Facebook
Twitterhttps://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The Geographic Information Systems (GIS) platform market is poised for substantial growth, projected to reach an estimated market size of $XXX million in 2025, with a Compound Annual Growth Rate (CAGR) of XX% expected throughout the forecast period of 2025-2033. This robust expansion is primarily driven by the increasing demand for sophisticated data visualization, spatial analysis, and location-based services across a multitude of sectors. The government and utilities sector is a significant contributor, leveraging GIS for infrastructure management, urban planning, resource allocation, and emergency response. Commercial applications are also rapidly adopting GIS for customer analytics, supply chain optimization, real estate development, and targeted marketing. The proliferation of web-enabled GIS solutions, including Web Map Services, is democratizing access to geospatial data and tools, fostering innovation and wider adoption beyond traditional GIS professionals. Desktop GIS continues to hold its ground for complex analytical tasks, but the trend towards cloud-based and mobile GIS solutions is accelerating, offering greater flexibility and scalability. Key trends shaping the GIS platform market include the integration of Artificial Intelligence (AI) and Machine Learning (ML) for advanced spatial analytics and predictive modeling, the growing importance of real-time data processing and streaming, and the rise of open-source GIS solutions challenging established players. The increasing availability of high-resolution satellite imagery and IoT sensor data further fuels the need for powerful GIS platforms. However, certain restraints might temper this growth, such as the initial cost of implementation for some advanced solutions, a potential shortage of skilled GIS professionals, and data privacy concerns associated with extensive location data collection. The market is characterized by intense competition among established global players and emerging innovators, all vying to capture market share by offering comprehensive, user-friendly, and technologically advanced GIS solutions. This comprehensive report delves into the dynamic Geographic Information Systems (GIS) Platform market, providing in-depth analysis and forecasts from 2019 to 2033, with a base year of 2025. The study meticulously examines market concentration, key trends, regional dominance, product insights, and the driving forces and challenges shaping this vital industry. We project the market to reach values in the tens of millions and hundreds of millions of dollars across various segments.
Facebook
Twitterhttps://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global Geographic Information System (GIS) software market size is projected to grow from USD 9.1 billion in 2023 to USD 18.5 billion by 2032, reflecting a compound annual growth rate (CAGR) of 8.5% over the forecast period. This growth is driven by the increasing application of GIS software across various sectors such as agriculture, construction, transportation, and utilities, along with the rising demand for location-based services and advanced mapping solutions.
One of the primary growth factors for the GIS software market is the widespread adoption of spatial data by various industries to enhance operational efficiency. In agriculture, for instance, GIS software plays a crucial role in precision farming by aiding in crop monitoring, soil analysis, and resource management, thereby optimizing yield and reducing costs. In the construction sector, GIS software is utilized for site selection, design and planning, and infrastructure management, making project execution more efficient and cost-effective.
Additionally, the integration of GIS with emerging technologies such as Artificial Intelligence (AI) and the Internet of Things (IoT) is significantly enhancing the capabilities of GIS software. AI-driven data analytics and IoT-enabled sensors provide real-time data, which, when combined with spatial data, results in more accurate and actionable insights. This integration is particularly beneficial in fields like smart city planning, disaster management, and environmental monitoring, further propelling the market growth.
Another significant factor contributing to the market expansion is the increasing government initiatives and investments aimed at improving geospatial infrastructure. Governments worldwide are recognizing the importance of GIS in policy-making, urban planning, and public safety, leading to substantial investments in GIS technologies. For example, the U.S. governmentÂ’s Geospatial Data Act emphasizes the development of a cohesive national geospatial policy, which in turn is expected to create more opportunities for GIS software providers.
Geographic Information System Analytics is becoming increasingly pivotal in transforming raw geospatial data into actionable insights. By employing sophisticated analytical tools, GIS Analytics allows organizations to visualize complex spatial relationships and patterns, enhancing decision-making processes across various sectors. For instance, in urban planning, GIS Analytics can identify optimal locations for new infrastructure projects by analyzing population density, traffic patterns, and environmental constraints. Similarly, in the utility sector, it aids in asset management by predicting maintenance needs and optimizing resource allocation. The ability to integrate GIS Analytics with other data sources, such as demographic and economic data, further amplifies its utility, making it an indispensable tool for strategic planning and operational efficiency.
