75 datasets found
  1. 5G Traffic Datasets

    • kaggle.com
    Updated Oct 28, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    0913ktg (2022). 5G Traffic Datasets [Dataset]. https://www.kaggle.com/datasets/kimdaegyeom/5g-traffic-datasets
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 28, 2022
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    0913ktg
    Description

    Representative applications that can directly collect 5G da-tasets from mobile terminals without using specialized equipment include G-NetTrack Pro and PCAPdroid. The for-mer allows for the monitoring and logging of the header and payload information of the medium access control (MAC) frame passing through the 5G air interface. The latter is an open-source network capture and monitoring tool that works without root privileges, analyzing connections made by ap-plications installed on the user's mobile device. The latter can also dump mobile traffic to PCAP (also known as libpcap) and send it to the well-known Wireshark for further analysis. We created 5G datasets by measuring 5G traffic directly from a major mobile operator in South Korea. The model name of the mobile terminal used for traffic measurement is the Samsung Galaxy A90 5G, and it was equipped with a Qualcomm Snapdragon X50 5G modem. The packet sniffer software used for traffic measurement, PCAPdroid, was in-stalled in the terminal through Google play. Traffic was measured sequentially per application on two stationary ter-minals (only one terminal was used for non-interactive ser-vices) with no background traffic. The collected dataset is representative resource-intensive video traffic that has the greatest impact on 5G network planning and provisioning, and background traffic was not mixed to measure the unique characteristics of each type of traffic. The video streaming dataset includes data directly meas-ured while watching Netflix and Amazon Prime, which are representative over-the-top (OTT) services, on mobile devic-es. The live streaming dataset was measured while watching YouTube Live and South Korea's representative live broad-casts (Naver NOW and Afreeca TV). Video conferencing data were measured by holding an actual meeting on the widely used Zoom, MS Teams, and Google Meet platform. Two types of metaverse traffic were acquired: Zepeto and Roblox. Zepeto traffic was collected while staying in the 'camping world' for 15 hours. Roblox traffic was collected over 25 hours of playing the 'Collect All Pets' game using an auto clicker. We collected two types of mobile network gaming traffic. The first was cloud gaming, an online game setup that runs video games on remote servers and streams them direct-ly to the user's device. The second was a traditional mobile game connected to the Internet. The dataset was collected from May to October 2022, is a massive 328 hours in total, and is provided in the csv file format. The dataset we collected is a timestamp-mapped time series dataset with packet header information, and traffic analysis by application is possible because it includes source and destination addresses. To make it more usable as a traffic source model, Section III describes how to use it as a training dataset for the traffic simulator platform's source generator.

    A 5G traffic dataset measured by PCAPdroid has been re-leased and can be used as a training dataset for various ML models. However, since the size of this dataset is very large, it is inconvenient to handle, and additional data preprocessing is required to use it for its intended purpose.

    This data set can be used to learn GANs, time-series forcasting deep learning models.

    Our implementation is given on GitHub. https://github.com/0913ktg/5G-Traffic-Generator

  2. f

    YouTube Dataset on Mobile Streaming for Internet Traffic Modeling, Network...

    • figshare.com
    txt
    Updated Apr 14, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Frank Loh; Florian Wamser; Fabian Poignée; Stefan Geißler; Tobias Hoßfeld (2022). YouTube Dataset on Mobile Streaming for Internet Traffic Modeling, Network Management, and Streaming Analysis [Dataset]. http://doi.org/10.6084/m9.figshare.19096823.v2
    Explore at:
    txtAvailable download formats
    Dataset updated
    Apr 14, 2022
    Dataset provided by
    figshare
    Authors
    Frank Loh; Florian Wamser; Fabian Poignée; Stefan Geißler; Tobias Hoßfeld
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    YouTube
    Description

    Streaming is by far the predominant type of traffic in communication networks. With thispublic dataset, we provide 1,081 hours of time-synchronous video measurements at network, transport, and application layer with the native YouTube streaming client on mobile devices. The dataset includes 80 network scenarios with 171 different individual bandwidth settings measured in 5,181 runs with limited bandwidth, 1,939 runs with emulated 3G/4G traces, and 4,022 runs with pre-defined bandwidth changes. This corresponds to 332GB video payload. We present the most relevant quality indicators for scientific use, i.e., initial playback delay, streaming video quality, adaptive video quality changes, video rebuffering events, and streaming phases.

  3. m

    ITC-Net-MingledApp: A comprehensive dataset of mixed mobile application...

