geospatial information representing space/time-varying phenomena. -- OGC Web Map Tile Service (WMTS): is a standard protocol for serving pre-rendered georeferenced map tiles over the Internet. -- OGC Sensor Observation Service (SOS): is a web service to query real-time sensor data and sensor data time series and is part of theSensor Web. The offered sensor data comprises descriptions of sensors themselves, which are encoded in the Sensor Model Language (SensorML), and the measured values in the Observations and Measurements (O and M) encoding format. -- OGC Web Processing Service (WPS): Interface Standard provides rules for standardizing how inputs and outputs (requests and responses) for invoking geospatial processing services, such as polygon overlay, as a web service. -- OGC Catalog Service for the Web (CSW): is a standard for exposing a catalogue of geospatial records in XML on the Internet (over HTTP). The catalogue is made up of records that describe geospatial data (e.g. KML), geospatial services (e.g. WMS), and related resources.

    PolarHub has three main functions: (1) visualization and metadata viewing of geospatial data services; (2) user-guided real-time data crawling; and (3) data filtering and search from PolarHub data repository.

  6. W

    Web Scrapper Software Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated May 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). Web Scrapper Software Report [Dataset]. https://www.archivemarketresearch.com/reports/web-scrapper-software-561089
    Explore at:
    ppt, pdf, docAvailable download formats
    Dataset updated
    May 20, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global web scraper software market, valued at $7241.5 million in 2025, is poised for substantial growth. While the provided CAGR is missing, considering the rapid expansion of e-commerce, big data analytics, and the increasing need for real-time data across various sectors, a conservative estimate would place the Compound Annual Growth Rate (CAGR) between 15% and 20% for the forecast period 2025-2033. This growth is fueled by several key drivers. The rising demand for automated data extraction from websites for market research, price comparison, lead generation, and competitive analysis is significantly boosting market adoption. Furthermore, advancements in AI and machine learning are enhancing the capabilities of web scrapers, enabling more efficient and accurate data retrieval. The diverse application segments, including retail & e-commerce, advertising & media, finance, and real estate, all contribute to the market's expansive potential. While challenges such as website structure changes and legal constraints related to data scraping exist, the overall market outlook remains positive. The increasing sophistication of web scraping tools and the development of robust solutions that address legal and ethical concerns are mitigating these restraints. The market segmentation reveals a diverse landscape. General-purpose web scrapers cater to a broad user base, while focused scrapers target specific data types and websites. Incremental scrapers efficiently update existing datasets, and deep web scrapers access data beyond standard search engines. The application-based segmentation underscores the versatility of the technology, with e-commerce and advertising and media sectors being significant contributors. Leading players like Apify, Import.io, and Octoparse are driving innovation and competition, contributing to a robust and evolving market. Regional analysis suggests significant market presence across North America and Europe, followed by a growing presence in the Asia-Pacific region. The continued development of robust, ethical, and user-friendly web scraping solutions will be key to unlocking the full potential of this rapidly expanding market.

  7. n

    web-cc12-hostgraph

    • networkrepository.com
    csv
    Updated Oct 4, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Network Data Repository (2018). web-cc12-hostgraph [Dataset]. https://networkrepository.com/web-cc12-hostgraph.php
    Explore at:
    csvAvailable download formats
    Dataset updated
    Oct 4, 2018
    Dataset authored and provided by
    Network Data Repository
    License

    https://networkrepository.com/policy.phphttps://networkrepository.com/policy.php

    Description

    Host-level Web Graph - This graph aggregates the page graph by subdomain/host where each node represents a specific subdomain/host and an edge exists between a pair of hosts/subdomains if at least one link was found between pages that belong to a pair of subdomains/hosts. The hyperlink graph was extracted from the Web corpus released by the Common Crawl Foundation in August 2012. The Web corpus was gathered using a web crawler employing a breadth-first-search selection strategy and embedding link discovery while crawling. The crawl was seeded with a large number of URLs from former crawls performed by the Common Crawl Foundation. Also, see web-cc12-firstlevel-subdomain and web-cc12-PayLevelDomain.

