100+ datasets found
  1. Website Statistics

    • data.wu.ac.at
    • data.europa.eu
    csv, pdf
    Updated Jun 11, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lincolnshire County Council (2018). Website Statistics [Dataset]. https://data.wu.ac.at/schema/data_gov_uk/M2ZkZDBjOTUtMzNhYi00YWRjLWI1OWMtZmUzMzA5NjM0ZTdk
    Explore at:
    csv, pdfAvailable download formats
    Dataset updated
    Jun 11, 2018
    Dataset provided by
    Lincolnshire County Councilhttp://www.lincolnshire.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    This Website Statistics dataset has four resources showing usage of the Lincolnshire Open Data website. Web analytics terms used in each resource are defined in their accompanying Metadata file.

    • Website Usage Statistics: This document shows a statistical summary of usage of the Lincolnshire Open Data site for the latest calendar year.

    • Website Statistics Summary: This dataset shows a website statistics summary for the Lincolnshire Open Data site for the latest calendar year.

    • Webpage Statistics: This dataset shows statistics for individual Webpages on the Lincolnshire Open Data site by calendar year.

    • Dataset Statistics: This dataset shows cumulative totals for Datasets on the Lincolnshire Open Data site that have also been published on the national Open Data site Data.Gov.UK - see the Source link.

      Note: Website and Webpage statistics (the first three resources above) show only UK users, and exclude API calls (automated requests for datasets). The Dataset Statistics are confined to users with javascript enabled, which excludes web crawlers and API calls.

    These Website Statistics resources are updated annually in January by the Lincolnshire County Council Business Intelligence team. For any enquiries about the information contact opendata@lincolnshire.gov.uk.

  2. Number of page views per web session 2022, by vertical & device

    • statista.com
    Updated Jul 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Number of page views per web session 2022, by vertical & device [Dataset]. https://www.statista.com/statistics/1106552/number-of-visits-website-before-checkout/
    Explore at:
    Dataset updated
    Jul 10, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    Websites in the energy, utilities, and construction sector averaged the largest amount of visits per online session worldwide. In the fourth quarter of 2022, desktop users in that segment visited around ***** pages per online session. Travel and hospitality ranked second, with an average of almost *** pages visited. In terms of mobile users, travel and hospitality registered the highest number of page views, followed by retail.

  3. Total global visitor traffic to user-generated content websites 2024

    • statista.com
    Updated Aug 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Total global visitor traffic to user-generated content websites 2024 [Dataset]. https://www.statista.com/statistics/1328702/web-visitor-traffic-top-websites-ugc/
    Explore at:
    Dataset updated
    Aug 20, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Mar 2024
    Area covered
    Worldwide
    Description

    In March 2024, the video platform YouTube reported around 32.5 billion visits from global users. Meta-owned Facebook.com reported around 16.1 billion visits from global users, as Instagram.com and Twitter.com followed, each with 7 billion and 6.1 billion visits from users worldwide during the examined month. Wikipedia.org, which hosts users-generated encyclopedic entries, recorded around 4.4 billion visits, while news aggregator and community platform Reddit.com saw approximately 2.2 billion visits during the examined period.

  4. D

    Annual Web Statistics

    • detroitdata.org
    Updated Apr 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DetroitData (2025). Annual Web Statistics [Dataset]. https://detroitdata.org/dataset/annual-web-statistics
    Explore at:
    Dataset updated
    Apr 17, 2025
    Dataset provided by
    DetroitData
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Dataset exported from Google Analytics of "Pages and screens: Page title and screen class" with "Users" pages and screens removed.

  5. w

    Websites using Visitors Traffic Real Time Statistics

    • webtechsurvey.com
    csv
    Updated Jan 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WebTechSurvey (2025). Websites using Visitors Traffic Real Time Statistics [Dataset]. https://webtechsurvey.com/technology/visitors-traffic-real-time-statistics
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jan 15, 2025
    Dataset authored and provided by
    WebTechSurvey
    License

    https://webtechsurvey.com/termshttps://webtechsurvey.com/terms

    Time period covered
    2025
    Area covered
    Global
    Description

    A complete list of live websites using the Visitors Traffic Real Time Statistics technology, compiled through global website indexing conducted by WebTechSurvey.

