https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
Market Analysis for Network Traffic Analysis Tools The global Network Traffic Analysis (NTA) Tool market is projected to reach a valuation of USD XXX million by 2033, exhibiting a CAGR of XX% during the forecast period (2025-2033). The rising need to monitor and secure network traffic, coupled with increased adoption of cloud-based and hybrid network environments, is driving the market growth. Key industry players include Cisco, ExtraHop, ManageEngine, Netreo, Noction, Packetbeat, SolarWinds, and Splunk. The NTA tool market is segmented by type (cloud-based and on-premises) and application (BFSI, healthcare, government, retail, and others). Cloud-based solutions are gaining traction due to their scalability, flexibility, and cost-effectiveness. Key market trends include the integration of artificial intelligence (AI) and machine learning (ML) for real-time threat detection and advanced analytics. However, data privacy concerns and deployment costs may pose restraints. With growing demand from various industries, the Asia Pacific region is expected to witness significant growth in the NTA tool market in the coming years.
Unlock the Potential of Your Web Traffic with Advanced Data Resolution
In the digital age, understanding and leveraging web traffic data is crucial for businesses aiming to thrive online. Our pioneering solution transforms anonymous website visits into valuable B2B and B2C contact data, offering unprecedented insights into your digital audience. By integrating our unique tag into your website, you unlock the capability to convert 25-50% of your anonymous traffic into actionable contact rows, directly deposited into an S3 bucket for your convenience. This process, known as "Web Traffic Data Resolution," is at the forefront of digital marketing and sales strategies, providing a competitive edge in understanding and engaging with your online visitors.
Comprehensive Web Traffic Data Resolution Our product stands out by offering a robust solution for "Web Traffic Data Resolution," a process that demystifies the identities behind your website traffic. By deploying a simple tag on your site, our technology goes to work, analyzing visitor behavior and leveraging proprietary data matching techniques to reveal the individuals and businesses behind the clicks. This innovative approach not only enhances your data collection but does so with respect for privacy and compliance standards, ensuring that your business gains insights ethically and responsibly.
Deep Dive into Web Traffic Data At the core of our solution is the sophisticated analysis of "Web Traffic Data." Our system meticulously collects and processes every interaction on your site, from page views to time spent on each section. This data, once anonymous and perhaps seen as abstract numbers, is transformed into a detailed ledger of potential leads and customer insights. By understanding who visits your site, their interests, and their contact information, your business is equipped to tailor marketing efforts, personalize customer experiences, and streamline sales processes like never before.
Benefits of Our Web Traffic Data Resolution Service Enhanced Lead Generation: By converting anonymous visitors into identifiable contact data, our service significantly expands your pool of potential leads. This direct enhancement of your lead generation efforts can dramatically increase conversion rates and ROI on marketing campaigns.
Targeted Marketing Campaigns: Armed with detailed B2B and B2C contact data, your marketing team can create highly targeted and personalized campaigns. This precision in marketing not only improves engagement rates but also ensures that your messaging resonates with the intended audience.
Improved Customer Insights: Gaining a deeper understanding of your web traffic enables your business to refine customer personas and tailor offerings to meet market demands. These insights are invaluable for product development, customer service improvement, and strategic planning.
Competitive Advantage: In a digital landscape where understanding your audience can make or break your business, our Web Traffic Data Resolution service provides a significant competitive edge. By accessing detailed contact data that others in your industry may overlook, you position your business as a leader in customer engagement and data-driven strategies.
Seamless Integration and Accessibility: Our solution is designed for ease of use, requiring only the placement of a tag on your website to start gathering data. The contact rows generated are easily accessible in an S3 bucket, ensuring that you can integrate this data with your existing CRM systems and marketing tools without hassle.
How It Works: A Closer Look at the Process Our Web Traffic Data Resolution process is streamlined and user-friendly, designed to integrate seamlessly with your existing website infrastructure:
Tag Deployment: Implement our unique tag on your website with simple instructions. This tag is lightweight and does not impact your site's loading speed or user experience.
Data Collection and Analysis: As visitors navigate your site, our system collects web traffic data in real-time, analyzing behavior patterns, engagement metrics, and more.
Resolution and Transformation: Using advanced data matching algorithms, we resolve the collected web traffic data into identifiable B2B and B2C contact information.