Regionally, North America holds the largest share of the GIS software market, driven by technological advancements and high adoption rates across various sectors. Europe follows closely, with significant growth attributed to the increasing use of GIS in environmental monitoring and urban planning. The Asia Pacific region is anticipated to witness the highest growth rate during the forecast period, fueled by rapid urbanization, infrastructure development, and government initiatives in countries like China and India.
The GIS software market is segmented into software and services, each playing a vital role in meeting the diverse needs of end-users. The software segment encompasses various types of GIS software, including desktop GIS, web GIS, and mobile GIS. Desktop GIS remains the most widely used, offering comprehensive tools for spatial analysis, data management, and visualization. Web GIS, on the other hand, is gaining traction due to its accessibility and ease of use, allowing users to access GIS capabilities through a web browser without the need for extensive software installations.
Mobile GIS is another crucial aspect of the software segment, providing field-based solutions for data collection, asset management, and real-time decision making. With the increasing use of smartphones and tablets, mobile GIS applications are becoming indispensable for sectors such as utilities, transportation, and
Facebook
TwitterThe ATLSS Data Visualization System was designed to make it simple to view and analyze Spatially-Explicit Species Index (SESI) models.
Facebook
Twitterhttps://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The Global GIS Mapping Tools Market is poised for significant expansion, projected to reach a substantial market size of $10 billion by 2025, with an anticipated Compound Annual Growth Rate (CAGR) of 12.5% through 2033. This robust growth trajectory is fueled by the increasing demand for advanced spatial analysis and visualization capabilities across a multitude of sectors. Key drivers include the escalating need for accurate geological exploration to identify and manage natural resources, the critical role of GIS in planning and executing complex water conservancy projects for sustainable water management, and the indispensable application of GIS in urban planning for efficient city development and infrastructure management. Furthermore, the burgeoning adoption of cloud-based and web-based GIS solutions is democratizing access to powerful mapping tools, enabling broader use by organizations of all sizes. The market is also benefiting from advancements in data processing, artificial intelligence integration, and the growing availability of open-source GIS platforms. Despite the optimistic outlook, certain restraints could temper the market's full potential. High initial investment costs for sophisticated GIS software and hardware, coupled with a shortage of skilled GIS professionals in certain regions, may pose challenges. However, the overwhelming benefits of enhanced decision-making, improved operational efficiency, and the ability to gain deep insights from spatial data are compelling organizations to overcome these hurdles. The competitive landscape is dynamic, featuring established players like Esri and Autodesk alongside innovative providers such as Mapbox and CARTO, all vying for market share by offering specialized features, user-friendly interfaces, and integrated solutions. The continuous evolution of GIS technology, driven by the integration of remote sensing data, big data analytics, and real-time information, will continue to shape the market's future. Here's a comprehensive report description on GIS Mapping Tools, incorporating your specified requirements:
This in-depth report provides a panoramic view of the global GIS Mapping Tools market, meticulously analyzing its landscape from the Historical Period (2019-2024) through to the Forecast Period (2025-2033), with 2025 serving as both the Base Year and the Estimated Year. The study period encompasses 2019-2033, offering a robust historical context and forward-looking projections. The market is valued in the millions of US dollars, with detailed segment-specific valuations and growth trajectories. The report is structured to deliver actionable intelligence to stakeholders, covering market concentration, key trends, regional dominance, product insights, and critical industry dynamics. It delves into the intricate interplay of companies such as Esri, Hexagon, Autodesk, CARTO, and Mapbox, alongside emerging players like Geoway and Shenzhen Edraw Software, across diverse applications including Geological Exploration, Water Conservancy Projects, and Urban Planning. The analysis also differentiates between Cloud Based and Web Based GIS solutions, providing a granular understanding of market segmentation.