  8. 888.hu [TEI]

    • zenodo.org
    Updated Jun 22, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gábor Palkó; Gábor Palkó; Balázs Indig; Balázs Indig; Zsófia Fellegi; Zsófia Fellegi; Zsófia Sárközi-Lindner; Zsófia Sárközi-Lindner (2022). 888.hu [TEI] [Dataset]. http://doi.org/10.5281/zenodo.6584022
    Explore at:
    Dataset updated
    Jun 22, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Gábor Palkó; Gábor Palkó; Balázs Indig; Balázs Indig; Zsófia Fellegi; Zsófia Fellegi; Zsófia Sárközi-Lindner; Zsófia Sárközi-Lindner
    Time period covered
    Jan 10, 2022
    Description

    This object contains is the most comprehensive curated version available at the date of publication. For further information on the content and for other fractions see: 888.hu.
    Please fill in the following form before requesting access to this dataset:ACCES FORM

  9. E

    Turkish web corpus MaCoCu-tr 1.0

    • live.european-language-grid.eu
    xml
    Updated Apr 26, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Turkish web corpus MaCoCu-tr 1.0 [Dataset]. https://live.european-language-grid.eu/catalogue/corpus/19770
    Explore at:
    xmlAvailable download formats
    Dataset updated
    Apr 26, 2022
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    The Turkish web corpus MaCoCu-tr 1.0 was built by crawling the ".tr" internet top-level domain in 2021, extending the crawl dynamically to other domains as well (https://github.com/macocu/MaCoCu-crawler).

    Considerable efforts were devoted into cleaning the extracted text to provide a high-quality web corpus. This was achieved by removing boilerplate (https://corpus.tools/wiki/Justext) and near-duplicated paragraphs (https://corpus.tools/wiki/Onion), discarding very short texts as well as texts that are not in the target language. The dataset is characterized by extensive metadata which allows filtering the dataset based on text quality and other criteria (https://github.com/bitextor/monotextor), making the corpus highly useful for corpus linguistics studies, as well as for training language models and other language technologies.

    Each document is accompanied by the following metadata: title, crawl date, url, domain, file type of the original document, distribution of languages inside the document, and a fluency score (based on a language model). The text of each document is divided into paragraphs that are accompanied by metadata on the information whether a paragraph is a heading or not, metadata on the paragraph quality and fluency, the automatically identified language of the text in the paragraph, and information whether the paragraph contains personal information.

    This action has received funding from the European Union's Connecting Europe Facility 2014-2020 - CEF Telecom, under Grant Agreement No. INEA/CEF/ICT/A2020/2278341. This communication reflects only the author’s view. The Agency is not responsible for any use that may be made of the information it contains.

  10. P

    C4 Dataset

    • paperswithcode.com
    Updated Dec 13, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Colin Raffel; Noam Shazeer; Adam Roberts; Katherine Lee; Sharan Narang; Michael Matena; Yanqi Zhou; Wei Li; Peter J. Liu (2023). C4 Dataset [Dataset]. https://paperswithcode.com/dataset/c4
    Explore at:
    Dataset updated
    Dec 13, 2023
    Authors
    Colin Raffel; Noam Shazeer; Adam Roberts; Katherine Lee; Sharan Narang; Michael Matena; Yanqi Zhou; Wei Li; Peter J. Liu
    Description

    C4 is a colossal, cleaned version of Common Crawl's web crawl corpus. It was based on Common Crawl dataset: https://commoncrawl.org. It was used to train the T5 text-to-text Transformer models.

    The dataset can be downloaded in a pre-processed form from allennlp.