Data Delivery: The resolved contact data is then securely transferred to an S3 bucket, where it is organized and ready for your access. This process occurs daily, ensuring you have the most up-to-date information at your fingertips.
Integration and Action: With the resolved data now in your possession, your business can take immediate action. From refining marketing strategies to enhancing customer experiences, the possibilities are endless.
Security and Privacy: Our Commitment Understanding the sensitivity of web traffic data and contact information, our solution is built with security and privacy at its core. We adhere to strict data protection regulat...
https://www.marketresearchintellect.com/privacy-policyhttps://www.marketresearchintellect.com/privacy-policy
The size and share of the market is categorized based on Type (Cloud Based, On Premises) and Application (Large Enterprises, SMEs) and geographical regions (North America, Europe, Asia-Pacific, South America, and Middle-East and Africa).
https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/
Network Traffic Analysis (NTA) Software Market size was valued at USD 3.56 Billion in 2023 and is projected to reach USD 6.5 Billion by 2031, growing at a 12.78% CAGR from 2024 to 2031.
Network Traffic Analysis Software Market: Definition/ Overview
The Network Traffic Analysis (NTA) Software Market refers to the industry segment focused on developing tools and solutions designed to monitor, analyze, and secure network traffic within organizations. As businesses increasingly rely on digital networks for their operations, the need to understand and protect the flow of data becomes critical. NTA software provides essential capabilities for network visibility, threat detection, performance monitoring, and forensic analysis.
At its core, NTA software captures and inspects network traffic in real-time or retrospectively to identify patterns, anomalies, and potential security threats. These tools utilize advanced algorithms and machine learning techniques to interpret vast amounts of data, offering insights into network behavior, application performance, and security incidents. By examining packet headers and payloads, NTA software can detect unusual activity such as unauthorized access attempts, data exfiltration, malware propagation, and other suspicious behaviors.
The market for NTA software is driven by the increasing frequency and sophistication of cyber threats, regulatory requirements for data protection, and the growing complexity of IT environments. Organizations across various sectors, including finance, healthcare, government, and manufacturing, rely on NTA solutions to safeguard their networks and ensure uninterrupted operations.
Leading vendors in the NTA software market offer a range of solutions tailored to different organizational needs, from small businesses to large enterprises. These solutions often integrate with existing security information and event management (SIEM) systems, network infrastructure, and endpoint detection and response (EDR) tools to provide comprehensive visibility and protection against evolving threats.
The Network Traffic Analysis Software Market plays a crucial role in enhancing cybersecurity posture and operational efficiency by empowering organizations to proactively monitor, analyze, and respond to network incidents in real time. As the digital landscape continues to evolve, NTA software remains essential in defending against the ever-changing threat landscape and ensuring the integrity and availability of critical business networks.
https://www.zionmarketresearch.com/privacy-policyhttps://www.zionmarketresearch.com/privacy-policy
Global Network Traffic Analyzer Market size worth at USD 2.99 Billion in 2023 and projected to USD 8.69 Billion by 2032, with a CAGR of around 12.6% between 2024-2032.
Google dominated the web analytics industry in 2024, with three of its web analytics technologies maintaining the top three positions in the global market. Google Global Site Tag was first with a market share of over 34 percent, followed by Google Analytics and Google Universal Analytics who had market shares of approximately 25 and 16 percent, respectively. When all three technologies were combined, Google maintained more than 70 percent of the total market share.
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The global website analytics market, encompassing solutions for large enterprises and SMEs, is poised for significant growth. While the provided data lacks specific market size and CAGR figures, a reasonable estimation based on industry trends suggests a 2025 market size of approximately $15 billion, experiencing a compound annual growth rate (CAGR) of 12% from 2025 to 2033. This robust growth is fueled by several key drivers: the increasing reliance on data-driven decision-making across businesses, the escalating need for enhanced website performance optimization, and the growing adoption of sophisticated analytics tools offering deeper insights into user behavior and conversion rates. Market segmentation reveals strong demand across diverse analytics types, including product, traffic, and sales analytics. The competitive landscape is intensely dynamic, with established players like Google, SEMrush, and SimilarWeb vying for market share alongside emerging innovative companies like Owletter and TrendSource. These companies are constantly innovating to provide more comprehensive and user-friendly analytics platforms, leading to increased competition. This competitive pressure fosters innovation, but also necessitates strategic differentiation, focusing on specific niche markets or offering unique features to attract and retain customers. The market’s geographic distribution shows significant traction in North America and Europe, but emerging markets in Asia Pacific are also exhibiting substantial growth potential, driven by increasing internet penetration and digital transformation initiatives. While data security concerns and the complexity of implementing analytics tools present some restraints, the overall market outlook remains highly positive, promising considerable opportunities for market participants in the coming years.