  6. 20+ web design statistics to keep you up-to-date

    • wix.com
    • wix.mba
    html
    Updated Jan 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wix (2024). 20+ web design statistics to keep you up-to-date [Dataset]. https://www.wix.com/blog/web-design-statistics
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Jan 2, 2024
    Dataset provided by
    Wix.comhttp://wix.com/
    Authors
    Wix
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2024
    Area covered
    Global
    Description

    We’ve rounded up the most up-to-date web design statistics to apply to your design.

  7. Share of direct traffic on general retailer websites in France 2020

    • statista.com
    Updated Jul 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Share of direct traffic on general retailer websites in France 2020 [Dataset]. https://www.statista.com/statistics/1180353/share-direct-visitors-mass-distribution-websites-france/
    Explore at:
    Dataset updated
    Jul 10, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Mar 2020
    Area covered
    France
    Description

    As many general retailers or mass distribution channels experienced an exponential growth during the months of the COVID-19 induced lockdown in France, the source wanted to measure the share of direct traffic of the different retailers websites. Thus, we note that around ** percent of visits to Casino.fr came from direct traffic, that is to say, visits made through search engines, social media, blogs, or other websites that have links to other websites.

  8. Website Statistics - Datasets - Lincolnshire Open Data

    • lincolnshire.ckan.io
    Updated Feb 19, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.io (2024). Website Statistics - Datasets - Lincolnshire Open Data [Dataset]. https://lincolnshire.ckan.io/dataset/website-statistics
    Explore at:
    Dataset updated
    Feb 19, 2024
    Dataset provided by
    CKANhttps://ckan.org/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    This Website Statistics dataset has three resources showing usage of the Lincolnshire Open Data website. Web analytics terms used in each resource are defined in their accompanying Metadata file. Please Note: due to a change in Analytics platform and accompanying metrics, the current files do not contain a full years data. The files will be updated again in January 2025 with 2024-2025 data. The previous dataset containing Web Analytics has been archived and can be found in the following link; https://lincolnshire.ckan.io/dataset/website-statistics-archived Website Usage Statistics: This document shows a statistical summary of usage of the Lincolnshire Open Data site for the latest calendar year. Website Statistics Summary: This dataset shows a website statistics summary for the Lincolnshire Open Data site for the latest calendar year. Webpage Statistics: This dataset shows statistics for individual Webpages on the Lincolnshire Open Data site by calendar year. Note: The resources above exclude API calls (automated requests for datasets). These Website Statistics resources are updated annually in February by the Lincolnshire County Council Open Data team.

  9. d

    Web Scraping Data | Key Customers Domain Name Data | Scanning Logos found on...

    • datarade.ai
    .json
    Updated Jun 27, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    PredictLeads (2024). Web Scraping Data | Key Customers Domain Name Data | Scanning Logos found on Websites | 248M+ Records [Dataset]. https://datarade.ai/data-products/predictleads-web-scraping-data-domain-name-data-business-predictleads
    Explore at:
    .jsonAvailable download formats
    Dataset updated
    Jun 27, 2024
    Dataset authored and provided by
    PredictLeads
    Area covered
    Turkmenistan, Benin, Oman, Curaçao, Malaysia, Colombia, Nigeria, Svalbard and Jan Mayen, Northern Mariana Islands, Burkina Faso
    Description

    PredictLeads Key Customers Data provides essential business intelligence by analyzing company relationships, uncovering vendor partnerships, client connections, and strategic affiliations through advanced web scraping and logo recognition. This dataset captures business interactions directly from company websites, offering valuable insights into market positioning, competitive landscapes, and growth opportunities.

    Use Cases:

    ✅ Account Profiling – Gain a 360-degree customer view by mapping company relationships and partnerships. ✅ Competitive Intelligence – Track vendor-client connections and business affiliations to identify key industry players. ✅ B2B Lead Targeting – Prioritize leads based on their business relationships, improving sales and marketing efficiency. ✅ CRM Data Enrichment – Enhance company records with detailed key customer data, ensuring data accuracy. ✅ Market Research – Identify emerging trends and industry networks to optimize strategic planning.

