1 dataset found
  1. W

    Webis-Clickbait-22

    • webis.de
    • anthology.aicmu.ac.cn
    Updated 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Matthias Hagen; Maik Fröbe; Artur Jurk; Martin Potthast (2022). Webis-Clickbait-22 [Dataset]. https://webis.de/data/webis-clickbait-22.html
    Explore at:
    Dataset updated
    2022
    Dataset provided by
    University of Kassel, hessian.AI, and ScaDS.AI
    The Web Technology & Information Systems Network
    Friedrich Schiller University Jena
    Authors
    Matthias Hagen; Maik Fröbe; Artur Jurk; Martin Potthast
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The Webis Clickbait Spoiling Corpus 2022 (Webis-Clickbait-22) contains 5,000 spoiled clickbait posts crawled from Facebook, Reddit, and Twitter. This corpus supports the task of clickbait spoiling, which deals with generating a short text that satisfies the curiosity induced by a clickbait post.

  2. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Matthias Hagen; Maik Fröbe; Artur Jurk; Martin Potthast (2022). Webis-Clickbait-22 [Dataset]. https://webis.de/data/webis-clickbait-22.html

Webis-Clickbait-22

Explore at:
4 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
2022
Dataset provided by
University of Kassel, hessian.AI, and ScaDS.AI
The Web Technology & Information Systems Network
Friedrich Schiller University Jena
Authors
Matthias Hagen; Maik Fröbe; Artur Jurk; Martin Potthast
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

The Webis Clickbait Spoiling Corpus 2022 (Webis-Clickbait-22) contains 5,000 spoiled clickbait posts crawled from Facebook, Reddit, and Twitter. This corpus supports the task of clickbait spoiling, which deals with generating a short text that satisfies the curiosity induced by a clickbait post.

Search
Clear search
Close search
Google apps
Main menu