    • data.mendeley.com
    Updated Oct 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abolghasem Rezaei Khesal (2024). ITC-Net-MingledApp: A comprehensive dataset of mixed mobile application traffic for robust network traffic classification, domain adaptation, and generalization in diverse environments - Tehran Dataset #2 [Dataset]. http://doi.org/10.17632/4b9xpz4gd3.1
    Explore at:
    Dataset updated
    Oct 7, 2024
    Authors
    Abolghasem Rezaei Khesal
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Tehran
    Description

    This repository is part of the ITC-NetMingledApp dataset, which includes network traffic data from 36 Android applications, with each capture featuring concurrent traffic from multiple applications and smartphones. This repository contains part #2 of the data related to the Iran-Tehran scenario. Each capture is stored in a compressed file containing the relevant PCAP files of the associated applications. The PCAP files are named according to a convention: {TimeStamp}_{Application Name}{Download-Upload Speed}.pcap Part #1 of Iran-Tehran scenario is in the Tehran Dataset #1 (https://doi.org/10.17632/9frgkybxhn.1) repository.

  4. m

    ITC-Net-MingledApp: A comprehensive dataset of mixed mobile application...

    • data.mendeley.com
    Updated Oct 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abolghasem Rezaei Khesal (2024). ITC-Net-MingledApp: A comprehensive dataset of mixed mobile application traffic for robust network traffic classification, domain adaptation, and generalization in diverse environments - Qom Dataset [Dataset]. http://doi.org/10.17632/96jwzrp7fd.1
    Explore at:
    Dataset updated
    Oct 7, 2024
    Authors
    Abolghasem Rezaei Khesal
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This repository is part of the ITC-NetMingledApp dataset, which includes network traffic data from 36 Android applications, with each capture featuring concurrent traffic from multiple applications and smartphones. This repository contains data related to the Iran-Qom scenario. Each capture is stored in a compressed file containing the relevant PCAP files of the associated applications. The PCAP files are named according to a convention: {TimeStamp}_{Application Name}{Download-Upload Speed}.pcap

  5. i

    Mobile vs Desktop Usage Statistics 2025

    • innersparkcreative.com
    html
    Updated Sep 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Inner Spark Creative (2025). Mobile vs Desktop Usage Statistics 2025 [Dataset]. https://www.innersparkcreative.com/news/mobile-vs-desktop-usage-statistics-2025-verified
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Sep 3, 2025
    Dataset authored and provided by
    Inner Spark Creative
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Verified dataset of 2025 device usage: share of global web traffic, mobile commerce share of transactions, US daily time spent, app vs web breakdown, and tablet decline.

  6. Network Traffic Android Malware

    • kaggle.com
    zip
    Updated Sep 12, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Christian Urcuqui (2019). Network Traffic Android Malware [Dataset]. https://www.kaggle.com/datasets/xwolf12/network-traffic-android-malware
    Explore at:
    zip(116603 bytes)Available download formats
    Dataset updated
    Sep 12, 2019
    Authors
    Christian Urcuqui
    Description

    Introduction

    Android is one of the most used mobile operating systems worldwide. Due to its technological impact, its open-source code and the possibility of installing applications from third parties without any central control, Android has recently become a malware target. Even if it includes security mechanisms, the last news about malicious activities and Android´s vulnerabilities point to the importance of continuing the development of methods and frameworks to improve its security.

    To prevent malware attacks, researches and developers have proposed different security solutions, applying static analysis, dynamic analysis, and artificial intelligence. Indeed, data science has become a promising area in cybersecurity, since analytical models based on data allow for the discovery of insights that can help to predict malicious activities.

    In this work, we propose to consider some network layer features as the basis for machine learning models that can successfully detect malware applications, using open datasets from the research community.

    Content

    This dataset is based on another dataset (DroidCollector) where you can get all the network traffic in pcap files, in our research we preprocessed the files in order to get network features that are illustrated in the next article:

    López, C. C. U., Villarreal, J. S. D., Belalcazar, A. F. P., Cadavid, A. N., & Cely, J. G. D. (2018, May). Features to Detect Android Malware. In 2018 IEEE Colombian Conference on Communications and Computing (COLCOM) (pp. 1-6). IEEE.

    Acknowledgements

    Cao, D., Wang, S., Li, Q., Cheny, Z., Yan, Q., Peng, L., & Yang, B. (2016, August). DroidCollector: A High Performance Framework for High Quality Android Traffic Collection. In Trustcom/BigDataSE/I SPA, 2016 IEEE (pp. 1753-1758). IEEE

  7. m

    Mobile Web Clickstream | 1st Party | 3B+ events verified, US consumers |...

