Facebook
Twitterhttps://www.sci-tech-today.com/privacy-policyhttps://www.sci-tech-today.com/privacy-policy
Website Statistics: The internet landscape is constantly evolving, and understanding the dynamics of website development and browser usage is crucial for businesses and individuals alike. In 2024, the web design and development industry has grown significantly, driven by increased demand for innovative and responsive web solutions. Major browsers like Google Chrome, Safari, and Microsoft Edge dominate the market, each offering unique features that cater to diverse user needs.
This article delves into the latest statistics, market shares, and technological trends in the web development and browser domains, providing valuable insights to help you navigate the digital world effectively.
Facebook
TwitterAttribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
This anonymized data set consists of one month's (October 2018) web tracking data of 2,148 German users. For each user, the data contains the anonymized URL of the webpage the user visited, the domain of the webpage, category of the domain, which provides 41 distinct categories. In total, these 2,148 users made 9,151,243 URL visits, spanning 49,918 unique domains. For each user in our data set, we have self-reported information (collected via a survey) about their gender and age.
We acknowledge the support of Respondi AG, which provided the web tracking and survey data free of charge for research purposes, with special thanks to François Erner and Luc Kalaora at Respondi for their insights and help with data extraction.
The data set is analyzed in the following paper:
The code used to analyze the data is also available at https://github.com/gesiscss/web_tracking.
If you use data or code from this repository, please cite the paper above and the Zenodo link.
Users are advised that some domains in this data set may link to potentially questionable or inappropriate content. The domains have not been individually reviewed, as content verification was not the primary objective of this data set. Therefore, user discretion is strongly recommended when accessing or scraping any content from these domains.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This Website Statistics dataset has four resources showing usage of the Lincolnshire Open Data website. Web analytics terms used in each resource are defined in their accompanying Metadata file.
Website Usage Statistics: This document shows a statistical summary of usage of the Lincolnshire Open Data site for the latest calendar year.
Website Statistics Summary: This dataset shows a website statistics summary for the Lincolnshire Open Data site for the latest calendar year.
Webpage Statistics: This dataset shows statistics for individual Webpages on the Lincolnshire Open Data site by calendar year.
Dataset Statistics: This dataset shows cumulative totals for Datasets on the Lincolnshire Open Data site that have also been published on the national Open Data site Data.Gov.UK - see the Source link.
Note: Website and Webpage statistics (the first three resources above) show only UK users, and exclude API calls (automated requests for datasets). The Dataset Statistics are confined to users with javascript enabled, which excludes web crawlers and API calls.
These Website Statistics resources are updated annually in January by the Lincolnshire County Council Business Intelligence team. For any enquiries about the information contact opendata@lincolnshire.gov.uk.
Facebook
TwitterBy Joseph Nowicki [source]
This dataset contains demographic information about customers who have made purchases in a store, including their name, IP address, region, age, items purchased, and total amount spent. Furthermore, this data can provide insights into customer shopping behaviour for the store in question - from their geographical information to the types of products they purchase. With detailed demographic data like this at hand it is possible to make strategic decisions regarding target customers as well as developing specific marketing campaigns or promotions tailored to meet their needs and interests. By gaining deeper understanding of customer habits through this dataset we unlock more possibilities for businesses seeking higher engagement levels with shoppers
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset includes information such as customer's names, IP address, age, items purchased and amount spent. This data can be used to uncover patterns in spending behavior of shoppers from different areas or regions across demographics like age group or gender.
- Analyze customer shopping trends based on age and region to maximize targetted advertising.
- Analyze the correlation between customer spending habits based on store versus online behavior.
- Use IP addresses to track geographical trends in items purchased from a particular online store to identify new markets for targeted expansion
If you use this dataset in your research, please credit the original authors. Data Source
See the dataset description for more information.
File: Demographic_Data_Orig.csv | Column name | Description | |:---------------|:------------------------------------------------------------------------------------------------| | full.name | The full name of the customer. (String) | | ip.address | The IP address of the customer. (String) | | region | The region of residence of the customer. (String) | | in.store | A boolean value indicating whether the customer made the purchase in-store or online. (Boolean) | | age | The age of the customer. (Integer) | | items | The number of items purchased by the customer. (Integer) | | amount | The total amount spent by the customer. (Float) |
If you use this dataset in your research, please credit the original authors. If you use this dataset in your research, please credit Joseph Nowicki.