    Key API Attributes:

    • id (string, UUID) – Unique identifier for the company connection.
    • category (string) – Type of relationship (e.g., vendor, client, partner).
    • source_category (string) – Where the connection was detected (e.g., partner page, case study).
    • source_url (string, URL) – Website where the relationship was found.
    • individual_source_url (string, URL) – Specific page confirming the connection.
    • context (string) – Extracted description of the business relationship (e.g., "Company X - partners with Company Y to enhance payment processing").
    • first_seen_at (ISO 8601 date-time) – Date the connection was first detected.
    • last_seen_at (ISO 8601 date-time) – Most recent confirmation of the relationship.
    • company1 & company2 (objects) – Details of the two connected companies, including:
    • - domain (string) – Company website domain.
    • - company_name (string) – Official company name.
    • - ticker (string, nullable) – Stock ticker, if available.

    📌 PredictLeads Key Customers Data is an indispensable tool for B2B sales, marketing, and market intelligence teams, providing actionable relationship insights to drive targeted outreach, competitor tracking, and strategic decision-making.

    PredictLeads Docs: https://docs.predictleads.com/v3/guide/connections_dataset

  10. f

    Comparison of user, site, and network-centric approaches to web analytics...

    • plos.figshare.com
    xls
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bernard J. Jansen; Soon-gyo Jung; Joni Salminen (2023). Comparison of user, site, and network-centric approaches to web analytics data collection showing advantages, disadvantages, and examples of each approach at the time of the study. [Dataset]. http://doi.org/10.1371/journal.pone.0268212.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Bernard J. Jansen; Soon-gyo Jung; Joni Salminen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Comparison of user, site, and network-centric approaches to web analytics data collection showing advantages, disadvantages, and examples of each approach at the time of the study.

  11. 2017 Web Analytics - Page Views Per Day

    • data.mississauga.ca
    • hub.arcgis.com
    • +1more
    Updated Feb 15, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Mississauga (2018). 2017 Web Analytics - Page Views Per Day [Dataset]. https://data.mississauga.ca/datasets/2017-web-analytics-page-views-per-day
    Explore at:
    Dataset updated
    Feb 15, 2018
    Dataset provided by
    Mississauga
    Authors
    City of Mississauga
    License

    http://www5.mississauga.ca/research_catalogue/CityofMississauga_TermsofUse.pdfhttp://www5.mississauga.ca/research_catalogue/CityofMississauga_TermsofUse.pdf

    Description

    This dataset displays the number of page views each day in 2017 for mississauga.ca. This data is compiled by Google Analytics and is updated annually.

  12. Total global visitor traffic to Google.com 2024

    • statista.com
    Updated Aug 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Total global visitor traffic to Google.com 2024 [Dataset]. https://www.statista.com/statistics/268252/web-visitor-traffic-to-googlecom/
    Explore at:
    Dataset updated
    Aug 20, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Oct 2023 - Mar 2024
    Area covered
    Worldwide
    Description

    In March 2024, search platform Google.com generated approximately 85.5 billion visits, down from 87 billion platform visits in October 2023. Google is a global search platform and one of the biggest online companies worldwide.

  13. Z

    Network Traffic Analysis: Data and Code

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jun 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Homan, Sophia (2024). Network Traffic Analysis: Data and Code [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_11479410
    Explore at:
    Dataset updated
    Jun 12, 2024
    Dataset provided by
    Chan-Tin, Eric
    Moran, Madeline
    Honig, Joshua
    Homan, Sophia
    Soni, Shreena
    Ferrell, Nathan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Code:

    Packet_Features_Generator.py & Features.py

    To run this code:

    pkt_features.py [-h] -i TXTFILE [-x X] [-y Y] [-z Z] [-ml] [-s S] -j

    -h, --help show this help message and exit -i TXTFILE input text file -x X Add first X number of total packets as features. -y Y Add first Y number of negative packets as features. -z Z Add first Z number of positive packets as features. -ml Output to text file all websites in the format of websiteNumber1,feature1,feature2,... -s S Generate samples using size s. -j

    Purpose:

    Turns a text file containing lists of incomeing and outgoing network packet sizes into separate website objects with associative features.

