Styler is a configurable app template that allows you to easily design and style mapping applications with Calcite colors, themes and layouts. The template produces modern applications that allow you to visualize and explore a web map. The user interface includes a navigation bar, dropdown menu and a set of window panels for common operations such as changing basemaps and toggling full screen view. The template is built with Calcite Maps, Bootstrap, and the new ArcGIS API for Javascript 4.0. This application can be easily customized by downloading the source code and changing the default HTML and CSS styles.Configurable OptionsUse Styler to present a web map and configure it using the following options:Title, Subtitle and About panel.Light and dark themes for application and widgetsBackground and foreground colors for Navbar, Dropdown and PanelsSize of title bar and text.Top and bottom layouts.Display a Search box to enable navigation to addresses and places.Use CasesApply custom colors, themes and layouts to the Navbar, Dropdown Menu, Panels, and WidgetsPresent a map based application that includes a legend and the ability to change the basemap.Get Started This application can be created in the following ways:Click the Create a Web App button on this pageShare a map and choose to Create a Web AppOn the Content page, click Create - App - From Template Click the Download button to access the source code. Do this if you want to host the app on your own server and optionally customize it to add features or change styling.Click Create a Web App on the item detail page for a web map.
NM Environment Department Surface Water Quality Bureau GIS Web Mapping Tool
Basic Viewer is a configurable app template that can be used as a general purpose app for displaying a web map and configuring a variety of tools. This app offers a clean, simple interface that accentuates the web map and includes a toolbar and floating panel.Use CasesDisplays a set of commonly used tools within a floating pane. This is a good choice for balancing the need for a collection of tools while still maximizing the amount of screen real estate dedicated to the map. The app includes the ability to toggle layer visibility, print a map, and show pop-ups in the floating pane.Provides editing capabilities in the context of a general-purpose mapping app. This is a good choice when your audience needs additional tools or information about the map to support their editing activities.Configurable OptionsUse Basic Viewer to present content from a web map and configure it using the following options:Choose a title, sub title, logo, description, and color scheme.Configure a custom splash screen that will display when the app loads.Use custom CSS to customize the look and feel of the app.Enable tools on a toolbar including a basemap gallery, bookmarks, layer list, opacity slider, legend, measure, overview map, etc.Enable an editor tool and an editor toolbar giving users editing capabilities on editable feature layers.Configure a printing tool that can utilize all available print layouts configured in the hosting organization.Configure the ability for feature and location search.Set up custom URL parameters that define how the app and web map appear on load.Supported DevicesThis application is responsively designed to support use in browsers on desktops, mobile phones, and tablets.Data RequirementsThis web app includes the capability to edit a hosted feature service or an ArcGIS Server feature service. Creating hosted feature services requires an ArcGIS Online organizational subscription or an ArcGIS Developer account. Get Started This application can be created in the following ways:Click the Create a Web App button on this pageShare a map and choose to Create a Web AppOn the Content page, click Create - App - From Template Click the Download button to access the source code. Do this if you want to host the app on your own server and optionally customize it to add features or change styling.
Web-based GIS mapping application.Contains all available GIS and mapping resources for Cuyahoga County.Use the application to explore data using the available search, identify, and query tools; markup the map with the drawing tools; export the map to a geo-referenced image file; print the map to PDF with a custom title and include a legend and scale.View the 'Help Guide' for FAQs, tool tips, and additional information about the application and the data.
Interactive map of City of Eugene Neighborhoods. Pop-up on map shows contact information and website for neighborhood organizations. 2022
This web map features a vector basemap of OpenStreetMap (OSM) data created and hosted by Esri. Esri produced this vector tile basemap in ArcGIS Pro from a live replica of OSM data, hosted by Esri, and rendered using a creative cartographic style emulating a blueprint technical drawing. The vector tiles are updated every few weeks with the latest OSM data. This vector basemap is freely available for any user or developer to build into their web map or web mapping apps.OpenStreetMap (OSM) is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap site: www.OpenStreetMap.org. Esri is a supporter of the OSM project and is excited to make this new vector basemap available available to the OSM, GIS, and Developer communities.