  11. Kuruc.info [TEI]

    • zenodo.org
    Updated Apr 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gábor Palkó; Gábor Palkó; Balázs Indig; Balázs Indig; Zsófia Fellegi; Zsófia Fellegi; Zsófia Sárközi-Lindner; Zsófia Sárközi-Lindner (2022). Kuruc.info [TEI] [Dataset]. http://doi.org/10.5281/zenodo.6338090
    Explore at:
    Dataset updated
    Apr 13, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Gábor Palkó; Gábor Palkó; Balázs Indig; Balázs Indig; Zsófia Fellegi; Zsófia Fellegi; Zsófia Sárközi-Lindner; Zsófia Sárközi-Lindner
    Time period covered
    Mar 8, 2022
    Description

    This object contains is the most comprehensive curated version available at the date of publication. For further information on the content and for other fractions see: Kuruc.info.
    Please fill in the following form before requesting access to this dataset:ACCES FORM

  12. ScrapeHero Data Cloud - Free and Easy to use

    • datarade.ai
    .json, .csv
    Updated Apr 11, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Scrapehero (2022). ScrapeHero Data Cloud - Free and Easy to use [Dataset]. https://datarade.ai/data-products/scrapehero-data-cloud-free-and-easy-to-use-scrapehero
    Explore at:
    .json, .csvAvailable download formats
    Dataset updated
    Apr 11, 2022
    Dataset provided by
    ScrapeHero
    Authors
    Scrapehero
    Area covered
    Bhutan, Bahamas, Ghana, Dominica, Slovakia, Anguilla, Portugal, Niue, Chad, Bahrain
    Description

    The Easiest Way to Collect Data from the Internet Download anything you see on the internet into spreadsheets within a few clicks using our ready-made web crawlers or a few lines of code using our APIs

    We have made it as simple as possible to collect data from websites

    Easy to Use Crawlers Amazon Product Details and Pricing Scraper Amazon Product Details and Pricing Scraper Get product information, pricing, FBA, best seller rank, and much more from Amazon.

    Google Maps Search Results Google Maps Search Results Get details like place name, phone number, address, website, ratings, and open hours from Google Maps or Google Places search results.

    Twitter Scraper Twitter Scraper Get tweets, Twitter handle, content, number of replies, number of retweets, and more. All you need to provide is a URL to a profile, hashtag, or an advance search URL from Twitter.

    Amazon Product Reviews and Ratings Amazon Product Reviews and Ratings Get customer reviews for any product on Amazon and get details like product name, brand, reviews and ratings, and more from Amazon.

    Google Reviews Scraper Google Reviews Scraper Scrape Google reviews and get details like business or location name, address, review, ratings, and more for business and places.

    Walmart Product Details & Pricing Walmart Product Details & Pricing Get the product name, pricing, number of ratings, reviews, product images, URL other product-related data from Walmart.

    Amazon Search Results Scraper Amazon Search Results Scraper Get product search rank, pricing, availability, best seller rank, and much more from Amazon.

    Amazon Best Sellers Amazon Best Sellers Get the bestseller rank, product name, pricing, number of ratings, rating, product images, and more from any Amazon Bestseller List.

    Google Search Scraper Google Search Scraper Scrape Google search results and get details like search rank, paid and organic results, knowledge graph, related search results, and more.

    Walmart Product Reviews & Ratings Walmart Product Reviews & Ratings Get customer reviews for any product on Walmart.com and get details like product name, brand, reviews, and ratings.

    Scrape Emails and Contact Details Scrape Emails and Contact Details Get emails, addresses, contact numbers, social media links from any website.

    Walmart Search Results Scraper Walmart Search Results Scraper Get Product details such as pricing, availability, reviews, ratings, and more from Walmart search results and categories.

    Glassdoor Job Listings Glassdoor Job Listings Scrape job details such as job title, salary, job description, location, company name, number of reviews, and ratings from Glassdoor.

    Indeed Job Listings Indeed Job Listings Scrape job details such as job title, salary, job description, location, company name, number of reviews, and ratings from Indeed.