Facebook
Twitterhttps://www.sci-tech-today.com/privacy-policyhttps://www.sci-tech-today.com/privacy-policy
Web Design Statistics: ​As of 2024, the World Wide Web encompasses approximately 1.1 billion websites, with only about 17%—equating to roughly 200 million—actively maintained and visited. This vast digital landscape continues to expand, with an estimated 252,000 new websites emerging daily, underscoring the dynamic nature of the internet. ​Sixth City Marketing. In this extensive online environment, web design plays a pivotal role in influencing user engagement and business success. Notably, 94% of first impressions are design-related, highlighting the critical importance of a website's visual appeal in shaping user perceptions. Furthermore, 75% of users admit to making judgments about a company's credibility based on its website design, emphasizing the direct correlation between design quality and trustworthiness. ​
User experience is equally significant, as 88% of online consumers are less likely to return to a site after a bad experience, and 90% of users have stopped using a website due to poor design. Additionally, 73.1% of users leave a website if it is non-responsive, underlining the necessity for mobile-friendly designs.
These statistics collectively underscore the critical importance of effective web design in today's digital landscape. A well-designed website not only enhances user satisfaction but also significantly contributes to a company's credibility and financial performance.
Facebook
TwitterOur People data is gathered and aggregated via surveys, digital services, and public data sources. We use powerful profiling algorithms to collect and ingest only fresh and reliable data points.
Our comprehensive data enrichment solution includes a variety of data sets that can help you address gaps in your customer data, gain a deeper understanding of your customers, and power superior client experiences.
People Data Schema & Reach: Our data reach represents the total number of counts available within various categories and comprises attributes such as country location, MAU, DAU & Monthly Location Pings:
Data Export Methodology: Since we collect data dynamically, we provide the most updated data and insights via a best-suited method on a suitable interval (daily/weekly/monthly).
People Data Use Cases:
360-Degree Customer View: Get a comprehensive image of customers by the means of internal and external data aggregation.
Data Enrichment: Leverage Online to offline consumer profiles to build holistic audience segments to improve campaign targeting using user data enrichment
Fraud Detection: Use multiple digital (web and mobile) identities to verify real users and detect anomalies or fraudulent activity.
Advertising & Marketing: Understand audience demographics, interests, lifestyle, hobbies, and behaviors to build targeted marketing campaigns.
Using Factori People Data you can solve use cases like:
Acquisition Marketing Expand your reach to new users and customers using lookalike modeling with your first party audiences to extend to other potential consumers with similar traits and attributes.
Lookalike Modeling
Build lookalike audience segments using your first party audiences as a seed to extend your reach for running marketing campaigns to acquire new users or customers
And also, CRM Data Enrichment, Consumer Data Enrichment B2B Data Enrichment B2C Data Enrichment Customer Acquisition Audience Segmentation 360-Degree Customer View Consumer Profiling Consumer Behaviour Data
Here's the schema of People Data:
person_id
first_name
last_name
age
gender
linkedin_url
twitter_url
facebook_url
city
state
address
zip
zip4
country
delivery_point_bar_code
carrier_route
walk_seuqence_code
fips_state_code
fips_country_code
country_name
latitude
longtiude
address_type
metropolitan_statistical_area
core_based+statistical_area
census_tract
census_block_group
census_block
primary_address
pre_address
streer
post_address
address_suffix
address_secondline
address_abrev
census_median_home_value
home_market_value
property_build+year
property_with_ac
property_with_pool
property_with_water
property_with_sewer
general_home_value
property_fuel_type
year
month
household_id
Census_median_household_income
household_size
marital_status
length+of_residence
number_of_kids
pre_school_kids
single_parents
working_women_in_house_hold
homeowner
children
adults
generations
net_worth
education_level
occupation
education_history
credit_lines
credit_card_user
newly_issued_credit_card_user
credit_range_new
credit_cards
loan_to_value
mortgage_loan2_amount
mortgage_loan_type
mortgage_loan2_type
mortgage_lender_code
mortgage_loan2_render_code
mortgage_lender
mortgage_loan2_lender
mortgage_loan2_ratetype
mortgage_rate
mortgage_loan2_rate
donor
investor
interest
buyer
hobby
personal_email
work_email
devices
phone
employee_title
employee_department
employee_job_function
skills
recent_job_change
company_id
company_name
company_description
technologies_used
office_address
office_city
office_country
office_state
office_zip5
office_zip4
office_carrier_route
office_latitude
office_longitude
office_cbsa_code
office_census_block_group
office_census_tract
office_county_code
company_phone
company_credit_score
company_csa_code
company_dpbc
company_franchiseflag
company_facebookurl
company_linkedinurl
company_twitterurl
company_website
company_fortune_rank
company_government_type
company_headquarters_branch
company_home_business
company_industry
company_num_pcs_used
company_num_employees
company_firm_individual
company_msa
company_msa_name
company_naics_code
company_naics_description
company_naics_code2
company_naics_description2
company_sic_code2
company_sic_code2_description
company_sic...