    • omnitrafficdata.mfour.com
    • datarade.ai
    Updated Aug 1, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MFour (2021). Mobile Web Clickstream | 1st Party | 3B+ events verified, US consumers | Safari, Chrome, any iOS or Android [Dataset]. https://omnitrafficdata.mfour.com/products/mobile-web-clickstream-1st-party-3b-events-verified-us-mfour
    Explore at:
    Dataset updated
    Aug 1, 2021
    Dataset authored and provided by
    MFour
    Area covered
    United States
    Description

    This dataset encompasses mobile web clickstream behavior on any browser, collected from over 150,000 triple-opt-in first-party US Daily Active Users (DAU). Use it for measurement, attribution or path to purchase and consumer journey understanding. Full URL deliverable available including searches.

  8. G

    Mobile Data Usage Pattern Dataset

    • gomask.ai
    csv, json
    Updated Jul 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GoMask.ai (2025). Mobile Data Usage Pattern Dataset [Dataset]. https://gomask.ai/marketplace/datasets/mobile-data-usage-pattern-dataset
    Explore at:
    json, csv(10 MB)Available download formats
    Dataset updated
    Jul 12, 2025
    Dataset provided by
    GoMask.ai
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2024 - 2025
    Area covered
    Global
    Variables measured
    plan_id, user_id, usage_id, sms_count, is_roaming, time_block, usage_date, device_type, call_minutes, data_used_mb, and 4 more
    Description

    This dataset provides detailed, time-segmented records of mobile data, call, and SMS usage for telecom customers, including network type, device, and location context. It enables in-depth analysis of user consumption patterns, peak usage periods, and regional trends, supporting telecom plan optimization, network planning, and customer segmentation.

  9. s

    BuzzCity mobile advertisement dataset

    • researchdata.smu.edu.sg
    • smu.edu.sg
    bin
    Updated May 30, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Living Analytics Research Centre (2023). BuzzCity mobile advertisement dataset [Dataset]. http://doi.org/10.25440/smu.12062703.v1
    Explore at:
    binAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    SMU Research Data Repository (RDR)
    Authors
    Living Analytics Research Centre
    License

    http://rightsstatements.org/vocab/InC/1.0/http://rightsstatements.org/vocab/InC/1.0/

    Description

    This competition involves advertisement data provided by BuzzCity Pte. Ltd. BuzzCity is a global mobile advertising network that has millions of consumers around the world on mobile phones and devices. In Q1 2012, over 45 billion ad banners were delivered across the BuzzCity network consisting of more than 10,000 publisher sites which reach an average of over 300 million unique users per month. The number of smartphones active on the network has also grown significantly. Smartphones now account for more than 32% phones that are served advertisements across the BuzzCity network. The "raw" data used in this competition has two types: publisher database and click database, both provided in CSV format. The publisher database records the publisher's (aka partner's) profile and comprises several fields:

    publisherid - Unique identifier of a publisher. Bankaccount - Bank account associated with a publisher (may be empty) address - Mailing address of a publisher (obfuscated; may be empty) status - Label of a publisher, which can be the following: "OK" - Publishers whom BuzzCity deems as having healthy traffic (or those who slipped their detection mechanisms) "Observation" - Publishers who may have just started their traffic or their traffic statistics deviates from system wide average. BuzzCity does not have any conclusive stand with these publishers yet "Fraud" - Publishers who are deemed as fraudulent with clear proof. Buzzcity suspends their accounts and their earnings will not be paid

    On the other hand, the click database records the click traffics and has several fields:

    id - Unique identifier of a particular click numericip - Public IP address of a clicker/visitor deviceua - Phone model used by a clicker/visitor publisherid - Unique identifier of a publisher adscampaignid - Unique identifier of a given advertisement campaign usercountry - Country from which the surfer is clicktime - Timestamp of a given click (in YYYY-MM-DD format) publisherchannel - Publisher's channel type, which can be the following: ad - Adult sites co - Community es - Entertainment and lifestyle gd - Glamour and dating in - Information mc - Mobile content pp - Premium portal se - Search, portal, services referredurl - URL where the ad banners were clicked (obfuscated; may be empty). More details about the HTTP Referer protocol can be found in this article. Related Publication: R. J. Oentaryo, E.-P. Lim, M. Finegold, D. Lo, F.-D. Zhu, C. Phua, E.-Y. Cheu, G.-E. Yap, K. Sim, M. N. Nguyen, K. Perera, B. Neupane, M. Faisal, Z.-Y. Aung, W. L. Woon, W. Chen, D. Patel, and D. Berrar. (2014). Detecting click fraud in online advertising: A data mining approach, Journal of Machine Learning Research, 15, 99-140.