    LinkedIn Jobs Scraper Premium LinkedIn Jobs Scraper Scrape job listings on LinkedIn and extract job details such as job title, job description, location, company name, number of reviews, and more.

    Redfin Scraper Premium Redfin Scraper Scrape real estate listings from Redfin. Extract property details such as address, price, mortgage, redfin estimate, broker name and more.

    Yelp Business Details Scraper Yelp Business Details Scraper Scrape business details from Yelp such as phone number, address, website, and more from Yelp search and business details page.

    Zillow Scraper Premium Zillow Scraper Scrape real estate listings from Zillow. Extract property details such as address, price, Broker, broker name and more.

    Amazon product offers and third party sellers Amazon product offers and third party sellers Get product pricing, delivery details, FBA, seller details, and much more from the Amazon offer listing page.

    Realtor Scraper Premium Realtor Scraper Scrape real estate listings from Realtor.com. Extract property details such as Address, Price, Area, Broker and more.

    Target Product Details & Pricing Target Product Details & Pricing Get product details from search results and category pages such as pricing, availability, rating, reviews, and 20+ data points from Target.

    Trulia Scraper Premium Trulia Scraper Scrape real estate listings from Trulia. Extract property details such as Address, Price, Area, Mortgage and more.

    Amazon Customer FAQs Amazon Customer FAQs Get FAQs for any product on Amazon and get details like the question, answer, answered user name, and more.

    Yellow Pages Scraper Yellow Pages Scraper Get details like business name, phone number, address, website, ratings, and more from Yellow Pages search results.

  13. Transindex [TEI]

    • zenodo.org
    • explore.openaire.eu
    Updated Apr 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gábor Palkó; Gábor Palkó; Balázs Indig; Balázs Indig; Zsófia Fellegi; Zsófia Fellegi; Zsófia Sárközi-Lindner; Zsófia Sárközi-Lindner (2022). Transindex [TEI] [Dataset]. http://doi.org/10.5281/zenodo.5828867
    Explore at:
    Dataset updated
    Apr 13, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Gábor Palkó; Gábor Palkó; Balázs Indig; Balázs Indig; Zsófia Fellegi; Zsófia Fellegi; Zsófia Sárközi-Lindner; Zsófia Sárközi-Lindner
    Time period covered
    Jan 7, 2022
    Description

    This object contains is the most comprehensive curated version available at the date of publication. For further information on the content and for other fractions see: Transindex.
    Please fill in the following form before requesting access to this dataset:ACCES FORM

  14. f

    University e-mail number and injectable URL statistics.

    • plos.figshare.com
    xls
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ying-Chiang Cho; Jen-Yi Pan (2023). University e-mail number and injectable URL statistics. [Dataset]. http://doi.org/10.1371/journal.pone.0117180.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Ying-Chiang Cho; Jen-Yi Pan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    University e-mail number and injectable URL statistics.

  15. f

    E-mail addresses in three department websites.

    • plos.figshare.com
    xls
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ying-Chiang Cho; Jen-Yi Pan (2023). E-mail addresses in three department websites. [Dataset]. http://doi.org/10.1371/journal.pone.0117180.t003
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Ying-Chiang Cho; Jen-Yi Pan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    E-mail addresses in three department websites.

  16. w

    Web Data Commons - RDFa, Microdata, and Microformat Data Sets

    • webdatacommons.org
    n-quads
    Updated Oct 15, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Christian Bizer; Robert Meusel; Anna Primpeli (2016). Web Data Commons - RDFa, Microdata, and Microformat Data Sets [Dataset]. http://webdatacommons.org/structureddata/2016-10/stats/stats.html
    Explore at:
    n-quadsAvailable download formats
    Dataset updated
    Oct 15, 2016
    Authors
    Christian Bizer; Robert Meusel; Anna Primpeli
    Description

    Microformat, Microdata and RDFa data from the October 2016 Common Crawl web corpus. We found structured data within 1.24 billion HTML pages out of the 3.2 billion pages contained in the crawl (38%). These pages originate from 5.63 million different pay-level-domains out of the 34 million pay-level-domains covered by the crawl (16.5%). Altogether, the extracted data sets consist of 44.2 billion RDF quads.