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This Website Statistics dataset has three resources showing usage of the Lincolnshire Open Data website. Web analytics terms used in each resource are defined in their accompanying Metadata file. Please Note: due to a change in Analytics platform and accompanying metrics, the current files do not contain a full years data. The files will be updated again in January 2025 with 2024-2025 data. The previous dataset containing Web Analytics has been archived and can be found in the following link; https://lincolnshire.ckan.io/dataset/website-statistics-archived Website Usage Statistics: This document shows a statistical summary of usage of the Lincolnshire Open Data site for the latest calendar year. Website Statistics Summary: This dataset shows a website statistics summary for the Lincolnshire Open Data site for the latest calendar year. Webpage Statistics: This dataset shows statistics for individual Webpages on the Lincolnshire Open Data site by calendar year. Note: The resources above exclude API calls (automated requests for datasets). These Website Statistics resources are updated annually in February by the Lincolnshire County Council Open Data team.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
We’ve rounded up the most up-to-date web design statistics to apply to your design.
Facebook
TwitterIn the second quarter of 2025, mobile devices (excluding tablets) accounted for 62.54 percent of global website traffic. Since consistently maintaining a share of around 50 percent beginning in 2017, mobile usage surpassed this threshold in 2020 and has demonstrated steady growth in its dominance of global web access. Mobile traffic Due to low infrastructure and financial restraints, many emerging digital markets skipped the desktop internet phase entirely and moved straight onto mobile internet via smartphone and tablet devices. India is a prime example of a market with a significant mobile-first online population. Other countries with a significant share of mobile internet traffic include Nigeria, Ghana and Kenya. In most African markets, mobile accounts for more than half of the web traffic. By contrast, mobile only makes up around 45.49 percent of online traffic in the United States. Mobile usage The most popular mobile internet activities worldwide include watching movies or videos online, e-mail usage and accessing social media. Apps are a very popular way to watch video on the go and the most-downloaded entertainment apps in the Apple App Store are Netflix, Tencent Video and Amazon Prime Video.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the New Site population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for New Site. The dataset can be utilized to understand the population distribution of New Site by age. For example, using this dataset, we can identify the largest age group in New Site.
Key observations
The largest age group in New Site, AL was for the group of age 5-9 years with a population of 103 (12.41%), according to the 2021 American Community Survey. At the same time, the smallest age group in New Site, AL was the 80-84 years with a population of 6 (0.72%). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for New Site Population by Age. You can refer the same here
Facebook
TwitterThe Strategic Planning and Analytics Department prepares and publishes The Port of Virginia’s trade statistics
Facebook
Twitterhttps://webtechsurvey.com/termshttps://webtechsurvey.com/terms
A complete list of live websites using the Visitors Traffic Real Time Statistics technology, compiled through global website indexing conducted by WebTechSurvey.
Facebook
TwitterAs of February 2024, approximately **** percent of financial service website users in the United States were aged between 25 and 34 years. Users aged between 45 and 54 years represented over ** percent of the U.S. online audience share.
