100+ datasets found
  1. d

    Website Analytics

    • catalog.data.gov
    • data.brla.gov
    • +2more
    Updated Nov 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.brla.gov (2025). Website Analytics [Dataset]. https://catalog.data.gov/dataset/website-analytics-89ba5
    Explore at:
    Dataset updated
    Nov 29, 2025
    Dataset provided by
    data.brla.gov
    Description

    Web traffic statistics for the several City-Parish websites, brla.gov, city.brla.gov, Red Stick Ready, GIS, Open Data etc. Information provided by Google Analytics.

  2. d

    GIS Data | USA & Canada | Over 40k Demographics Variables To Inform Business...

    • datarade.ai
    .json, .csv
    Updated Aug 13, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GapMaps (2024). GIS Data | USA & Canada | Over 40k Demographics Variables To Inform Business Decisions | Consumer Spending Data| Demographic Data [Dataset]. https://datarade.ai/data-products/gapmaps-premium-demographic-data-by-ags-usa-canada-gis-gapmaps
    Explore at:
    .json, .csvAvailable download formats
    Dataset updated
    Aug 13, 2024
    Dataset authored and provided by
    GapMaps
    Area covered
    Canada, United States
    Description

    GapMaps GIS data for USA and Canada sourced from Applied Geographic Solutions (AGS) includes an extensive range of the highest quality demographic and lifestyle segmentation products. All databases are derived from superior source data and the most sophisticated, refined, and proven methodologies.

    GIS Data attributes include:

    1. Latest Estimates and Projections The estimates and projections database includes a wide range of core demographic data variables for the current year and 5- year projections, covering five broad topic areas: population, households, income, labor force, and dwellings.

    2. Crime Risk Crime Risk is the result of an extensive analysis of a rolling seven years of FBI crime statistics. Based on detailed modeling of the relationships between crime and demographics, Crime Risk provides an accurate view of the relative risk of specific crime types (personal, property and total) at the block and block group level.

    3. Panorama Segmentation AGS has created a segmentation system for the United States called Panorama. Panorama has been coded with the MRI Survey data to bring you Consumer Behavior profiles associated with this segmentation system.

    4. Business Counts Business Counts is a geographic summary database of business establishments, employment, occupation and retail sales.

    5. Non-Resident Population The AGS non-resident population estimates utilize a wide range of data sources to model the factors which drive tourists to particular locations, and to match that demand with the supply of available accommodations.

    6. Consumer Expenditures AGS provides current year and 5-year projected expenditures for over 390 individual categories that collectively cover almost 95% of household spending.

    7. Retail Potential This tabulation utilizes the Census of Retail Trade tables which cross-tabulate store type by merchandise line.

    8. Environmental Risk The environmental suite of data consists of several separate database components including: -Weather Risks -Seismological Risks -Wildfire Risk -Climate -Air Quality -Elevation and terrain

    Primary Use Cases for GapMaps GIS Data:

    1. Retail (eg. Fast Food/ QSR, Cafe, Fitness, Supermarket/Grocery)
    2. Customer Profiling: get a detailed understanding of the demographic & segmentation profile of your customers, where they work and their spending potential
    3. Analyse your trade areas at a granular census block level using all the key metrics
    4. Site Selection: Identify optimal locations for future expansion and benchmark performance across existing locations.
    5. Target Marketing: Develop effective marketing strategies to acquire more customers.
    6. Integrate AGS demographic data with your existing GIS or BI platform to generate powerful visualizations.

    7. Finance / Insurance (eg. Hedge Funds, Investment Advisors, Investment Research, REITs, Private Equity, VC)

    8. Network Planning

    9. Customer (Risk) Profiling for insurance/loan approvals

    10. Target Marketing

    11. Competitive Analysis

    12. Market Optimization

    13. Commercial Real-Estate (Brokers, Developers, Investors, Single & Multi-tenant O/O)

    14. Tenant Recruitment

    15. Target Marketing

    16. Market Potential / Gap Analysis

    17. Marketing / Advertising (Billboards/OOH, Marketing Agencies, Indoor Screens)

    18. Customer Profiling

    19. Target Marketing

    20. Market Share Analysis

  3. d

    Census Data

    • catalog.data.gov
    • data.globalchange.gov
    • +3more
    Updated Mar 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Bureau of the Census (2024). Census Data [Dataset]. https://catalog.data.gov/dataset/census-data
    Explore at:
    Dataset updated
    Mar 1, 2024
    Dataset provided by
    U.S. Bureau of the Census
    Description