(See USGS Digital Data Series DDS-69-E) A geographic information system focusing on the Cretaceous Travis Peak and Hosston Formations was developed for the U.S. Geological Survey's (USGS) 2002 assessment of undiscovered, technically recoverable oil and natural gas resources of the Gulf Coast Region. The USGS Energy Resources Science Center has developed map and metadata services to deliver the 2002 assessment results GIS data and services online. The Gulf Coast assessment is based on geologic elements of a total petroleum system (TPS) as described in Dyman and Condon (2005). The estimates of undiscovered oil and gas resources are within assessment units (AUs). The hydrocarbon assessment units include the assessment results as attributes within the AU polygon feature class (in geodatabase and shapefile format). Quarter-mile cells of the land surface that include single or multiple wells were created by the USGS to illustrate the degree of exploration and the type and distribution of production for each assessment unit. Other data that are available in the map documents and services include the TPS and USGS province boundaries. To easily distribute the Gulf Coast maps and GIS data, a web mapping application has been developed by the USGS, and customized ArcMap (by ESRI) projects are available for download at the Energy Resources Science Center Gulf Coast website. ArcGIS Publisher (by ESRI) was used to create a published map file (pmf) from each ArcMap document (.mxd). The basemap services being used in the GC map applications are from ArcGIS Online Services (by ESRI), and include the following layers: -- Satellite imagery -- Shaded relief -- Transportation -- States -- Counties -- Cities -- National Forests With the ESRI_StreetMap_World_2D service, detailed data, such as railroads and airports, appear as the user zooms in at larger scales. This map service shows the structural configuration of the top of the Travis Peak or Hosston Formations in feet below sea level. The map was produced by calculating the difference between a datum at the land surface (either the Kelly bushing elevation or the ground surface elevation) and the reported depth of the Travis Peak or Hosston. This map service also shows the thickness of the interval from the top of the Travis Peak or Hosston Formations to the top of the Cotton Valley Group.
City of Chelsea Maps application web map. This app features a web map containing tax parcels and layers used by the City of Chelsea.Map designed in Map Viewer Classic.
In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Offshore of Coal Oil Point map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Offshore Coal Oil Point map area data layers. Data layers are symbolized as shown on the associated map sheets.
This record guides the user to the website of the Wyoming Office of State Lands and Investments (OSLI) at the location of their online web mapping application. This web app is called the State Lands Access Map and provides access to several GIS datasets that are maintained by OSLI.
This site is part of pilot effort at the US Department of Energy (DOE) - Office of NEPA Policy and Compliance to evaluate providing IT web services as a shared service, hosted on the cloud, and using only Free and Open Source Software (FOSS). The site is an integrated component of the larger NEPAnode project but is a stand alone service. The site allows users to upload static map images with no geographic data so that they can be accurately referenced/rectified on an webmap. This site allows for the revitalizing of otherwise unusable/archived maps such as historic maps, site surveys, site plans, etc. turning them into usable geographic data which is subsequently made available as a KML file for use in Google Earth/Maps and as a Web Mapping Service (WMS) for using in web-based webmapping application such as NEPAnode or in desktop GIS software.
ArcGIS Online Web Map containing ESRI Streets at small scales and FSTopo Basemap at scales larger than 1:144,448. This basemap web map is designed to be used in ArcGIS Online mapping applications with other map services or features services overlayed on the FSTopo basemap.
The Economic Development web map is used to author the Economic Development Experience Builder application. It displays the economic development districts, enterprise zones, industrial areas, economic development zones, Baton Rouge Airport property, and Louisiana Opportunity Zones data in East Baton Rouge Parish, Louisiana.
Crowdsource Polling is a configurable app template that can be used for collecting feedback and assessing public sentiment for a series of proposals, plans, or events. Users are presented with a map and list of features containing the details of each proposal, plan, or event including any attached documents. These users can then submit their feedback in the form of votes and comments. Crowdsource Polling can be accessed anonymously and by authenticating via Twitter.Use CasesCrowdsource Polling can be configured to present information such as:proposed land use changesenvironmental impact pollingpublic comment on capital projectspublic comment on proposed rights of way for transmission systemsevents permit reviewConfigurable OptionsConfigure Crowdsource Polling to present content from any web map and personalize the app by modifying the following options: Display a custom title and logo in the application headerUse a custom color schemeChoose which layer contains the features for which feedback is being solicitedProvide custom instruction on the use of the app, contact information, credits, etc. in a highly configurable help windowSupported DevicesThis application is responsively designed to support use in browsers on desktops, mobile phones, and tablets.Data RequirementsThis web app includes the capability to edit a hosted feature service or an ArcGIS Server feature service. Creating hosted feature services requires an ArcGIS Online organizational subscription or an ArcGIS Developer account. Crowdsource Polling requires a web map with at least one feature layer. In addition, the following requirements must be met to expose full app functionality:To enable votes, this layer must have a numeric field for storing the number of votes on each featureTo collect comments, the feature layer must have a related tableTo capture the names of authenticated users, the layer must have a text field for storing this valueGet Started This application can be created in the following ways:Click the Create a Web App button on this pageShare a map and choose to Create a Web AppOn the Content page, click Create - App - From Template Click the Download button to access the source code. Do this if you want to host the app on your own server and optionally customize it to add features or change styling.Learn MoreFor release notes and more information on configuring this app, see the Crowdsource Polling documentation.