https://www.marketresearchintellect.com/privacy-policyhttps://www.marketresearchintellect.com/privacy-policy
The size and share of the market is categorized based on Application (Network Performance, Security Monitoring, Traffic Management, Bandwidth Optimization, Network Troubleshooting) and Product (Network Traffic Analyzers, Flow Analysis Tools, Bandwidth Monitoring Software, Traffic Management Solutions, Protocol Analyzers) and geographical regions (North America, Europe, Asia-Pacific, South America, and Middle-East and Africa).
https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy
The global website visitor tracking software market is experiencing robust growth, driven by the increasing need for businesses to understand online customer behavior and optimize their digital strategies. The market, estimated at $5 billion in 2025, is projected to expand at a Compound Annual Growth Rate (CAGR) of 15% from 2025 to 2033, reaching approximately $15 billion by 2033. This expansion is fueled by several key factors, including the rising adoption of digital marketing strategies, the growing importance of data-driven decision-making, and the increasing sophistication of website visitor tracking tools. Cloud-based solutions dominate the market due to their scalability, accessibility, and cost-effectiveness, particularly appealing to Small and Medium-sized Enterprises (SMEs). However, large enterprises continue to invest significantly in on-premise solutions for enhanced data security and control. The market is highly competitive, with numerous established players and emerging startups offering a range of features and functionalities. Technological advancements, such as AI-powered analytics and enhanced integration with other marketing tools, are shaping the future of the market. The market's geographical distribution reflects the global digital landscape. North America, with its mature digital economy and high adoption rates, holds a significant market share. However, regions like Asia-Pacific are showing rapid growth, driven by increasing internet penetration and digitalization across various industries. Despite the overall positive outlook, challenges such as data privacy regulations and the increasing complexity of website tracking technology are influencing market dynamics. The ongoing competition among vendors necessitates continuous innovation and the development of more user-friendly and insightful tools. The future growth of the website visitor tracking software market is promising, fueled by the continuing importance of data-driven decision-making within marketing and business strategies. A key factor will be the ongoing adaptation to evolving privacy regulations and user expectations.
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The Network Traffic Analysis (NTA) tool market is thriving, with a market size valued at XXX million in 2025 and a projected CAGR of XX% from 2025 to 2033. This growth is primarily driven by the rising concerns regarding cyber threats, the increasing adoption of cloud-based services, and the need for enhanced visibility and control over network traffic. The cloud-based segment holds a substantial market share due to its cost-effectiveness and scalability advantages. On-premises solutions, however, continue to be preferred by enterprises with stringent security requirements and data privacy concerns. Major players in the NTA tool market include Corelight, SolarWinds, Arista, Ettercap, Wireshark, Paessler, Nagios, Auvik, Icinga, Observium, ManageEngine, Elastic, NetFort, Cisco, and ExtraHop. North America dominates the market, followed by Europe and Asia Pacific. The market is anticipated to witness significant growth in emerging economies, where the adoption of NTA tools is expected to surge due to government initiatives and the increasing awareness of cyber threats. Key trends shaping the market include the integration of artificial intelligence (AI) and machine learning (ML) for automated threat detection and the convergence of NTA with other security tools, such as SIEM and EDR. The global network traffic analysis (NTA) tool market is a rapidly growing segment of the network security landscape. NTA tools provide real-time visibility into network traffic patterns, enabling organizations to identify and respond to threats and performance issues.
https://www.researchnester.comhttps://www.researchnester.com
The network traffic analytics market size was valued at USD 3.44 billion in 2024 and is likely to cross USD 13.2 billion by 2037, registering more than 10.9% CAGR during the forecast period i.e., between 2025-2037. North America industry is expected to account for largest revenue share of 35% by 2037, due to presence of two significant economies, including the USA and Canada.
https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/
Web Analytics Software Market size was valued at USD 2.95 Billion in 2024 and is projected to reach USD 9.40 Billion by 2031, growing at a CAGR of 15.60% from 2024 to 2031.