Facebook
TwitterSourcing accurate and up-to-date geodemographic data across Asia and MENA has historically been difficult for retail brands looking to expand their store networks in these regions. Either the data does not exist or it isn't readily accessible or updated regularly.
GapMaps uses known population data combined with billions of mobile device location points to provide highly accurate and globally consistent geodemographic datasets across Asia and MENA at 150m x 150m grid levels in major cities and 1km grids outside of major cities.
With this information, brands can get a detailed understanding of who lives in a catchment, where they work and their spending potential which allows you to:
Premium geodemographics data for Asia and MENA includes the latest estimates (updated annually) on:
Primary Use Cases for GapMaps Geodemographic Data:
Integrate GapMaps demographic data with your existing GIS or BI platform to generate powerful visualizations.
Commercial Real-Estate (Brokers, Developers, Investors, Single & Multi-tenant O/O)
Tenant Recruitment
Target Marketing
Market Potential / Gap Analysis
Marketing / Advertising (Billboards/OOH, Marketing Agencies, Indoor Screens)
Customer Profiling
Target Marketing
Market Share Analysis
Facebook
TwitterPopulation is the sum of births plus in-migration, and it signifies the total market size possible in the area. This is an important metric for economic developers to measure their economic health and investment attraction. Businesses also use this as a metric for market size when evaluating startup, expansion or relocation decisions.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains statistics related to the Unleashed website (http://uladl.com). Unleashed is an open data competition, an initiative of the Office for Digital Government, Department of the Premier and Cabinet. The data is used to monitor the level of engagement activity with the audience, and make the communication effective in regards to the event.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Note: This dataset has been archived and is no longer being updated due to a change in analytics platform. You can find the new dataset relating to Website Statistics in the following link; https://lincolnshire.ckan.io/dataset/website-statistics This Website Statistics dataset has three resources showing usage of the Lincolnshire Open Data website. Web analytics terms used in each resource are defined in their accompanying Metadata file. Website Usage Statistics: This document shows a statistical summary of usage of the Lincolnshire Open Data site for the latest calendar year. Website Statistics Summary: This dataset shows a website statistics summary for the Lincolnshire Open Data site for the latest calendar year. Webpage Statistics: This dataset shows statistics for individual Webpages on the Lincolnshire Open Data site by calendar year. Note: The resources above show only UK users, and exclude API calls (automated requests for datasets). For further information, please contact the Lincolnshire County Council Open Data team.
Facebook
TwitterIn September 2025, global visitors to the shein.com website were most likely aged 25 to 34 years old, with nearly 26 percent of visitors to the site being from this age group. Ranked second were 35 to 44-year-olds, who made up about 20 percent of the shein.com website traffic.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the data for the New Site, AL population pyramid, which represents the New Site population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for New Site Population by Age. You can refer the same here
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units and the group quarters population for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2023 American Community Survey 1-Year Estimates.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..The age dependency ratio is derived by dividing the combined under-18 and 65-and-over populations by the 18-to-64 population and multiplying by 100..The old-age dependency ratio is derived by dividing the population 65 and over by the 18-to-64 population and multiplying by 100..The child dependency ratio is derived by dividing the population under 18 by the 18-to-64 population and multiplying by 100..When information is missing or inconsistent, the Census Bureau logically assigns an acceptable value using the response to a related question or questions. If a logical assignment is not possible, data are filled using a statistical process called allocation, which uses a similar individual or household to provide a donor value. The "Allocated" section is the number of respondents who received an allocated value for a particular subject..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.
Facebook
Twitterhttps://www.sci-tech-today.com/privacy-policyhttps://www.sci-tech-today.com/privacy-policy
Website Statistics: The internet landscape is constantly evolving, and understanding the dynamics of website development and browser usage is crucial for businesses and individuals alike. In 2024, the web design and development industry has grown significantly, driven by increased demand for innovative and responsive web solutions. Major browsers like Google Chrome, Safari, and Microsoft Edge dominate the market, each offering unique features that cater to diverse user needs.
This article delves into the latest statistics, market shares, and technological trends in the web development and browser domains, providing valuable insights to help you navigate the digital world effectively.