    Uses Features.py to calcualte the features.

    startMachineLearning.sh & machineLearning.py

    To run this code:

    bash startMachineLearning.sh

    This code then runs machineLearning.py in a tmux session with the nessisary file paths and flags

    Options (to be edited within this file):

    --evaluate-only to test 5 fold cross validation accuracy

    --test-scaling-normalization to test 6 different combinations of scalers and normalizers

    Note: once the best combination is determined, it should be added to the data_preprocessing function in machineLearning.py for future use

    --grid-search to test the best grid search hyperparameters - note: the possible hyperparameters must be added to train_model under 'if not evaluateOnly:' - once best hyperparameters are determined, add them to train_model under 'if evaluateOnly:'

    Purpose:

    Using the .ml file generated by Packet_Features_Generator.py & Features.py, this program trains a RandomForest Classifier on the provided data and provides results using cross validation. These results include the best scaling and normailzation options for each data set as well as the best grid search hyperparameters based on the provided ranges.

    Data

    Encrypted network traffic was collected on an isolated computer visiting different Wikipedia and New York Times articles, different Google search queres (collected in the form of their autocomplete results and their results page), and different actions taken on a Virtual Reality head set.

    Data for this experiment was stored and analyzed in the form of a txt file for each experiment which contains:

    First number is a classification number to denote what website, query, or vr action is taking place.

    The remaining numbers in each line denote:

    The size of a packet,

    and the direction it is traveling.

    negative numbers denote incoming packets

    positive numbers denote outgoing packets

    Figure 4 Data

    This data uses specific lines from the Virtual Reality.txt file.

    The action 'LongText Search' refers to a user searching for "Saint Basils Cathedral" with text in the Wander app.

    The action 'ShortText Search' refers to a user searching for "Mexico" with text in the Wander app.

    The .xlsx and .csv file are identical

    Each file includes (from right to left):

    The origional packet data,

    each line of data organized from smallest to largest packet size in order to calculate the mean and standard deviation of each packet capture,

    and the final Cumulative Distrubution Function (CDF) caluclation that generated the Figure 4 Graph.

  14. w

    Websites using Burst Statistics

    • webtechsurvey.com
    csv
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WebTechSurvey, Websites using Burst Statistics [Dataset]. https://webtechsurvey.com/technology/burst-statistics
    Explore at:
    csvAvailable download formats
    Dataset authored and provided by
    WebTechSurvey
    License

    https://webtechsurvey.com/termshttps://webtechsurvey.com/terms

    Time period covered
    2025
    Area covered
    Global
    Description

    A complete list of live websites using the Burst Statistics technology, compiled through global website indexing conducted by WebTechSurvey.

  15. U.S. most visited websites 2024, by total visits

    • statista.com
    Updated Mar 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). U.S. most visited websites 2024, by total visits [Dataset]. https://www.statista.com/statistics/1456422/most-visited-websites-total-visits-united-states/
    Explore at:
    Dataset updated
    Mar 24, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Nov 2024
    Area covered
    United States
    Description

    In November 2024, Google.com was the most visited website in the United States, with over 25 billion total visits. YouTube.com came in second with 12 billion total visits. Reddit.com and Amazon.com counted approximately 3.12 billion and 2.89 monthly visits each from U.S. online audiences.

  16. w

    Websites using WP Statistics

    • webtechsurvey.com
    csv
    Updated Jun 23, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WebTechSurvey (2020). Websites using WP Statistics [Dataset]. https://webtechsurvey.com/technology/wp-statistics
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 23, 2020
    Dataset authored and provided by
    WebTechSurvey
    License

    https://webtechsurvey.com/termshttps://webtechsurvey.com/terms

    Time period covered
    2025
    Area covered
    Global
    Description

    A complete list of live websites using the WP Statistics technology, compiled through global website indexing conducted by WebTechSurvey.