  10. d

    Swash Web Browsing Clickstream Data - 1.5M Worldwide Users - GDPR Compliant

    • datarade.ai
    .csv, .xls
    Updated Jun 27, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Swash (2023). Swash Web Browsing Clickstream Data - 1.5M Worldwide Users - GDPR Compliant [Dataset]. https://datarade.ai/data-products/swash-blockchain-bitcoin-and-web3-enthusiasts-swash
    Explore at:
    .csv, .xlsAvailable download formats
    Dataset updated
    Jun 27, 2023
    Dataset authored and provided by
    Swash
    Area covered
    Saint Vincent and the Grenadines, Monaco, Latvia, Liechtenstein, Russian Federation, Jordan, India, Belarus, Jamaica, Uzbekistan
    Description

    Unlock the Power of Behavioural Data with GDPR-Compliant Clickstream Insights.

    Swash clickstream data offers a comprehensive and GDPR-compliant dataset sourced from users worldwide, encompassing both desktop and mobile browsing behaviour. Here's an in-depth look at what sets us apart and how our data can benefit your organisation.

    User-Centric Approach: Unlike traditional data collection methods, we take a user-centric approach by rewarding users for the data they willingly provide. This unique methodology ensures transparent data collection practices, encourages user participation, and establishes trust between data providers and consumers.

    Wide Coverage and Varied Categories: Our clickstream data covers diverse categories, including search, shopping, and URL visits. Whether you are interested in understanding user preferences in e-commerce, analysing search behaviour across different industries, or tracking website visits, our data provides a rich and multi-dimensional view of user activities.

    GDPR Compliance and Privacy: We prioritise data privacy and strictly adhere to GDPR guidelines. Our data collection methods are fully compliant, ensuring the protection of user identities and personal information. You can confidently leverage our clickstream data without compromising privacy or facing regulatory challenges.

    Market Intelligence and Consumer Behaviuor: Gain deep insights into market intelligence and consumer behaviour using our clickstream data. Understand trends, preferences, and user behaviour patterns by analysing the comprehensive user-level, time-stamped raw or processed data feed. Uncover valuable information about user journeys, search funnels, and paths to purchase to enhance your marketing strategies and drive business growth.

    High-Frequency Updates and Consistency: We provide high-frequency updates and consistent user participation, offering both historical data and ongoing daily delivery. This ensures you have access to up-to-date insights and a continuous data feed for comprehensive analysis. Our reliable and consistent data empowers you to make accurate and timely decisions.

    Custom Reporting and Analysis: We understand that every organisation has unique requirements. That's why we offer customisable reporting options, allowing you to tailor the analysis and reporting of clickstream data to your specific needs. Whether you need detailed metrics, visualisations, or in-depth analytics, we provide the flexibility to meet your reporting requirements.

    Data Quality and Credibility: We take data quality seriously. Our data sourcing practices are designed to ensure responsible and reliable data collection. We implement rigorous data cleaning, validation, and verification processes, guaranteeing the accuracy and reliability of our clickstream data. You can confidently rely on our data to drive your decision-making processes.

  11. m

    Omnichannel Consumer Behaviors | 1st Party | 3B+ events verified, US...

    • omnitrafficdata.mfour.com
    • datarade.ai
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MFour, Omnichannel Consumer Behaviors | 1st Party | 3B+ events verified, US consumers | Path to purchase across app, web and point of interest locations [Dataset]. https://omnitrafficdata.mfour.com/products/omnichannel-consumer-journeys-1st-party-3b-events-verifi-mfour
    Explore at:
    Dataset authored and provided by
    MFour
    Area covered
    United States
    Description

    This dataset encompasses mobile app usage, web clickstream and location visitation behavior, collected from over 150,000 triple-opt-in first-party US Daily Active Users (DAU). The only omnichannel meter at scale representing iOS and Android platforms.