The Web Analytics Software Market is primarily driven by the increasing need for businesses to optimize their online presence and improve customer experience. As companies focus on data-driven decisions, the demand for advanced analytics tools to track user behavior, measure website performance, and improve digital marketing strategies is growing.
Additionally, the rise of e-commerce and mobile internet usage is accelerating the adoption of web analytics software. Businesses seek to understand customer preferences, enhance personalization, and boost conversion rates, further propelling market growth. The integration of AI and machine learning into analytics platforms also plays a significant role in enhancing predictive capabilities and automation.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Please refer to the original data article for further data description: Jan Luxemburk et al. CESNET-QUIC22: A large one-month QUIC network traffic dataset from backbone lines, Data in Brief, 2023, 108888, ISSN 2352-3409, https://doi.org/10.1016/j.dib.2023.108888. We recommend using the CESNET DataZoo python library, which facilitates the work with large network traffic datasets. More information about the DataZoo project can be found in the GitHub repository https://github.com/CESNET/cesnet-datazoo. The QUIC (Quick UDP Internet Connection) protocol has the potential to replace TLS over TCP, which is the standard choice for reliable and secure Internet communication. Due to its design that makes the inspection of QUIC handshakes challenging and its usage in HTTP/3, there is an increasing demand for research in QUIC traffic analysis. This dataset contains one month of QUIC traffic collected in an ISP backbone network, which connects 500 large institutions and serves around half a million people. The data are delivered as enriched flows that can be useful for various network monitoring tasks. The provided server names and packet-level information allow research in the encrypted traffic classification area. Moreover, included QUIC versions and user agents (smartphone, web browser, and operating system identifiers) provide information for large-scale QUIC deployment studies. Data capture The data was captured in the flow monitoring infrastructure of the CESNET2 network. The capturing was done for four weeks between 31.10.2022 and 27.11.2022. The following list provides per-week flow count, capture period, and uncompressed size:
W-2022-44
Uncompressed Size: 19 GB Capture Period: 31.10.2022 - 6.11.2022 Number of flows: 32.6M W-2022-45
Uncompressed Size: 25 GB Capture Period: 7.11.2022 - 13.11.2022 Number of flows: 42.6M W-2022-46
Uncompressed Size: 20 GB Capture Period: 14.11.2022 - 20.11.2022 Number of flows: 33.7M W-2022-47
Uncompressed Size: 25 GB Capture Period: 21.11.2022 - 27.11.2022 Number of flows: 44.1M CESNET-QUIC22
Uncompressed Size: 89 GB Capture Period: 31.10.2022 - 27.11.2022 Number of flows: 153M
Data description The dataset consists of network flows describing encrypted QUIC communications. Flows were created using ipfixprobe flow exporter and are extended with packet metadata sequences, packet histograms, and with fields extracted from the QUIC Initial Packet, which is the first packet of the QUIC connection handshake. The extracted handshake fields are the Server Name Indication (SNI) domain, the used version of the QUIC protocol, and the user agent string that is available in a subset of QUIC communications. Packet Sequences Flows in the dataset are extended with sequences of packet sizes, directions, and inter-packet times. For the packet sizes, we consider payload size after transport headers (UDP headers for the QUIC case). Packet directions are encoded as ±1, +1 meaning a packet sent from client to server, and -1 a packet from server to client. Inter-packet times depend on the location of communicating hosts, their distance, and on the network conditions on the path. However, it is still possible to extract relevant information that correlates with user interactions and, for example, with the time required for an API/server/database to process the received data and generate the response to be sent in the next packet. Packet metadata sequences have a length of 30, which is the default setting of the used flow exporter. We also derive three fields from each packet sequence: its length, time duration, and the number of roundtrips. The roundtrips are counted as the number of changes in the communication direction (from packet directions data); in other words, each client request and server response pair counts as one roundtrip. Flow statistics Flows also include standard flow statistics, which represent aggregated information about the entire bidirectional flow. The fields are: the number of transmitted bytes and packets in both