Facebook
TwitterThis study focuses on the use of citizen science and GIS tools for collecting and analyzing data on Rose Swanson Mountain in British Columbia, Canada. While several organizations collect data on wildlife habitats, trail mapping, and fire documentation on the mountain, there are few studies conducted on the area and citizen science is not being addressed. The study aims to aggregate various data sources and involve citizens in the data collection process using ArcGIS Dashboard and ArcGIS Survey 123. These GIS tools allow for the integration and analysis of different kinds of data, as well as the creation of interactive maps and surveys that can facilitate citizen engagement and data collection. The data used in the dashboard was sourced from BC Data Catalogue, Explore the Map, and iNaturalist. Results show effective citizen participation, with 1073 wildlife observations and 3043 plant observations. The dashboard provides a user-friendly interface for citizens to tailor their map extent and layers, access surveys, and obtain information on each attribute included in the pop-up by clicking. Analysis on classification of fuel types, ecological communities, endangered wildlife species presence and critical habitat, and scope of human activities can be conducted based on the distribution of data. The dashboard can provide direction for researchers to develop research or contribute to other projects in progress, as well as advocate for natural resource managers to use citizen science data. The study demonstrates the potential for GIS and citizen science to contribute to meaningful discoveries and advancements in areas.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Biogeoclimatic Ecosystem Classification (BEC) system is the ecosystem classification adopted in the forest management within British Columbia based on vegetation, soil, and climate characteristics whereas Site Series is the smallest unit of the system. The Ministry of Forests, Lands, Natural Resource Operations and Rural Development held under the Government of British Columbia (“the Ministry”) developed a web-based tool known as BEC Map for maintaining and sharing the information of the BEC system, but the Site Series information was not included in the tool due to its quantity and complexity. In order to allow users to explore and interact with the information, this project aimed to develop a web-based tool with high data quality and flexibility to users for the Site Series classes using the “Shiny” and “Leaflet” packages in R. The project started with data classification and pre-processing of the raster images and attribute tables through identification of client requirements, spatial database design and data cleaning. After data transformation was conducted, spatial relationships among these data were developed for code development. The code development included the setting-up of web map and interactive tools for facilitating user friendliness and flexibility. The codes were further tested and enhanced to meet the requirements of the Ministry. The web-based tool provided an efficient and effective platform to present the complicated Site Series features with the use of Web Mapping System (WMS) in map rendering. Four interactive tools were developed to allow users to examine and interact with the information. The study also found that the mode filter performed well in data preservation and noise minimization but suffered from long processing time and creation of tiny sliver polygons.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Recent advances in Computer Science and the spread of internet connection have allowed specialists to virtualize complex environments on the web and offer further information with realistic exploration experiences. At the same time, the fruition of complex geospatial datasets (point clouds, Building Information Modelling (BIM) models, 2D and 3D models) on the web is still a challenge, because usually it involves the usage of different proprietary software solutions, and the input data need further simplification for computational effort reduction. Moreover, integrating geospatial datasets acquired in different ways with various sensors remains a challenge. An interesting question, in that respect, is how to integrate 3D information in a 3D GIS (Geographic Information System) environment and manage different scales of information in the same application. Integrating a multiscale level of information is currently the first step when it comes to digital twinning. It is needed to properly manage complex urban datasets in digital twins related to the management of the buildings (cadastral management, prevention of natural and anthropogenic hazards, structure monitoring, etc.). Therefore, the current research shows the development of a freely accessible 3D Web navigation model based on open-source technology that allows the visualization of heterogeneous complex geospatial datasets in the same virtual environment. This solution employs JavaScript libraries based on WebGL technology. The model is accessible through web browsers and does not need software installation from the user side. The case study is the new building of the University of Twente-Faculty of Geo-Information (ITC), located in Enschede (the Netherlands). The developed solution allows switching between heterogeneous datasets (point clouds, BIM, 2D and 3D models) at different scales and visualization (indoor first-person navigation, outdoor navigation, urban navigation). This solution could be employed by governmental stakeholders or the private sector to remotely visualize complex datasets on the web in a unique visualization, and take decisions only based on open-source solutions. Furthermore, this system can incorporate underground data or real-time sensor data from the IoT (Internet of Things) for digital twinning tasks.
Facebook
TwitterIn 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Offshore of Coal Oil Point map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Offshore Coal Oil Point map area data layers. Data layers are symbolized as shown on the associated map sheets.
Facebook
TwitterIn 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Offshore of Tomales Point map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Offshore of Tomales Point map area data layers. Data layers are symbolized as shown on the associated map sheets.