The S_LOMR feature class should contain at least one record for each Letter of Map Revision incorporated into the NFHL. Multipart polygons are not allowed. The spatial entities representing LOMRs are polygons. The spatial information contains the bounding polygon for each LOMR area, broken on panel boundaries.Technical Reference - http://www.fema.gov/media-library-data/1449862521789-e97ed4c7b7405faa7c3691603137ec40/FIRM_Database_Technical_Reference_Nov_2015.pdfFlood hazard and supporting data are developed using specifications for horizontal control consistent with 1:12,000–scale mapping. If you plan to display maps from the National Flood Hazard Layer with other map data for official purposes, ensure that the other information meets FEMA’s standards for map accuracy. The minimum horizontal positional accuracy for base map hydrographic and transportation features used with the NFHL is the NSSDA radial accuracy of 38 feet. USGS imagery and map services that meet this standard can be found by visiting the Knowledge Sharing Site (KSS) for Base Map Standards (420). Other base map standards can be found at https://riskmapportal.msc.fema.gov/kss/MapChanges/default.aspx. You will need a username and password to access this information.The NFHL data are from FEMA’s Flood Insurance Rate Map (FIRM) databases. New data are added continually. The NFHL also contains map changes to FIRM data made by Letters of Map Revision (LOMRs). The NFHL is stored in North American Datum of 1983, Geodetic Reference System 80 coordinate system, though many of the NFHL GIS web services support the Web Mercator Sphere projection commonly used in web mapping applications.
The Department of Information Technology and Telecommunications, GIS Unit, has created a series of Map Tile Services for use in public web mapping & desktop applications. The link below describes the Basemap, Labels, & Aerial Photographic map services, as well as, how to utilize them in popular JavaScript web mapping libraries and desktop GIS applications. A showcase application, NYC Then&Now (https://maps.nyc.gov/then&now/) is also included on this page.
This web map powers the Public Safety Coverage webmap application that enables users to search various GIS data. Information is updated on a weekly basis. Please contact gisadmin@co.crawford.pa.us for any questions, edits, or issues with this application.Additional maps can be found at our GIS landing page.
Parking Garages, Lots and Kiosk locations
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This tutorial will teach you how to take time-series data from many field sites and create a shareable online map, where clicking on a field location brings you to a page with interactive graph(s).
The tutorial can be completed with a sample dataset (provided via a Google Drive link within the document) or with your own time-series data from multiple field sites.
Part 1 covers how to make interactive graphs in Google Data Studio and Part 2 covers how to link data pages to an interactive map with ArcGIS Online. The tutorial will take 1-2 hours to complete.
An example interactive map and data portal can be found at: https://temple.maps.arcgis.com/apps/View/index.html?appid=a259e4ec88c94ddfbf3528dc8a5d77e8
Attribution 2.5 (CC BY 2.5)https://creativecommons.org/licenses/by/2.5/
License information was derived automatically
The eAtlas delivers its mapping products via two Web Mapping Services, a legacy server (from 2008-2011) and a newer primary server (2011+) to which all new content it added. This record describes …Show full descriptionThe eAtlas delivers its mapping products via two Web Mapping Services, a legacy server (from 2008-2011) and a newer primary server (2011+) to which all new content it added. This record describes the legacy WMS. This service delivers map layers associated with the eAtlas project (http://eatlas.org.au), which contains map layers of environmental research focusing on the Great Barrier Reef. The majority of the layers corresponding to Glenn De'ath's interpolated maps of the GBR developed under the MTSRF program (2008-2010). This web map service is predominantly maintained for the legacy eAtlas map viewer (http://maps.eatlas.org.au/geoserver/www/map.html). All the these legacy map layers are available through the new eAtlas mapping portal (http://maps.eatlas.org.au), however the legends have not been ported across. This WMS is implemented using GeoServer version 1.7 software hosted on a server at the Australian Institute of Marine Science. For ArcMap use the following steps to add this service: "Add Data" then choose GIS Servers from the "Look in" drop down. Click "Add WMS Server" then set the URL to "http://maps.eatlas.org.au/geoserver/wms?" Note: this service has around 460 layers of which approximately half the layers correspond to Standard Error maps, which are WRONG (please ignore all *Std_Error layers. This services is operated by the Australian Institute of Marine Science and co-funded by the MTSRF program.
Styler is a configurable app template that allows you to easily design and style mapping applications with Calcite colors, themes and layouts. The template produces modern applications that allow you to visualize and explore a web map. The user interface includes a navigation bar, dropdown menu and a set of window panels for common operations such as changing basemaps and toggling full screen view. The template is built with Calcite Maps, Bootstrap, and the new ArcGIS API for Javascript 4.0. This application can be easily customized by downloading the source code and changing the default HTML and CSS styles.Configurable OptionsUse Styler to present a web map and configure it using the following options:Title, Subtitle and About panel.Light and dark themes for application and widgetsBackground and foreground colors for Navbar, Dropdown and PanelsSize of title bar and text.Top and bottom layouts.Display a Search box to enable navigation to addresses and places.Use CasesApply custom colors, themes and layouts to the Navbar, Dropdown Menu, Panels, and WidgetsPresent a map based application that includes a legend and the ability to change the basemap.Get Started This application can be created in the following ways:Click the Create a Web App button on this pageShare a map and choose to Create a Web AppOn the Content page, click Create - App - From Template Click the Download button to access the source code. Do this if you want to host the app on your own server and optionally customize it to add features or change styling.Click Create a Web App on the item detail page for a web map.