directions, the duration of flow, and packet histograms. Packet histograms include binned counts of packet sizes and inter-packet times of the entire flow in both directions (more information in the PHISTS plugin documentation There are eight bins with a logarithmic scale; the intervals are 0-15, 16-31, 32-63, 64-127, 128-255, 256-511, 512-1024, >1024 [ms or B]. The units are milliseconds for inter-packet times and bytes for packet sizes. Moreover, each flow has its end reason - either it was idle, reached the active timeout, or ended due to other reasons. This corresponds with the official IANA IPFIX-specified values. The FLOW_ENDREASON_OTHER field represents the forced end and lack of resources reasons. The end of flow detected reason is not considered because it is not relevant for UDP connections. Dataset structure The dataset flows are delivered in compressed CSV files. CSV files contain one flow per row; data columns are summarized in the provided list below. For each flow data file, there is a JSON file with the number of saved and seen (before sampling) flows per service and total counts of all received (observed on the CESNET2 network), service (belonging to one of the dataset's services), and saved (provided in the dataset) flows. There is also the stats-week.json file aggregating flow counts of a whole week and the stats-dataset.json file aggregating flow counts for the entire dataset. Flow counts before sampling can be used to compute sampling ratios of individual services and to resample the dataset back to the original service distribution. Moreover, various dataset statistics, such as feature distributions and value counts of QUIC versions and user agents, are provided in the dataset-statistics folder. The mapping between services and service providers is provided in the servicemap.csv file, which also includes SNI domains used for ground truth labeling. The following list describes flow data fields in CSV files:
ID: Unique identifier SRC_IP: Source IP address DST_IP: Destination IP address DST_ASN: Destination Autonomous System number SRC_PORT: Source port DST_PORT: Destination port PROTOCOL: Transport protocol QUIC_VERSION QUIC: protocol version QUIC_SNI: Server Name Indication domain QUIC_USER_AGENT: User agent string, if available in the QUIC Initial Packet TIME_FIRST: Timestamp of the first packet in format YYYY-MM-DDTHH-MM-SS.ffffff TIME_LAST: Timestamp of the last packet in format YYYY-MM-DDTHH-MM-SS.ffffff DURATION: Duration of the flow in seconds BYTES: Number of transmitted bytes from client to server BYTES_REV: Number of transmitted bytes from server to client PACKETS: Number of packets transmitted from client to server PACKETS_REV: Number of packets transmitted from server to client PPI: Packet metadata sequence in the format: [[inter-packet times], [packet directions], [packet sizes]] PPI_LEN: Number of packets in the PPI sequence PPI_DURATION: Duration of the PPI sequence in seconds PPI_ROUNDTRIPS: Number of roundtrips in the PPI sequence PHIST_SRC_SIZES: Histogram of packet sizes from client to server PHIST_DST_SIZES: Histogram of packet sizes from server to client PHIST_SRC_IPT: Histogram of inter-packet times from client to server PHIST_DST_IPT: Histogram of inter-packet times from server to client APP: Web service label CATEGORY: Service category FLOW_ENDREASON_IDLE: Flow was terminated because it was idle FLOW_ENDREASON_ACTIVE: Flow was terminated because it reached the active timeout FLOW_ENDREASON_OTHER: Flow was terminated for other reasons
Link to other CESNET datasets
https://www.liberouter.org/technology-v2/tools-services-datasets/datasets/ https://github.com/CESNET/cesnet-datazoo Please cite the original data article:
@article{CESNETQUIC22, author = {Jan Luxemburk and Karel Hynek and Tomáš Čejka and Andrej Lukačovič and Pavel Šiška}, title = {CESNET-QUIC22: a large one-month QUIC network traffic dataset from backbone lines}, journal = {Data in Brief}, pages = {108888}, year = {2023}, issn = {2352-3409}, doi = {https://doi.org/10.1016/j.dib.2023.108888}, url = {https://www.sciencedirect.com/science/article/pii/S2352340923000069} }
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Network traffic datasets created by Single Flow Time Series Analysis
Datasets were created for the paper: Network Traffic Classification based on Single Flow Time Series Analysis -- Josef Koumar, Karel Hynek, Tomáš Čejka -- which was published at The 19th International Conference on Network and Service Management (CNSM) 2023. Please cite usage of our datasets as:
J. Koumar, K. Hynek and T. Čejka, "Network Traffic Classification Based on Single Flow Time Series Analysis," 2023 19th International Conference on Network and Service Management (CNSM), Niagara Falls, ON, Canada, 2023, pp. 1-7, doi: 10.23919/CNSM59352.2023.10327876.