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
North America Geographic Information System Market Size 2025-2029
The geographic information system market size in North America is forecast to increase by USD 11.4 billion at a CAGR of 23.7% between 2024 and 2029.
The market is experiencing significant growth due to the increasing adoption of advanced technologies such as artificial intelligence, satellite imagery, and sensors in various industries. In fleet management, GIS software is being used to optimize routes and improve operational efficiency. In the context of smart cities, GIS solutions are being utilized for content delivery, public safety, and building information modeling. The demand for miniaturization of technologies is also driving the market, allowing for the integration of GIS into smaller devices and applications. However, data security concerns remain a challenge, as the collection and storage of sensitive information requires robust security measures. The insurance industry is also leveraging GIS for telematics and risk assessment, while the construction sector uses GIS for server-based project management and planning. Overall, the GIS market is poised for continued growth as these trends and applications continue to evolve.
What will be the Size of the market During the Forecast Period?
Request Free Sample
The Geographic Information System (GIS) market encompasses a range of technologies and applications that enable the collection, management, analysis, and visualization of spatial data. Key industries driving market growth include transportation, infrastructure planning, urban planning, and environmental monitoring. Remote sensing technologies, such as satellite imaging and aerial photography, play a significant role in data collection. Artificial intelligence and the Internet of Things (IoT) are increasingly integrated into GIS solutions for real-time location data processing and operational efficiency.
Applications span various sectors, including agriculture, natural resources, construction, and smart cities. GIS is essential for infrastructure analysis, disaster management, and land management. Geospatial technology enables spatial data integration, providing valuable insights for decision-making and optimization. Market size is substantial and growing, fueled by increasing demand for efficient urban planning, improved infrastructure, and environmental sustainability. Geospatial startups continue to emerge, innovating in areas such as telematics, natural disasters, and smart city development.
How is this market segmented and which is the largest segment?
The market research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Component
Software
Data
Services
Deployment
On-premise
Cloud
Geography
North America
Canada
Mexico
US
By Component Insights
The software segment is estimated to witness significant growth during the forecast period.
The Geographic Information System (GIS) market encompasses desktop, mobile, cloud, and server software for managing and analyzing spatial data. In North America, industry-specific GIS software dominates, with some commercial entities providing open-source alternatives for limited functions like routing and geocoding. Despite this, counterfeit products pose a threat, making open-source software a viable option for smaller applications. Market trends indicate a shift towards cloud-based GIS solutions for enhanced operational efficiency and real-time location data. Spatial data applications span various sectors, including transportation infrastructure planning, urban planning, natural resources management, environmental monitoring, agriculture, and disaster management. Technological innovations, such as artificial intelligence, the Internet of Things (IoT), and satellite imagery, are revolutionizing GIS solutions.
Cloud-based GIS solutions, IoT integration, and augmented reality are emerging trends. Geospatial technology is essential for smart city projects, climate monitoring, intelligent transportation systems, and land management. Industry statistics indicate steady growth, with key players focusing on product innovation, infrastructure optimization, and geospatial utility solutions.
Get a glance at the market report of share of various segments Request Free Sample
Market Dynamics
Our North America Geographic Information System Market researchers analyzed the data with 2024 as the base year, along with the key drivers, trends, and challenges. A holistic analysis of drivers will help companies refine their marketing strategies to gain a competitive advantage.
What are the key market drivers leading to the rise in the adoption of the North America Geographic Information System Market?