    The Bureau of the Census has released Census 2000 Summary File 1 (SF1) 100-Percent data. The file includes the following population items: sex, age, race, Hispanic or Latino origin, household relationship, and household and family characteristics. Housing items include occupancy status and tenure (whether the unit is owner or renter occupied). SF1 does not include information on incomes, poverty status, overcrowded housing or age of housing. These topics will be covered in Summary File 3. Data are available for states, counties, county subdivisions, places, census tracts, block groups, and, where applicable, American Indian and Alaskan Native Areas and Hawaiian Home Lands. The SF1 data are available on the Bureau's web site and may be retrieved from American FactFinder as tables, lists, or maps. Users may also download a set of compressed ASCII files for each state via the Bureau's FTP server. There are over 8000 data items available for each geographic area. The full listing of these data items is available here as a downloadable compressed data base file named TABLES.ZIP. The uncompressed is in FoxPro data base file (dbf) format and may be imported to ACCESS, EXCEL, and other software formats. While all of this information is useful, the Office of Community Planning and Development has downloaded selected information for all states and areas and is making this information available on the CPD web pages. The tables and data items selected are those items used in the CDBG and HOME allocation formulas plus topics most pertinent to the Comprehensive Housing Affordability Strategy (CHAS), the Consolidated Plan, and similar overall economic and community development plans. The information is contained in five compressed (zipped) dbf tables for each state. When uncompressed the tables are ready for use with FoxPro and they can be imported into ACCESS, EXCEL, and other spreadsheet, GIS and database software. The data are at the block group summary level. The first two characters of the file name are the state abbreviation. The next two letters are BG for block group. Each record is labeled with the code and name of the city and county in which it is located so that the data can be summarized to higher-level geography. The last part of the file name describes the contents . The GEO file contains standard Census Bureau geographic identifiers for each block group, such as the metropolitan area code and congressional district code. The only data included in this table is total population and total housing units. POP1 and POP2 contain selected population variables and selected housing items are in the HU file. The MA05 table data is only for use by State CDBG grantees for the reporting of the racial composition of beneficiaries of Area Benefit activities. The complete package for a state consists of the dictionary file named TABLES, and the five data files for the state. The logical record number (LOGRECNO) links the records across tables.

  4. N

    New Site, AL Age Group Population Dataset: A Complete Breakdown of New Site...

    • neilsberg.com
    csv, json
    Updated Feb 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). New Site, AL Age Group Population Dataset: A Complete Breakdown of New Site Age Demographics from 0 to 85 Years and Over, Distributed Across 18 Age Groups // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/453a07dd-f122-11ef-8c1b-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 22, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Alabama, New Site
    Variables measured
    Population Under 5 Years, Population over 85 years, Population Between 5 and 9 years, Population Between 10 and 14 years, Population Between 15 and 19 years, Population Between 20 and 24 years, Population Between 25 and 29 years, Population Between 30 and 34 years, Population Between 35 and 39 years, Population Between 40 and 44 years, and 9 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the New Site population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for New Site. The dataset can be utilized to understand the population distribution of New Site by age. For example, using this dataset, we can identify the largest age group in New Site.

    Key observations

    The largest age group in New Site, AL was for the group of age 75 to 79 years years with a population of 67 (9.05%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in New Site, AL was the Under 5 years years with a population of 2 (0.27%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Variables / Data Columns

    • Age Group: This column displays the age group in consideration
    • Population: The population for the specific age group in the New Site is shown in this column.
    • % of Total Population: This column displays the population of each age group as a proportion of New Site total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for New Site Population by Age. You can refer the same here

  5. d

    Premium GIS Data | Asia/ MENA | Latest Estimates on Population, Consuming...

    • datarade.ai
    .json, .csv
    Updated Nov 23, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GapMaps (2024). Premium GIS Data | Asia/ MENA | Latest Estimates on Population, Consuming Class, Retail Spend, Demographics | Map Data | Demographic Data [Dataset]. https://datarade.ai/data-products/gapmaps-premium-demographics-gis-data-asia-mena-150m-x-1-gapmaps
    Explore at:
    .json, .csvAvailable download formats
    Dataset updated
    Nov 23, 2024
    Dataset authored and provided by
    GapMaps
    Area covered
    Asia, Saudi Arabia, Indonesia, Philippines, Singapore, India, Malaysia
    Description

    Sourcing accurate and up-to-date demographics GIS data across Asia and MENA has historically been difficult for retail brands looking to expand their store networks in these regions. Either the data does not exist or it isn't readily accessible or updated regularly.