This Zenodo repository contains 23 datasets created from 15 well-known published datasets which are cited in the table below. Each dataset contains 69 features created by Time Series Analysis of Single Flow Time Series. The detailed description of features from datasets is in the file: feature_description.pdf
In the following table is a description of each dataset file:
File name | Detection problem | Citation of original raw dataset |
botnet_binary.csv | Binary detection of botnet | S. García et al. An Empirical Comparison of Botnet Detection Methods. Computers & Security, 45:100–123, 2014. |
botnet_multiclass.csv | Multi-class classification of botnet | S. García et al. An Empirical Comparison of Botnet Detection Methods. Computers & Security, 45:100–123, 2014. |
cryptomining_design.csv | Binary detection of cryptomining; the design part | Richard Plný et al. Datasets of Cryptomining Communication. Zenodo, October 2022 |
cryptomining_evaluation.csv | Binary detection of cryptomining; the evaluation part | Richard Plný et al. Datasets of Cryptomining Communication. Zenodo, October 2022 |
dns_malware.csv | Binary detection of malware DNS | Samaneh Mahdavifar et al. Classifying Malicious Domains using DNS Traffic Analysis. In DASC/PiCom/CBDCom/CyberSciTech 2021, pages 60–67. IEEE, 2021. |
doh_cic.csv | Binary detection of DoH |
Mohammadreza MontazeriShatoori et al. Detection of doh tunnels using time-series classification of encrypted traffic. In DASC/PiCom/CBDCom/CyberSciTech 2020, pages 63–70. IEEE, 2020 |
doh_real_world.csv | Binary detection of DoH | Kamil Jeřábek et al. Collection of datasets with DNS over HTTPS traffic. Data in Brief, 42:108310, 2022 |
dos.csv | Binary detection of DoS | Nickolaos Koroniotis et al. Towards the development of realistic botnet dataset in the Internet of Things for network forensic analytics: Bot-IoT dataset. Future Gener. Comput. Syst., 100:779–796, 2019. |
edge_iiot_binary.csv | Binary detection of IoT malware | Mohamed Amine Ferrag et al. Edge-iiotset: A new comprehensive realistic cyber security dataset of iot and iiot applications: Centralized and federated learning, 2022. |
edge_iiot_multiclass.csv | Multi-class classification of IoT malware | Mohamed Amine Ferrag et al. Edge-iiotset: A new comprehensive realistic cyber security dataset of iot and iiot applications: Centralized and federated learning, 2022. |
https_brute_force.csv | Binary detection of HTTPS Brute Force | Jan Luxemburk et al. HTTPS Brute-force dataset with extended network flows, November 2020 |
ids_cic_binary.csv | Binary detection of intrusion in IDS | Iman Sharafaldin et al. Toward generating a new intrusion detection dataset and intrusion traffic characterization. ICISSp, 1:108–116, 2018. |
ids_cic_multiclass.csv | Multi-class classification of intrusion in IDS | Iman Sharafaldin et al. Toward generating a new intrusion detection dataset and intrusion traffic characterization. ICISSp, 1:108–116, 2018. |
ids_unsw_nb_15_binary.csv | Binary detection of intrusion in IDS | Nour Moustafa and Jill Slay. Unsw-nb15: a comprehensive data set for network intrusion detection systems (unsw-nb15 network data set). In 2015 military communications and information systems conference (MilCIS), pages 1–6. IEEE, 2015. |
ids_unsw_nb_15_multiclass.csv | Multi-class classification of intrusion in IDS | Nour Moustafa and Jill Slay. Unsw-nb15: a comprehensive data set for network intrusion detection systems (unsw-nb15 network data set). In 2015 military communications and information systems conference (MilCIS), pages 1–6. IEEE, 2015. |
iot_23.csv | Binary detection of IoT malware | Sebastian Garcia et al. IoT-23: A labeled dataset with malicious and benign IoT network traffic, January 2020. More details here https://www.stratosphereips.org /datasets-iot23 |
ton_iot_binary.csv | Binary detection of IoT malware | Nour Moustafa. A new distributed architecture for evaluating ai-based security systems at the edge: Network ton iot datasets. Sustainable Cities and Society, 72:102994, 2021 |
ton_iot_multiclass.csv | Multi-class classification of IoT malware | Nour Moustafa. A new distributed architecture for evaluating ai-based security systems at the edge: Network ton iot datasets. Sustainable Cities and Society, 72:102994, 2021 |
tor_binary.csv | Binary detection of TOR | Arash Habibi Lashkari et al. Characterization of Tor Traffic using Time based Features. In ICISSP 2017, pages 253–262. SciTePress, 2017. |