  17. Data from: Intelligent Data-Driven Acquisition Method for User Requirements

    • figshare.com
    text/x-python
    Updated Jul 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tingting Yang (2023). Intelligent Data-Driven Acquisition Method for User Requirements [Dataset]. http://doi.org/10.6084/m9.figshare.23722047.v1
    Explore at:
    text/x-pythonAvailable download formats
    Dataset updated
    Jul 21, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Tingting Yang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Consumer behavior has changed due to digitization. Online shoppers now refer to user reviews containing comprehensive data produced in real-time, which can be used to determine users’ needs. This paper combines Kansei engineering and natural language processing techniques to extract information on users’ needs from online reviews and provide guidance for subsequent product improvements and development. A crawler tool was used to collect a large number of online reviews for a target product. Frequency analysis was then applied to the text to filter out the product components worth analyzing. The results were categorized and aggregated by experts before sentiment analysis was performed on statements containing the selected adjectives. Finally, the user needs identified could be inputted to Kansei engineering for further product design. This paper verifies the merit of the above method when applied to the mountain bike product category on Amazon. The method proved to be a quick and efficient way to attain accurate product evaluations from end-users and thus represents a feasible approach to intelligently determining user preferences.

  18. l

    Data from: esCorpius: A Massive Spanish Crawling Corpus

    • lindat.cz
    • live.european-language-grid.eu
    • +1more
    Updated Nov 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gutiérrez-Fandiño Asier; Pérez-Fernández David; Armengol-Estapé Jordi; Griol David; Callejas Zoraida (2023). esCorpius: A Massive Spanish Crawling Corpus [Dataset]. https://lindat.cz/repository/xmlui/handle/11372/LRT-4807?show=full
    Explore at:
    Dataset updated
    Nov 16, 2023
    Authors
    Gutiérrez-Fandiño Asier; Pérez-Fernández David; Armengol-Estapé Jordi; Griol David; Callejas Zoraida
    License

    Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
    License information was derived automatically

    Description

    In the recent years, Transformer-based models have lead to significant advances in language modelling for natural language processing. However, they require a vast amount of data to be (pre-)trained and there is a lack of corpora in languages other than English. Recently, several initiatives have presented multilingual datasets obtained from automatic web crawling. However, the results in Spanish present important shortcomings, as they are either too small in comparison with other languages, or present a low quality derived from sub-optimal cleaning and deduplication. In this paper, we introduce esCorpius, a Spanish crawling corpus obtained from near 1 Pb of Common Crawl data. It is the most extensive corpus in Spanish with this level of quality in the extraction, purification and deduplication of web textual content. Our data curation process involves a novel highly parallel cleaning pipeline and encompasses a series of deduplication mechanisms that together ensure the integrity of both document and paragraph boundaries. Additionally, we maintain both the source web page URL and the WARC shard origin URL in order to complain with EU regulations. esCorpius has been released under CC BY-NC-ND 4.0 license.

  19. Crawler Based Search Engine Market Report | Global Forecast From 2025 To...

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Crawler Based Search Engine Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/crawler-based-search-engine-market
    Explore at:
    csv, pdf, pptxAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Crawler Based Search Engine Market Outlook



    The global crawler based search engine market size was estimated to be USD 25 billion in 2023 and is projected to reach USD 75 billion by 2032, growing at a compound annual growth rate (CAGR) of 12.5% during the forecast period. This growth is driven by the increasing need for sophisticated search engine solutions in various industries such as e-commerce, BFSI, and healthcare. The demand for efficient data retrieval and the rising importance of search engine optimization (SEO) are significant factors fueling market expansion.