    GapMaps uses known population data combined with billions of mobile device location points to provide highly accurate and globally consistent geodemographic datasets across Asia and MENA at 150m x 150m grid levels in major cities and 1km grids outside of major cities.

    With this information, brands can get a detailed understanding of who lives in a catchment, where they work and their spending potential which allows you to:

    • Better understand your customers
    • Identify optimal locations to expand your retail footprint
    • Define sales territories for franchisees
    • Run targeted marketing campaigns.

    Premium demographics GIS data for Asia and MENA includes the latest estimates (updated annually) on:

    1. Population (how many people live in your local catchment)
    2. Demographics (who lives within your local catchment)
    3. Worker population (how many people work within your local catchment)
    4. Consuming Class and Premium Consuming Class (who can can afford to buy goods & services beyond their basic needs and /or shop at premium retailers)
    5. Retail Spending (Food & Beverage, Grocery, Apparel, Other). How much are consumers spending on retail goods and services by category.

    Primary Use Cases for GapMaps Demographics GIS Data:

    1. Retail (eg. Fast Food/ QSR, Cafe, Fitness, Supermarket/Grocery)
    2. Customer Profiling: get a detailed understanding of the demographic profile of your customers, where they work and their spending potential
    3. Analyse your trade areas at a granular 150m x 150m grid levels using all the key metrics
    4. Site Selection: Identify optimal locations for future expansion and benchmark performance across existing locations.
    5. Target Marketing: Develop effective marketing strategies to acquire more customers.
    6. Integrate GapMaps demographic data with your existing GIS or BI platform to generate powerful visualizations.

    7. Commercial Real-Estate (Brokers, Developers, Investors, Single & Multi-tenant O/O)

    8. Tenant Recruitment

    9. Target Marketing

    10. Market Potential / Gap Analysis

    11. Marketing / Advertising (Billboards/OOH, Marketing Agencies, Indoor Screens)

    12. Customer Profiling

    13. Target Marketing

    14. Market Share Analysis

  6. A web tracking data set of online browsing behavior of 2,148 users

    • zenodo.org
    • data.niaid.nih.gov
    application/gzip, txt +1
    Updated Oct 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Juhi Kulshrestha; Juhi Kulshrestha; Marcos Oliveira; Marcos Oliveira; Orkut Karacalik; Denis Bonnay; Claudia Wagner; Orkut Karacalik; Denis Bonnay; Claudia Wagner (2025). A web tracking data set of online browsing behavior of 2,148 users [Dataset]. http://doi.org/10.5281/zenodo.4757574
    Explore at:
    zip, txt, application/gzipAvailable download formats
    Dataset updated
    Oct 9, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Juhi Kulshrestha; Juhi Kulshrestha; Marcos Oliveira; Marcos Oliveira; Orkut Karacalik; Denis Bonnay; Claudia Wagner; Orkut Karacalik; Denis Bonnay; Claudia Wagner
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    This anonymized data set consists of one month's (October 2018) web tracking data of 2,148 German users. For each user, the data contains the anonymized URL of the webpage the user visited, the domain of the webpage, category of the domain, which provides 41 distinct categories. In total, these 2,148 users made 9,151,243 URL visits, spanning 49,918 unique domains. For each user in our data set, we have self-reported information (collected via a survey) about their gender and age.

    We acknowledge the support of Respondi AG, which provided the web tracking and survey data free of charge for research purposes, with special thanks to François Erner and Luc Kalaora at Respondi for their insights and help with data extraction.

    The data set is analyzed in the following paper:

    • Kulshrestha, J., Oliveira, M., Karacalik, O., Bonnay, D., Wagner, C. "Web Routineness and Limits of Predictability: Investigating Demographic and Behavioral Differences Using Web Tracking Data." Proceedings of the International AAAI Conference on Web and Social Media. 2021. https://arxiv.org/abs/2012.15112.

    The code used to analyze the data is also available at https://github.com/gesiscss/web_tracking.

    If you use data or code from this repository, please cite the paper above and the Zenodo link.

    Users are advised that some domains in this data set may link to potentially questionable or inappropriate content. The domains have not been individually reviewed, as content verification was not the primary objective of this data set. Therefore, user discretion is strongly recommended when accessing or scraping any content from these domains.