  12. Measurement Data: Latencies and Traffic Traces in Global Mobile Roaming with...

    • data.europa.eu
    unknown
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zenodo, Measurement Data: Latencies and Traffic Traces in Global Mobile Roaming with Regional Breakouts [Dataset]. https://data.europa.eu/data/datasets/oai-zenodo-org-11065734?locale=ro
    Explore at:
    unknown(13095)Available download formats
    Dataset authored and provided by
    Zenodohttp://zenodo.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    A Shortcut through the IPX: Measuring Latencies in Global Mobile Roaming with Regional Breakouts This repository contains a description and sample data for the Paper A Shortcut through the IPX: Measuring Latencies in Global Mobile Roaming with Regional Breakouts published at the Network Traffic Measurement and Analysis (TMA) Conference 2024.In the provided README.md file, we present example snippets of the datasets, including an explanation of all contained fields. We cover the three main datasets covered in the related paper:- DT1: User plane traces captured at multiple GGSN/PGW instances of a globaly operating MVNO- DT2: GTP echo round trip times between visited network SGSN/SGWs and home network GGSN/PGWs- DT3: IPX routing information, as extracted from BGP routing tables For legal reasons, we are not able to publish the secondary datasets (DT4, DT5) covered in the manuscript. Finally, for privacy, security, and political reasons, certain fields in each of the datasets have been anonymized. These are indicated by the _anonymized prefix.In case of IP addresses, the anonymization ist consistent across datasets, meaning that similar IPs have been anonymized such that their values are still identical after anonymization. Contact For questions regarding the dataset, contact Viktoria Vomhoff (viktoria.vomhoff@uni-wuerzburg.de)

  13. d

    Foot Traffic Data | Worldwide | Mobile Connected Device Insights

    • datarade.ai
    Updated Aug 23, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Irys (2023). Foot Traffic Data | Worldwide | Mobile Connected Device Insights [Dataset]. https://datarade.ai/data-products/foot-traffic-data-worldwide-mobile-connected-device-insights-irys
    Explore at:
    .json, .csv, .xls, .sqlAvailable download formats
    Dataset updated
    Aug 23, 2023
    Dataset authored and provided by
    Irys
    Area covered
    Côte d'Ivoire, Liechtenstein, French Polynesia, Gabon, Bouvet Island, Hong Kong, Dominican Republic, Slovenia, Australia, Jersey
    Description

    Gain access to high-accuracy foot traffic data covering global mobile visitation patterns and dwell behavior at points of interest. This dataset is derived from billions of opt-in mobile device signals and enables you to monitor how people interact with commercial, civic, and public spaces around the world.

    Each record includes visit frequency, time-on-site (dwell time), return rate, and temporal segmentation. The foot traffic data is organized for easy enrichment of mobility data, map data, and location data use cases, and integrates seamlessly into spatial analytics platforms.

    Core benefits: •Worldwide POI-level foot traffic data •Hourly time resolution with repeat visitor logic •Works with retail analytics, site planning, and consumer insights •Delivered via API or S3 •Fully anonymized and CCPA/GDPR compliant

    Use this foot traffic data to improve operational efficiency, inform investment decisions, and benchmark performance against global movement patterns.

  14. C

    Local SEO Analytics Dataset

    • caseysseo.com
    csv, pdf
    Updated Jan 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Casey Miller (2025). Local SEO Analytics Dataset [Dataset]. https://caseysseo.com/local-seo-analytics
    Explore at:
    pdf, csvAvailable download formats
    Dataset updated
    Jan 11, 2025
    Dataset provided by
    Casey's SEO
    Authors
    Casey Miller
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    Variables measured
    Citation Consistency, Local Keyword Rankings, Google Business Profile Views, Google Business Profile Clicks, Mobile vs Desktop Local Search, Conversion Rate from Local Traffic, Organic Traffic from Local Searches, Colorado Springs Mobile Search Growth
    Measurement technique
    Competitive analysis, Conversion tracking, Customer surveys, Industry benchmarking
    Description

    This dataset provides detailed insights and best practices for tracking and measuring local SEO performance across a range of critical metrics, including Google Business Profile engagement, local keyword rankings, website traffic from local searches, citation management, mobile optimization, and ROI calculation. The data is based on expert analysis and recommendations to help local businesses optimize their local search visibility and drive measurable results.

  15. 4

    Experimental data from a developed mobile object generator, to simulate the...