  17. g

    Website Analytics Daily Page Views

    • gimi9.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Website Analytics Daily Page Views [Dataset]. https://gimi9.com/dataset/data-gov_website-analytics-daily-page-views
    Explore at:
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is a direct export from DC government's Google Analytics report of daily page views on the https://www.dc.gov web portal. This shows daily page views, per year, on DC.gov from 2008 to March 2020. It is identified by the part of the URL after the dc.gov domain path where users have visited.

  18. S

    Landing Page Statistics By Types And Facts (2025)

    • sci-tech-today.com
    Updated Jun 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sci-Tech Today (2025). Landing Page Statistics By Types And Facts (2025) [Dataset]. https://www.sci-tech-today.com/stats/landing-page-statistics-updated/
    Explore at:
    Dataset updated
    Jun 23, 2025
    Dataset authored and provided by
    Sci-Tech Today
    License

    https://www.sci-tech-today.com/privacy-policyhttps://www.sci-tech-today.com/privacy-policy

    Time period covered
    2022 - 2032
    Area covered
    Global
    Description

    Introduction

    Landing Page Statistics: Landing pages are dedicated web pages designed to convert visitors into leads or customers by focusing on a single, clear call to action. In 2024, the median landing page conversion rate across industries is 6.6%, with top-performing pages exceeding 20%. Email-driven traffic achieves the highest average conversion rate at 19.3%, outperforming paid search (10.9%) and paid social (12%).

    Mobile devices account for 82.9% of landing page traffic, yet desktop users exhibit a higher average conversion rate of 12.1% compared to 11.2% for mobile users. Speed is crucial; a one-second delay in page load time can reduce conversions by 7%. Incorporating videos can boost conversions by 86%, and personalized landing pages can convert 202% better than generic ones.

    Design elements significantly impact performance. Landing pages with five or fewer form fields convert 120% better than those with more fields. Pages with a single, clear call to action achieve a 13.5% conversion rate, compared to 11.9% for pages with multiple CTAs. Additionally, 38.6% of marketers report that videos enhance landing page conversion rates more than any other element.

    Let us check out some of the Landing page statistics concerning landing page performance and the secrets of landing page success.

  19. O

    Calgary.ca Web Analytics Top Downloads Past 30 Days

    • data.calgary.ca
    csv, xlsx, xml
    Updated Sep 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The City of Calgary (2025). Calgary.ca Web Analytics Top Downloads Past 30 Days [Dataset]. https://data.calgary.ca/Help-and-Information/Calgary-ca-Web-Analytics-Top-Downloads-Past-30-Day/39t3-dqne
    Explore at:
    csv, xlsx, xmlAvailable download formats
    Dataset updated
    Sep 27, 2025
    Dataset authored and provided by
    The City of Calgary
    Area covered
    Calgary
    Description

    The top 100 files downloaded from City of Calgary web pages over the past 30 days.

  20. d

    Global Web Data | Web Scraping Data | Job Postings Data | Source: Company...

    • datarade.ai
    .json
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    PredictLeads, Global Web Data | Web Scraping Data | Job Postings Data | Source: Company Website | 214M+ Records [Dataset]. https://datarade.ai/data-products/predictleads-web-data-web-scraping-data-job-postings-dat-predictleads
    Explore at:
    .jsonAvailable download formats
    Dataset authored and provided by
    PredictLeads
    Area covered
    El Salvador, Virgin Islands (British), Northern Mariana Islands, Kuwait, Bosnia and Herzegovina, Guadeloupe, Bonaire, French Guiana, Comoros, Kosovo
    Description

    PredictLeads Job Openings Data provides high-quality hiring insights sourced directly from company websites - not job boards. Using advanced web scraping technology, our dataset offers real-time access to job trends, salaries, and skills demand, making it a valuable resource for B2B sales, recruiting, investment analysis, and competitive intelligence.

    Key Features:

    ✅214M+ Job Postings Tracked – Data sourced from 92 Million company websites worldwide. ✅7,1M+ Active Job Openings – Updated in real-time to reflect hiring demand. ✅Salary & Compensation Insights – Extract salary ranges, contract types, and job seniority levels. ✅Technology & Skill Tracking – Identify emerging tech trends and industry demands. ✅Company Data Enrichment – Link job postings to employer domains, firmographics, and growth signals. ✅Web Scraping Precision – Directly sourced from employer websites for unmatched accuracy.