Rising applications of geographic
Facebook
TwitterThis dataset reflects reported incidents of crime (with the exception of murders where data exists for each victim) that occurred in the City of Chicago from 2001 to present, minus the most recent seven days. Data is extracted from the Chicago Police Department's CLEAR (Citizen Law Enforcement Analysis and Reporting) system. In order to protect the privacy of crime victims, addresses are shown at the block level only and specific locations are not identified. Should you have questions about this dataset, you may contact the Research & Development Division of the Chicago Police Department at 312.745.6071 or RandD@chicagopolice.org. Disclaimer: These crimes may be based upon preliminary information supplied to the Police Department by the reporting parties that have not been verified. The preliminary crime classifications may be changed at a later date based upon additional investigation and there is always the possibility of mechanical or human error. Therefore, the Chicago Police Department does not guarantee (either expressed or implied) the accuracy, completeness, timeliness, or correct sequencing of the information and the information should not be used for comparison purposes over time. The Chicago Police Department will not be responsible for any error or omission, or for the use of, or the results obtained from the use of this information. All data visualizations on maps should be considered approximate and attempts to derive specific addresses are strictly prohibited. The Chicago Police Department is not responsible for the content of any off-site pages that are referenced by or that reference this web page other than an official City of Chicago or Chicago Police Department web page. The user specifically acknowledges that the Chicago Police Department is not responsible for any defamatory, offensive, misleading, or illegal conduct of other users, links, or third parties and that the risk of injury from the foregoing rests entirely with the user. The unauthorized use of the words "Chicago Police Department," "Chicago Police," or any colorable imitation of these words or the unauthorized use of the Chicago Police Department logo is unlawful. This web page does not, in any way, authorize such use. Data is updated daily Tuesday through Sunday. The dataset contains more than 65,000 records/rows of data and cannot be viewed in full in Microsoft Excel. Therefore, when downloading the file, select CSV from the Export menu. Open the file in an ASCII text editor, such as Wordpad, to view and search. To access a list of Chicago Police Department - Illinois Uniform Crime Reporting (IUCR) codes, go to http://data.cityofchicago.org/Public-Safety/Chicago-Police-Department-Illinois-Uniform-Crime-R/c7ck-438e
Facebook
TwitterThe Woodflow Centroids Boundaries feature layer contains centroids and boundaries for North American states and provinces (USA, Canada, and Mexico). Also includes two international sites (east and west) for distribution outside of North America. The dataset was created to support the generation of flow lines (inflow and outflow) for timber production movement for the FIA BIGMAP Wood Flow Visualization web application.About FIA's BIGMAPThe USDA Forest Service’s Forest Inventory and Analysis (FIA) program is the authoritative source of information about the conditions of the Agency’s forested lands. Within the FIA program, a new secure, cloud-based, and flexible computing environment has been created, named the Big Data Mapping & Analytics Platform (BIGMAP). BIGMAP is designed to store, process, analyze, and deliver Forest Service content. It does so in ways that streamline our internal workflows and make it easy to share authoritative, map-based content through web technologies. BIGMAP leverages commercial off-the-shelf solutions, reducing development and maintenance costs over the longer term. This focus capitalizes upon Agency investments in FIA and other data. The resulting, authoritative map content will populate the Agency’s WebGIS library for use by Agency managers, decision-makers, and other interested parties.
Facebook
TwitterIn 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Pigeon Point to Monterey map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Pigeon Point to Monterey map area data layers. Data layers are symbolized as shown on the associated map sheets.
Facebook
TwitterIn 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Offshore Fort Ross map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Offshore Fort Ross map area data layers. Data layers are symbolized as shown on the associated map sheets.
Facebook
TwitterThe Woodflow State Receipts MCF feature layer contains roundwood production, receipts, retained, imported, and exported by state, year, class, and product. Roundwood volume is reported in thousand cubic feet (MCF). This feature layer was created for the Wood Flow Visualization web application and is referenced in:Wood Flow Class Comparison Web MapWood Flow Class Comparison Web AppCurrently, the dashboard contains data for the Southern Research Station (SRS). Data from other research stations will be added in the coming months.About FIA's BIGMAPThe USDA Forest Service’s Forest Inventory and Analysis (FIA) program is the authoritative source of information about the conditions of the Agency’s forested lands. Within the FIA program, a new secure, cloud-based, and flexible computing environment has been created, named the Big Data Mapping & Analytics Platform (BIGMAP). BIGMAP is designed to store, process, analyze, and deliver Forest Service content. It does so in ways that streamline our internal workflows and make it easy to share authoritative, map-based content through web technologies. BIGMAP leverages commercial off-the-shelf solutions, reducing development and maintenance costs over the longer term. This focus capitalizes upon Agency investments in FIA and other data. The resulting, authoritative map content will populate the Agency’s WebGIS library for use by Agency managers, decision-makers, and other interested parties.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
From the dawn of the internet, water resources data scientists and engineers have continually and boldly engaged with the challenge of developing and deploying interactive water data visualization and analysis web sites. This challenge is characterized by ever-changing internet technologies, new and endlessly varying programming languages and libraries, rapidly growing datasets, and increasingly complex analytical and modeling techniques. Indeed, the ideal water web site is always just out of reach because of these always changing tools and growing needs. It is likely that such challenges will exist for many future generations of hydroinformaticists. However, we reason that it ought to be possible to at least reduce the gap between what we can readily accomplish with existing tools and technologies and what our ideal might be. Towards this end, the Tethys Platform for water resources web apps has been developed. This platform combines a number of key visualization and data management technologies within a Django-based Python programming environment that simplifies deploying GIS-enabled water resources web apps. The system provides developers and users with an app portal, not entirely unlike the app paradigm that is common on tablets and mobile phones, where each app is developed, tested, deployed, and operated independently of other apps in the same portal. The app development framework includes OpenLayers map visualization, 52North geoprocessing capabilities, PostgreSQL database access, and a number of so-called "gizmos" that simplify user interface development. This presentation will give an architectural overview of the free and open source Tethys Platform and will illustrate the capabilities of the framework using several apps developed using the recently released Tethys version 2.0.