tor_multiclass.csv | Multi-class classification of TOR | Arash Habibi Lashkari et al. Characterization of Tor Traffic using Time based Features. In ICISSP 2017, pages 253–262. SciTePress, 2017. |
vpn_iscx_binary.csv | Binary detection of VPN | Gerard Draper-Gil et al. Characterization of Encrypted and VPN Traffic Using Time-related. In ICISSP, pages 407–414, 2016. |
vpn_iscx_multiclass.csv | Multi-class classification of VPN | Gerard Draper-Gil et al. Characterization of Encrypted and VPN Traffic Using Time-related. In ICISSP, pages 407–414, 2016. |
vpn_vnat_binary.csv | Binary detection of VPN | Steven Jorgensen et al. Extensible Machine Learning for Encrypted Network Traffic Application Labeling via Uncertainty Quantification. CoRR, abs/2205.05628, 2022 |
vpn_vnat_multiclass.csv | Multi-class classification of VPN | Steven Jorgensen et al. Extensible Machine Learning for Encrypted Network Traffic Application Labeling via Uncertainty Quantification. CoRR, abs/2205.05628, 2022 |
https://www.marketresearchintellect.com/zh/privacy-policyhttps://www.marketresearchintellect.com/zh/privacy-policy
网络流量分析软件市场的市场规模基于应用程序(大型企业,中小型企业)和 Product (基于云)和地理区域(北美,欧洲,亚太地区,南美以及中东和非洲)。
本报告提供了有关市场规模的见解,并预测了这些市场价值,以百万美元的价格表示市场价值定义的细分市场。
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The global Network Traffic Monitoring Tools market is experiencing robust growth, driven by the increasing adoption of cloud-based solutions, the expanding volume of network traffic generated by digital transformation initiatives, and the rising need for enhanced network security and performance optimization. The market, valued at approximately $15 billion in 2025, is projected to register a Compound Annual Growth Rate (CAGR) of 12% from 2025 to 2033. This significant growth is fueled by several key factors. Large enterprises are increasingly investing in sophisticated network monitoring solutions to manage complex IT infrastructures and ensure business continuity. Furthermore, the proliferation of IoT devices and the adoption of 5G networks are generating massive amounts of data, necessitating robust monitoring tools capable of handling this increased traffic volume and identifying potential bottlenecks or security threats. The shift towards cloud-based deployment models offers scalability, cost-effectiveness, and ease of management, further contributing to market expansion. Segmentation analysis reveals significant growth in both cloud-based solutions and within the SME segment, indicating a broadening market appeal beyond large enterprises. However, certain restraints limit market growth. High initial investment costs associated with deploying advanced network monitoring solutions can be a barrier for smaller businesses. Furthermore, the complexity of these tools and the need for specialized expertise can pose challenges for implementation and management. Despite these limitations, the overall market outlook remains positive, driven by the continuous need for improved network visibility and the growing importance of proactive network management in today's interconnected world. The competitive landscape is characterized by a mix of established players and emerging innovative companies, fostering ongoing technological advancements and product diversification within the network traffic monitoring tools sector. This competitive environment is further driving market growth by providing businesses with a wide array of solutions to choose from, catering to varying needs and budgets.
https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy
The Report Covers Web Analytics Companies and It is Segmented by Application (Online Marketing & Marketing Automation, Mobile Analytics, Content Marketing, Social Media Management, E-Mail Marketing, and Other Applications), Offering (Solution and Services), End-User Vertical (Retail, Manufacturing, Information Technology, BFSI, Healthcare, Transportation & Logistics, and Other End-User Verticals), and Geography (North America, Europe, Asia Pacific, Latin America, and Middle East and Africa). The Market Sizes and Forecasts are Provided in Terms of Value in USD Billion for all the Above Segments.
https://www.marketresearchintellect.com/es/privacy-policyhttps://www.marketresearchintellect.com/es/privacy-policy
El tamaño del mercado del mercado de software NTA Analysis NTA se clasifica en función del tipo (basado en la nube, en las premisas) y la aplicación (grandes empresas, las PYME) y las regiones geográficas (América del Norte, Europa, Asia-Pacífico, América del Sur y Medio Oriente y África).