  7. Most popular free services used to watch online videos in the U.S. 2024, by...

    • statista.com
    Updated May 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Most popular free services used to watch online videos in the U.S. 2024, by age group [Dataset]. https://www.statista.com/statistics/1314053/us-free-services-to-watch-online-videos-by-age/
    Explore at:
    Dataset updated
    May 15, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Mar 22, 2024 - Mar 29, 2024
    Area covered
    United States
    Description

    According to a survey conducted in March 2024 among users in the United States, YouTube was the most popular free service for watching online video content. Viewers aged between 35 and 54 years had the highest YouTube video consumption rate, as 78 percent of them reported using it to watch online videos at least once a week. Facebook ranked second, with 52 percent of viewers aged between 35 and 54 years old reporting using the popular social media platform to watch online content. Instagram and TikTok, which host almost exclusively short-form videos, followed. Instagram was more popular among users aged between 18 and 34, while TikTok was also more popular among younger users.

  8. Share of global mobile website traffic 2015-2025

    • statista.com
    Updated Nov 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Share of global mobile website traffic 2015-2025 [Dataset]. https://www.statista.com/statistics/277125/share-of-website-traffic-coming-from-mobile-devices/
    Explore at:
    Dataset updated
    Nov 19, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    In the second quarter of 2025, mobile devices (excluding tablets) accounted for 62.54 percent of global website traffic. Since consistently maintaining a share of around 50 percent beginning in 2017, mobile usage surpassed this threshold in 2020 and has demonstrated steady growth in its dominance of global web access. Mobile traffic Due to low infrastructure and financial restraints, many emerging digital markets skipped the desktop internet phase entirely and moved straight onto mobile internet via smartphone and tablet devices. India is a prime example of a market with a significant mobile-first online population. Other countries with a significant share of mobile internet traffic include Nigeria, Ghana and Kenya. In most African markets, mobile accounts for more than half of the web traffic. By contrast, mobile only makes up around 45.49 percent of online traffic in the United States. Mobile usage The most popular mobile internet activities worldwide include watching movies or videos online, e-mail usage and accessing social media. Apps are a very popular way to watch video on the go and the most-downloaded entertainment apps in the Apple App Store are Netflix, Tencent Video and Amazon Prime Video.

  9. S

    Free/Paid Business Listing Sites Statistics 2025: Trends and Performance...

    • sqmagazine.co.uk
    Updated Oct 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SQ Magazine (2025). Free/Paid Business Listing Sites Statistics 2025: Trends and Performance Metrics [Dataset]. https://sqmagazine.co.uk/free-paid-business-listing-sites-statistics/
    Explore at:
    Dataset updated
    Oct 2, 2025
    Dataset authored and provided by
    SQ Magazine
    License

    https://sqmagazine.co.uk/privacy-policy/https://sqmagazine.co.uk/privacy-policy/

    Time period covered
    Jan 1, 2024 - Dec 31, 2025
    Area covered
    Global
    Description

    When you’re launching or scaling a business, the phrase “add your site” can feel like a whisper in a noisy marketplace. Yet behind that whisper lies a powerful gateway, business directories. For thousands of small business owners, freelancers, and local brands, these listings are the silent engines driving visibility, credibility,...

  10. 2023 American Community Survey: S0101 | Age and Sex (ACS 1-Year Estimates...

    • data.census.gov
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS, 2023 American Community Survey: S0101 | Age and Sex (ACS 1-Year Estimates Subject Tables) [Dataset]. https://data.census.gov/table/ACSST1Y2023.S0101
    Explore at:
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2023
    Description

    Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units and the group quarters population for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2023 American Community Survey 1-Year Estimates.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..The age dependency ratio is derived by dividing the combined under-18 and 65-and-over populations by the 18-to-64 population and multiplying by 100..The old-age dependency ratio is derived by dividing the population 65 and over by the 18-to-64 population and multiplying by 100..The child dependency ratio is derived by dividing the population under 18 by the 18-to-64 population and multiplying by 100..When information is missing or inconsistent, the Census Bureau logically assigns an acceptable value using the response to a related question or questions. If a logical assignment is not possible, data are filled using a statistical process called allocation, which uses a similar individual or household to provide a donor value. The "Allocated" section is the number of respondents who received an allocated value for a particular subject..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.

  11. Online freedom of global digital population 2023-2024

    • statista.com
    Updated Oct 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Online freedom of global digital population 2023-2024 [Dataset]. https://www.statista.com/statistics/1248451/share-internet-users-online-freedom/
    Explore at:
    Dataset updated
    Oct 16, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jun 2023 - May 2024
    Area covered
    Worldwide
    Description

    According to the 2024 report on internet freedom, 35 percent of internet users worldwide were not provided freedom on online platforms. The share of the global digital population with semi-free internet accounted for 35 percent, while only 17 percent of internet users enjoyed unrestricted access to the net.