Presentation at 2018 AWRA Spring Specialty Conference: Geographic Information Systems (GIS) and Water Resources X, Orlando, Florida, April 23-25, http://awra.org/meetings/Orlando2018/
Facebook
TwitterUrban rail is potentially coming to Austin, TX. This project examined the physical and economic development changes that could take place by taking the output of Envision Tomorrow and loading it into the CityEngine Web Viewer.
The project team consisted of Civic Analytics, the City of Austin, and the University of Texas. Using a scenario planning software called Envision Tomorrow, the team added data-heavy building types to city parcels most likely to develop while trying to reach population projections for the year 2030. The output of Envision Tomorrow is a number of helpful analytics and maps that demonstrate impact from various future scenarios. These results were then passed on to local stakeholders for feedback to help a more accurate model.
Taking the output and loading it into CityEngine allowed the team to better visualize the height, form, and density impacts of the new development. Whereas before, development was displayed by showing parcels divided up by color in 2D maps, CityEngine enabled the stakeholders to more readily digest the output and spot the differences between scenarios. Stakeholders were able to spot development that would probably not happen and also ask questions about why some parts of Austin were riper for change than others. Their feedback was crucial as it allowed the project team to refine the analysis and look as accurately as possible into the future.
One of the goals of the project was to examine two scenarios of development: what if we build transit and what if we do not. The CityEngine web viewer enables the average user to swipe between two scenarios and to select a building to learn more about its attributes. The capability of sharing this model via the web cannot be overstated as it allows for increased accessibility and personal freedom to explore the project. 3D models make information easier to digest than maps. This fact makes getting feedback on physical planning projects more efficient, reliable, and easy to do.
Facebook
TwitterThe Wood Retained All Years MCF feature layer contains retained roundwood totals for states across individual years and a total for all years. Roundwood volume (referred to as receipts in the dataset) is reported in thousand cubic feet (MCF). This feature layer was created for the Wood Flow Visualization web application and is referenced in:Wood Flow Radials Web MapWood Flow Radials DashboardCurrently, the dashboard contains data for the Southern Research Station (SRS). Data from other research stations will be added in the coming months.About FIA's BIGMAPThe USDA Forest Service’s Forest Inventory and Analysis (FIA) program is the authoritative source of information about the conditions of the Agency’s forested lands. Within the FIA program, a new secure, cloud-based, and flexible computing environment has been created, named the Big Data Mapping & Analytics Platform (BIGMAP). BIGMAP is designed to store, process, analyze, and deliver Forest Service content. It does so in ways that streamline our internal workflows and make it easy to share authoritative, map-based content through web technologies. BIGMAP leverages commercial off-the-shelf solutions, reducing development and maintenance costs over the longer term. This focus capitalizes upon Agency investments in FIA and other data. The resulting, authoritative map content will populate the Agency’s WebGIS library for use by Agency managers, decision-makers, and other interested parties.