Este informe proporciona información sobre el tamaño del mercado y los pronósticos del mercado del mercado, expresado en un millón, en todos estos define.
Mobile accounts for approximately half of web traffic worldwide. In the last quarter of 2024, mobile devices (excluding tablets) generated 62.54 percent of global website traffic. Mobiles and smartphones consistently hoovered around the 50 percent mark since the beginning of 2017, before surpassing it in 2020. Mobile traffic Due to low infrastructure and financial restraints, many emerging digital markets skipped the desktop internet phase entirely and moved straight onto mobile internet via smartphone and tablet devices. India is a prime example of a market with a significant mobile-first online population. Other countries with a significant share of mobile internet traffic include Nigeria, Ghana and Kenya. In most African markets, mobile accounts for more than half of the web traffic. By contrast, mobile only makes up around 45.49 percent of online traffic in the United States. Mobile usage The most popular mobile internet activities worldwide include watching movies or videos online, e-mail usage and accessing social media. Apps are a very popular way to watch video on the go and the most-downloaded entertainment apps in the Apple App Store are Netflix, Tencent Video and Amazon Prime Video.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
General data recollected for the studio " Analysis of the Quantitative Impact of Social Networks on Web Traffic of Cybermedia in the 27 Countries of the European Union".
Four research questions are posed: what percentage of the total web traffic generated by cybermedia in the European Union comes from social networks? Is said percentage higher or lower than that provided through direct traffic and through the use of search engines via SEO positioning? Which social networks have a greater impact? And is there any degree of relationship between the specific weight of social networks in the web traffic of a cybermedia and circumstances such as the average duration of the user's visit, the number of page views or the bounce rate understood in its formal aspect of not performing any kind of interaction on the visited page beyond reading its content?
To answer these questions, we have first proceeded to a selection of the cybermedia with the highest web traffic of the 27 countries that are currently part of the European Union after the United Kingdom left on December 31, 2020. In each nation we have selected five media using a combination of the global web traffic metrics provided by the tools Alexa (https://www.alexa.com/), which ceased to be operational on May 1, 2022, and SimilarWeb (https:// www.similarweb.com/). We have not used local metrics by country since the results obtained with these first two tools were sufficiently significant and our objective is not to establish a ranking of cybermedia by nation but to examine the relevance of social networks in their web traffic.
In all cases, cybermedia whose property corresponds to a journalistic company have been selected, ruling out those belonging to telecommunications portals or service providers; in some cases they correspond to classic information companies (both newspapers and televisions) while in others they refer to digital natives, without this circumstance affecting the nature of the research proposed.
Below we have proceeded to examine the web traffic data of said cybermedia. The period corresponding to the months of October, November and December 2021 and January, February and March 2022 has been selected. We believe that this six-month stretch allows possible one-time variations to be overcome for a month, reinforcing the precision of the data obtained.
To secure this data, we have used the SimilarWeb tool, currently the most precise tool that exists when examining the web traffic of a portal, although it is limited to that coming from desktops and laptops, without taking into account those that come from mobile devices, currently impossible to determine with existing measurement tools on the market.
It includes:
Web traffic general data: average visit duration, pages per visit and bounce rate Web traffic origin by country Percentage of traffic generated from social media over total web traffic Distribution of web traffic generated from social networks Comparison of web traffic generated from social netwoks with direct and search procedures
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
Market Analysis for Network Traffic Analysis Tools The global Network Traffic Analysis (NTA) Tool market is projected to reach a valuation of USD XXX million by 2033, exhibiting a CAGR of XX% during the forecast period (2025-2033). The rising need to monitor and secure network traffic, coupled with increased adoption of cloud-based and hybrid network environments, is driving the market growth. Key industry players include Cisco, ExtraHop, ManageEngine, Netreo, Noction, Packetbeat, SolarWinds, and Splunk. The NTA tool market is segmented by type (cloud-based and on-premises) and application (BFSI, healthcare, government, retail, and others). Cloud-based solutions are gaining traction due to their scalability, flexibility, and cost-effectiveness. Key market trends include the integration of artificial intelligence (AI) and machine learning (ML) for real-time threat detection and advanced analytics. However, data privacy concerns and deployment costs may pose restraints. With growing demand from various industries, the Asia Pacific region is expected to witness significant growth in the NTA tool market in the coming years.