    One of the primary growth factors for the crawler based search engine market is the exponential growth of data generated across different platforms. With the advent of big data and the Internet of Things (IoT), the amount of structured and unstructured data has surged, necessitating advanced search solutions that can efficiently index and retrieve relevant information. This has led to the adoption of crawler-based search engines, which are capable of handling large volumes of data and providing accurate search results quickly. Furthermore, the increasing reliance on digital platforms for business operations and customer interactions is also pushing companies to invest in robust search engine technologies.



    Another contributing factor to the marketÂ’s growth is the rising importance of personalized search experiences. Modern consumers expect search engines to understand their preferences and deliver highly relevant results. Crawler-based search engines utilize advanced algorithms and artificial intelligence (AI) techniques to analyze user behavior and preferences, thereby offering personalized search experiences. This not only enhances user satisfaction but also boosts engagement and retention rates, making these search engines an attractive investment for businesses across various sectors.



    Moreover, the growing emphasis on search engine optimization (SEO) and digital marketing strategies has further bolstered the demand for crawler-based search engines. Businesses are increasingly leveraging these search engines to optimize their online presence and improve their search engine rankings. By crawling and indexing web pages efficiently, these search engines enable businesses to gain insights into their website performance and make data-driven decisions to enhance their SEO strategies. This, in turn, drives market growth as companies strive to stay competitive in the digital landscape.



    Insight Engines are becoming increasingly vital in the realm of data management and retrieval. These engines are designed to provide users with deeper insights by analyzing large datasets and delivering contextual information. As businesses generate vast amounts of data, Insight Engines help in transforming this data into actionable insights, enabling organizations to make informed decisions. They leverage advanced technologies such as natural language processing and machine learning to understand user queries and provide precise answers. This capability is particularly beneficial for industries that rely heavily on data-driven strategies, as it enhances the ability to uncover hidden patterns and trends within data.



    Regionally, North America holds a significant share of the crawler-based search engine market, primarily due to the presence of major technology companies and the rapid adoption of advanced search solutions in the region. The Asia Pacific region is also expected to witness substantial growth during the forecast period, driven by the increasing digitization efforts and the rising number of internet users in countries like China and India. Additionally, Europe and Latin America are anticipated to contribute to market growth, supported by the growing emphasis on digital transformation and data-driven decision-making in these regions.



    Component Analysis



    The crawler-based search engine market can be segmented by component into software, hardware, and services. The software segment dominates the market, driven by the continuous advancements in search engine algorithms and the integration of artificial intelligence (AI) and machine learning (ML) technologies. Search engines are becoming more sophisticated, capable of understanding natural language queries and providing more accurate and relevant search results. The demand for such advanced software solutions is increasing as businesses seek to enhance their search capabilities and deliver better user experiences.



  20. w

    RDFa, Microdata, and Microformat Data Set

    • data.wu.ac.at
    html
    Updated Aug 3, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Web Data Commons (2014). RDFa, Microdata, and Microformat Data Set [Dataset]. https://data.wu.ac.at/schema/datahub_io/MDhkYWU2ODMtNmFjYi00NDgxLWFjODMtMjFjOGUzYTVlNzFm
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Aug 3, 2014
    Dataset provided by
    Web Data Commons
    Description

    More and more websites have started to embed structured data describing products, people, organizations, places, events into their HTML pages using markup standards such as RDFa, Microdata and Microformats. The Web Data Commons project extracts this data from several billion web pages. The project provides the extracted data for download and publishes statistics about the deployment of the different formats.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2014). Common Crawl Dataset [Dataset]. https://paperswithcode.com/dataset/common-crawl

Common Crawl Dataset

Explore at:
Dataset updated
Oct 7, 2014
Description

The Common Crawl corpus contains petabytes of data collected over 12 years of web crawling. The corpus contains raw web page data, metadata extracts and text extracts. Common Crawl data is stored on Amazon Web Services’ Public Data Sets and on multiple academic cloud platforms across the world.

Search
Clear search
Close search
Google apps
Main menu