Facebook
TwitterA geospatial interface will be developed using ArcIMS software. The interface will provide a means of accessing information stored in the SOFIA database and the SOFIA data exchange web site through a geospatial query. The spatial data will be served using the ArcSDE software, which provides a mechanism for storing spatial data in a relational database. A spatial database will be developed from existing data sets, including national USGS data sets, the Florida Geographic Digital Library, and other available data sets. Additional data sets will be developed from the published data sets available from PBS and other projects.
The South Florida restoration effort requires multidisciplinary information relating to present and historical conditions for use in responsible decision-making. The South Florida Information Access (SOFIA) database is the cornerstone of information management for the South Florida place-based science program. Currently, the SOFIA web site and database have a minimal geospatial interface which relies on the Geo-Data Explorer (GeoDE) system developed by the USGS Energy Resources Program in Reston. A geospatial interface using currently available commercial software (ArcIMS) is needed to develop a more easily maintained and user-friendly interface. Developing an interface that is directly connected to the SOFIA website and database will provide a more stable long term solution to providing a geospatial interface.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The Woodflow MCF feature layer contains annual timber production volumes moving across the United States (between states) and some international locations. The data includes state, year, wood class (hardwood and softwood) and product. Roundwood volume (referred to as receipts in the dataset) is reported in thousand cubic feet (MCF). This feature layer was created for the Wood Flow Visualization web application and is referenced in:Wood Flow Details Web MapWood Flow Details DashboardCurrently, the dashboard contains data for the Southern Research Station (SRS). Data from other research stations will be added in the coming months.About FIA's BIGMAPThe USDA Forest Service’s Forest Inventory and Analysis (FIA) program is the authoritative source of information about the conditions of the Agency’s forested lands. Within the FIA program, a new secure, cloud-based, and flexible computing environment has been created, named the Big Data Mapping & Analytics Platform (BIGMAP). BIGMAP is designed to store, process, analyze, and deliver Forest Service content. It does so in ways that streamline our internal workflows and make it easy to share authoritative, map-based content through web technologies. BIGMAP leverages commercial off-the-shelf solutions, reducing development and maintenance costs over the longer term. This focus capitalizes upon Agency investments in FIA and other data. The resulting, authoritative map content will populate the Agency’s WebGIS library for use by Agency managers, decision-makers, and other interested parties.
Facebook
Twitterhttps://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The Geographic Information Systems (GIS) platform market is poised for substantial growth, projected to reach an estimated market size of $XXX million in 2025, with a Compound Annual Growth Rate (CAGR) of XX% expected throughout the forecast period of 2025-2033. This robust expansion is primarily driven by the increasing demand for sophisticated data visualization, spatial analysis, and location-based services across a multitude of sectors. The government and utilities sector is a significant contributor, leveraging GIS for infrastructure management, urban planning, resource allocation, and emergency response. Commercial applications are also rapidly adopting GIS for customer analytics, supply chain optimization, real estate development, and targeted marketing. The proliferation of web-enabled GIS solutions, including Web Map Services, is democratizing access to geospatial data and tools, fostering innovation and wider adoption beyond traditional GIS professionals. Desktop GIS continues to hold its ground for complex analytical tasks, but the trend towards cloud-based and mobile GIS solutions is accelerating, offering greater flexibility and scalability. Key trends shaping the GIS platform market include the integration of Artificial Intelligence (AI) and Machine Learning (ML) for advanced spatial analytics and predictive modeling, the growing importance of real-time data processing and streaming, and the rise of open-source GIS solutions challenging established players. The increasing availability of high-resolution satellite imagery and IoT sensor data further fuels the need for powerful GIS platforms. However, certain restraints might temper this growth, such as the initial cost of implementation for some advanced solutions, a potential shortage of skilled GIS professionals, and data privacy concerns associated with extensive location data collection. The market is characterized by intense competition among established global players and emerging innovators, all vying to capture market share by offering comprehensive, user-friendly, and technologically advanced GIS solutions. This comprehensive report delves into the dynamic Geographic Information Systems (GIS) Platform market, providing in-depth analysis and forecasts from 2019 to 2033, with a base year of 2025. The study meticulously examines market concentration, key trends, regional dominance, product insights, and the driving forces and challenges shaping this vital industry. We project the market to reach values in the tens of millions and hundreds of millions of dollars across various segments.