    • data.4tu.nl
    zip
    Updated Oct 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The citation is currently not available for this dataset.
    Explore at:
    zipAvailable download formats
    Dataset updated
    Oct 19, 2025
    Dataset provided by
    4TU.ResearchData
    Authors
    Xiang Gong
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Dataset funded by
    Science Research Project of Hebei Education Department
    Description

    Some experimental data were generated by a developed mobile object generator, designed to simulate the movement trajectories of mobile users within the traffic network of Oldenburg city as realistically as possible. The dataset also include GPS data of desensitized taxi, bus, and etc.

  16. d

    Traffic Count Segments

    • catalog.data.gov
    • data-academy.tempe.gov
    • +8more
    Updated Sep 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Tempe (2024). Traffic Count Segments [Dataset]. https://catalog.data.gov/dataset/traffic-count-segments-4a2ab
    Explore at:
    Dataset updated
    Sep 20, 2024
    Dataset provided by
    City of Tempe
    Description

    This dataset consists of 24-hour traffic volumes which are collected by the City of Tempe high (arterial) and low (collector) volume streets. Data located in the tabular section shares with its users total volume of vehicles passing through the intersection selected along with the direction of flow.Historical data from this feature layer extends from 2016 to present day.Contact: Sue TaaffeContact E-Mail: sue_taaffe@tempe.govContact Phone: 480-350-8663Link to embedded web map:http://www.tempe.gov/city-hall/public-works/transportation/traffic-countsLink to site containing historical traffic counts by node: https://gis.tempe.gov/trafficcounts/Folders/Data Source: SQL Server/ArcGIS ServerData Source Type: GeospatialPreparation Method: N/APublish Frequency: As information changesPublish Method: AutomaticData Dictionary

  17. Data from: Analysis of the Quantitative Impact of Social Networks General...

    • figshare.com
    • produccioncientifica.ucm.es
    doc
    Updated Oct 14, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David Parra; Santiago Martínez Arias; Sergio Mena Muñoz (2022). Analysis of the Quantitative Impact of Social Networks General Data.doc [Dataset]. http://doi.org/10.6084/m9.figshare.21329421.v1
    Explore at:
    docAvailable download formats
    Dataset updated
    Oct 14, 2022
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    David Parra; Santiago Martínez Arias; Sergio Mena Muñoz
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    General data recollected for the studio " Analysis of the Quantitative Impact of Social Networks on Web Traffic of Cybermedia in the 27 Countries of the European Union". Four research questions are posed: what percentage of the total web traffic generated by cybermedia in the European Union comes from social networks? Is said percentage higher or lower than that provided through direct traffic and through the use of search engines via SEO positioning? Which social networks have a greater impact? And is there any degree of relationship between the specific weight of social networks in the web traffic of a cybermedia and circumstances such as the average duration of the user's visit, the number of page views or the bounce rate understood in its formal aspect of not performing any kind of interaction on the visited page beyond reading its content? To answer these questions, we have first proceeded to a selection of the cybermedia with the highest web traffic of the 27 countries that are currently part of the European Union after the United Kingdom left on December 31, 2020. In each nation we have selected five media using a combination of the global web traffic metrics provided by the tools Alexa (https://www.alexa.com/), which ceased to be operational on May 1, 2022, and SimilarWeb (https:// www.similarweb.com/). We have not used local metrics by country since the results obtained with these first two tools were sufficiently significant and our objective is not to establish a ranking of cybermedia by nation but to examine the relevance of social networks in their web traffic. In all cases, cybermedia whose property corresponds to a journalistic company have been selected, ruling out those belonging to telecommunications portals or service providers; in some cases they correspond to classic information companies (both newspapers and televisions) while in others they refer to digital natives, without this circumstance affecting the nature of the research proposed.
    Below we have proceeded to examine the web traffic data of said cybermedia. The period corresponding to the months of October, November and December 2021 and January, February and March 2022 has been selected. We believe that this six-month stretch allows possible one-time variations to be overcome for a month, reinforcing the precision of the data obtained. To secure this data, we have used the SimilarWeb tool, currently the most precise tool that exists when examining the web traffic of a portal, although it is limited to that coming from desktops and laptops, without taking into account those that come from mobile devices, currently impossible to determine with existing measurement tools on the market. It includes:

    Web traffic general data: average visit duration, pages per visit and bounce rate Web traffic origin by country Percentage of traffic generated from social media over total web traffic Distribution of web traffic generated from social networks Comparison of web traffic generated from social netwoks with direct and search procedures

  18. Z

    CTU-SME-11: a labeled dataset with real benign and malicious network traffic...