    Primary Attributes:

    • id (string, UUID) – Unique identifier for the job posting.
    • type (string, constant: "job_opening") – Object type.
    • title (string) – Job title.
    • description (string) – Full job description, extracted from the job listing.
    • url (string, URL) – Direct link to the job posting.
    • first_seen_at – Timestamp when the job was first detected.
    • last_seen_at – Timestamp when the job was last detected.
    • last_processed_at – Timestamp when the job data was last processed.

    Job Metadata:

    • contract_types (array of strings) – Type of employment (e.g., "full time", "part time", "contract").
    • categories (array of strings) – Job categories (e.g., "engineering", "marketing").
    • seniority (string) – Seniority level of the job (e.g., "manager", "non_manager").
    • status (string) – Job status (e.g., "open", "closed").
    • language (string) – Language of the job posting.
    • location (string) – Full location details as listed in the job description.
    • Location Data (location_data) (array of objects)
    • city (string, nullable) – City where the job is located.
    • state (string, nullable) – State or region of the job location.
    • zip_code (string, nullable) – Postal/ZIP code.
    • country (string, nullable) – Country where the job is located.
    • region (string, nullable) – Broader geographical region.
    • continent (string, nullable) – Continent name.
    • fuzzy_match (boolean) – Indicates whether the location was inferred.

    Salary Data (salary_data)

    • salary (string) – Salary range extracted from the job listing.
    • salary_low (float, nullable) – Minimum salary in original currency.
    • salary_high (float, nullable) – Maximum salary in original currency.
    • salary_currency (string, nullable) – Currency of the salary (e.g., "USD", "EUR").
    • salary_low_usd (float, nullable) – Converted minimum salary in USD.
    • salary_high_usd (float, nullable) – Converted maximum salary in USD.
    • salary_time_unit (string, nullable) – Time unit for the salary (e.g., "year", "month", "hour").

    Occupational Data (onet_data) (object, nullable)

    • code (string, nullable) – ONET occupation code.
    • family (string, nullable) – Broad occupational family (e.g., "Computer and Mathematical").
    • occupation_name (string, nullable) – Official ONET occupation title.

    Additional Attributes:

    • tags (array of strings, nullable) – Extracted skills and keywords (e.g., "Python", "JavaScript").

    📌 Trusted by enterprises, recruiters, and investors for high-precision job market insights.

    PredictLeads Dataset: https://docs.predictleads.com/v3/guide/job_openings_dataset

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Lincolnshire County Council (2018). Website Statistics [Dataset]. https://data.wu.ac.at/schema/data_gov_uk/M2ZkZDBjOTUtMzNhYi00YWRjLWI1OWMtZmUzMzA5NjM0ZTdk
Organization logo

Website Statistics

Explore at:
csv, pdfAvailable download formats
Dataset updated
Jun 11, 2018
Dataset provided by
Lincolnshire County Councilhttp://www.lincolnshire.gov.uk/
License

Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically

Description

This Website Statistics dataset has four resources showing usage of the Lincolnshire Open Data website. Web analytics terms used in each resource are defined in their accompanying Metadata file.

  • Website Usage Statistics: This document shows a statistical summary of usage of the Lincolnshire Open Data site for the latest calendar year.

  • Website Statistics Summary: This dataset shows a website statistics summary for the Lincolnshire Open Data site for the latest calendar year.

  • Webpage Statistics: This dataset shows statistics for individual Webpages on the Lincolnshire Open Data site by calendar year.

  • Dataset Statistics: This dataset shows cumulative totals for Datasets on the Lincolnshire Open Data site that have also been published on the national Open Data site Data.Gov.UK - see the Source link.

    Note: Website and Webpage statistics (the first three resources above) show only UK users, and exclude API calls (automated requests for datasets). The Dataset Statistics are confined to users with javascript enabled, which excludes web crawlers and API calls.

These Website Statistics resources are updated annually in January by the Lincolnshire County Council Business Intelligence team. For any enquiries about the information contact opendata@lincolnshire.gov.uk.

Search
Clear search
Close search
Google apps
Main menu