    • data.niaid.nih.gov
    • zenodo.org
    Updated May 26, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bendl, Štěpán (2023). CTU-SME-11: a labeled dataset with real benign and malicious network traffic mimicking a small medium-size enterprise environment [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_7958258
    Explore at:
    Dataset updated
    May 26, 2023
    Dataset provided by
    Czech Technical University in Prague
    Authors
    Bendl, Štěpán; Valeros, Veronica; Garcia, Sebastian
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    As technology advances, the number and complexity of cyber-attacks increase, forcing defense techniques to be updated and improved. To help develop effective tools for detecting security threats it is essential to have reliable and representative security datasets. Many existing security datasets have limitations that make them unsuitable for research, including lack of labels, unbalanced traffic, and outdated threats.

    CTU-SME-11 is a labeled network dataset designed to address the limitations of previous datasets. The dataset was captured in a real network that mimics a small-medium enterprise setting. Raw network traffic (packets) was captured from 11 devices using tcpdump for a duration of 7 days, from 20th to 26th of February, 2023 in Prague, Czech Republic. The devices were chosen based on the enterprise setting and consists of IoT, desktop and mobile devices, both bare metal and virtualized. The devices were infected with malware or exposed to Internet attacks, and factory reset to restore benign behavior.

    The raw data was processed to generate network flows (Zeek logs) which were analyzed and labeled. The dataset contains two types of levels, a high level label and a descriptive label, which were put by experts. The former can take three values, benign, malicious or background. The latter contains detailed information about the specific behavior observed in the network flows. The dataset contains 99 million labeled network flows. The overall compressed size of the dataset is 80GB and the uncompressed size is 170GB.

  19. Data from: Population estimation from mobile network traffic metadata

    • zenodo.org
    application/gzip
    Updated Jan 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ghazaleh Khodabandelou; Vincent Gauthier; Vincent Gauthier; Mounim El Yacoubi; Marco Fiore; Ghazaleh Khodabandelou; Mounim El Yacoubi; Marco Fiore (2020). Population estimation from mobile network traffic metadata [Dataset]. http://doi.org/10.5281/zenodo.1067032
    Explore at:
    application/gzipAvailable download formats
    Dataset updated
    Jan 24, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Ghazaleh Khodabandelou; Vincent Gauthier; Vincent Gauthier; Mounim El Yacoubi; Marco Fiore; Ghazaleh Khodabandelou; Mounim El Yacoubi; Marco Fiore
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Description

    Please cite our paper if you publish material based on those datasets

    G. Khodabandelou, V. Gauthier, M. El-Yacoubi, M. Fiore, "Estimation of Static and Dynamic Urban Populations with Mobile Network Metadata", in IEEE Trans. on Mobile Computing, 2018 (in Press). 10.1109/TMC.2018.2871156

    Abstract

    Communication-enabled devices that are physically carried by individuals are today pervasive,
    which opens unprecedented opportunities for collecting digital metadata about the mobility of large populations. In this paper, we propose a novel methodology for the estimation of people density at metropolitan scales, using subscriber presence metadata collected by a mobile operator. We show that our approach suits the estimation of static population densities, i.e., of the distribution of dwelling units per urban area contained in traditional censuses. Specifically, it achieves higher accuracy than that granted by previous equivalent solutions. In addition, our approach enables the estimation of dynamic population densities, i.e., the time-varying distributions of people in a conurbation. Our results build on significant real-world mobile network metadata and relevant ground-truth information in multiple urban scenarios.

    Dataset Columns

    This dataset cover one month of data taken during the month of April 2015 for three Italian cities: Rome, Milan, Turin. The raw data has been provided during the Telecom Italia Big Data Challenge (http://www.telecomitalia.com/tit/en/innovazione/archivio/big-data-challenge-2015.html)

    1. grid_id: the coordinate of the grid can be retrieved with the shapefile of a given city
    2. date: format Y-M-D H:M:S
    4. landuse_label: the land use label has been computed by through method described in [2]
    5. population: Census population of a given grid block as defined by the Istituto nazionale di statistica (ISTAT https://www.istat.it/en/censuses) in 2011
    6. estimation: Dynamics density population estimation (in person) as the result of the method described in [1]
    7. area: surface of the "grid id" considered in km^2
    8. geometry: the shape of the area considered with the EPSG:3003 coordinate system (only with quilt)

    Note

    Due to legal constraints, we cannot share directly the original data from the Telecom Italia Big Data Challenge we used to build this dataset.

    Easy access to this dataset with quilt

    Install the dataset repository:

    $ quilt install vgauthier/DynamicPopEstimate

    Use the dataset with a Panda Dataframe

    >>> from quilt.data.vgauthier import DynamicPopEstimate
    >>> import pandas as pd
    >>> df = pd.DataFrame(DynamicPopEstimate.rome())

    Use the dataset with a GeoPanda Dataframe

    >>> from quilt.data.vgauthier import DynamicPopEstimate
    >>> import geopandas as gpd
    >>> df = gpd.DataFrame(DynamicPopEstimate.rome())

    References

    [1] G. Khodabandelou, V. Gauthier, M. El-Yacoubi, M. Fiore, "Population estimation from mobile network traffic metadata", in proc of the 17th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM), pp. 1 - 9, 2016.

    [2] A. Furno, M. Fiore, R. Stanica, C. Ziemlicki, and Z. Smoreda, "A tale of ten cities: Characterizing signatures of mobile traffic in urban areas," IEEE Transactions on Mobile Computing, Volume: 16, Issue: 10, 2017.

  20. t

    Mobile broadband internet traffic (within the country) - Vdataset - LDM

    • service.tib.eu
    Updated Jan 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Mobile broadband internet traffic (within the country) - Vdataset - LDM [Dataset]. https://service.tib.eu/ldmservice/dataset/eurostat_km8qhzzjvcfadwusjy0zg
    Explore at:
    Dataset updated
    Jan 8, 2025
    Description

    Mobile broadband internet traffic (within the country)

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
0913ktg (2022). 5G Traffic Datasets [Dataset]. https://www.kaggle.com/datasets/kimdaegyeom/5g-traffic-datasets
Organization logo

5G Traffic Datasets

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Oct 28, 2022
Dataset provided by
Kagglehttp://kaggle.com/
Authors
0913ktg
Description

Representative applications that can directly collect 5G da-tasets from mobile terminals without using specialized equipment include G-NetTrack Pro and PCAPdroid. The for-mer allows for the monitoring and logging of the header and payload information of the medium access control (MAC) frame passing through the 5G air interface. The latter is an open-source network capture and monitoring tool that works without root privileges, analyzing connections made by ap-plications installed on the user's mobile device. The latter can also dump mobile traffic to PCAP (also known as libpcap) and send it to the well-known Wireshark for further analysis. We created 5G datasets by measuring 5G traffic directly from a major mobile operator in South Korea. The model name of the mobile terminal used for traffic measurement is the Samsung Galaxy A90 5G, and it was equipped with a Qualcomm Snapdragon X50 5G modem. The packet sniffer software used for traffic measurement, PCAPdroid, was in-stalled in the terminal through Google play. Traffic was measured sequentially per application on two stationary ter-minals (only one terminal was used for non-interactive ser-vices) with no background traffic. The collected dataset is representative resource-intensive video traffic that has the greatest impact on 5G network planning and provisioning, and background traffic was not mixed to measure the unique characteristics of each type of traffic. The video streaming dataset includes data directly meas-ured while watching Netflix and Amazon Prime, which are representative over-the-top (OTT) services, on mobile devic-es. The live streaming dataset was measured while watching YouTube Live and South Korea's representative live broad-casts (Naver NOW and Afreeca TV). Video conferencing data were measured by holding an actual meeting on the widely used Zoom, MS Teams, and Google Meet platform. Two types of metaverse traffic were acquired: Zepeto and Roblox. Zepeto traffic was collected while staying in the 'camping world' for 15 hours. Roblox traffic was collected over 25 hours of playing the 'Collect All Pets' game using an auto clicker. We collected two types of mobile network gaming traffic. The first was cloud gaming, an online game setup that runs video games on remote servers and streams them direct-ly to the user's device. The second was a traditional mobile game connected to the Internet. The dataset was collected from May to October 2022, is a massive 328 hours in total, and is provided in the csv file format. The dataset we collected is a timestamp-mapped time series dataset with packet header information, and traffic analysis by application is possible because it includes source and destination addresses. To make it more usable as a traffic source model, Section III describes how to use it as a training dataset for the traffic simulator platform's source generator.

A 5G traffic dataset measured by PCAPdroid has been re-leased and can be used as a training dataset for various ML models. However, since the size of this dataset is very large, it is inconvenient to handle, and additional data preprocessing is required to use it for its intended purpose.

This data set can be used to learn GANs, time-series forcasting deep learning models.

Our implementation is given on GitHub. https://github.com/0913ktg/5G-Traffic-Generator

Search
Clear search
Close search
Google apps
Main menu