  12. d

    Web Activity Data | USA | 5B records | Interests, Demographics | Email MAIDs...

    • datarade.ai
    Updated Nov 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    VisitIQ™ (2024). Web Activity Data | USA | 5B records | Interests, Demographics | Email MAIDs HEMs IP Address | Cookieless [Dataset]. https://datarade.ai/data-products/visitiq-s-web-activity-data-usa-5b-records-interests-visitiq
    Explore at:
    .json, .csv, .xls, .txtAvailable download formats
    Dataset updated
    Nov 15, 2024
    Dataset authored and provided by
    VisitIQ™
    Area covered
    United States of America
    Description

    Businesses, researchers, and developers often seek out web activity datasets and databases to: Understand consumer behavior. Train machine learning models. Perform market research or competitor analysis. Optimize user experience on websites. Personalize content and advertising. This data can be used for a variety of different use cases

  13. Data & Analytics Stats LinkedIn Company Page

    • kaggle.com
    zip
    Updated Aug 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mirko Peters (2024). Data & Analytics Stats LinkedIn Company Page [Dataset]. https://www.kaggle.com/mirkopeters/data-and-analytics-stats-linkedin-company-page
    Explore at:
    zip(689754 bytes)Available download formats
    Dataset updated
    Aug 13, 2024
    Authors
    Mirko Peters
    License

    Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
    License information was derived automatically

    Description

    LinkedIn Company Page Data - The Data Analytics Academy Dataset Overview This dataset contains detailed insights from The Data Analytics Academy's LinkedIn Company Page, including information on content performance, followers, and visitors. The data is sourced directly from our LinkedIn analytics and has been organized into CSV files for ease of use.

    Files Included: Content Data: Performance metrics for posts and updates shared on our LinkedIn page. Followers Data: Demographics and growth metrics of our LinkedIn page followers. Visitors Data: Insights on page visitors, including demographics and engagement levels. Use Cases: Social Media Analytics: Analyze the performance of content and its reach among different demographics. Market Research: Understand audience demographics and how they engage with our page. Data Science Projects: Apply machine learning algorithms to predict content performance or audience growth. Acknowledgments This data is free to use for any purpose, including commercial use. However, if you use this dataset, please give credit to The Data Analytics Academy by mentioning us or linking to our LinkedIn page: The Data Analytics Academy.

    Inspiration This dataset can be used to explore various aspects of LinkedIn analytics, such as identifying trends in audience engagement, understanding content performance, and predicting follower growth.

  14. U.S. Federal Superfund Sites

    • kaggle.com
    zip
    Updated Nov 17, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    4d4stra (2017). U.S. Federal Superfund Sites [Dataset]. https://www.kaggle.com/srrobert50/federal-superfunds
    Explore at:
    zip(321301070 bytes)Available download formats
    Dataset updated
    Nov 17, 2017
    Authors
    4d4stra
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    United States
    Description

    Context

    Federal Superfund sites are some of the most polluted in the United States. This dataset contains a multifaceted view of Superfunds, including free-form text descriptions, geography, demographics and socioeconomics.

    Content

    The core data was scraped from the National Priorities List (NPL) provided by the U.S. Environmental Protection Agency (EPA). This table provides basic information such as site name, site score, date added, and links to a site description and current status. Apache Tika was used to extract text from the site description pdfs. The addresses were scraped from site status pages, and used to geocode to latitude and longitude and Census block group. The block group assignment was used to join with the Census Bureau's planning database, a rich source of nationwide demographic and socioeconomic data. The full source code used to generate the data can be found here, on github.

    I have provided three separate downloads to explore:

    • priorities_list_full.json: the NPL containing all geographic, site information, text descriptions, and Census Bureau data from the relevant block groups.
    • pdb_tract.csv: the planning database aggregated on the tract level with an additional indicator (has_superfund) noting whether or not the tract contains the address of a Superfund site.
    • pdb_block_group.csv: the planning database aggregated on the block group level with an additional indicator (has_superfund) noting whether or not the block group contains the address of a Superfund site.

    Some caveats:

    1. The planning database contains 300+ columns. For a full description of these columns, please see the documentation here.
    2. Since the Google geocoder is relatively aggressive in providing address matches, geocoding was done through a hierarchy of queries (full address, city-state-zip, and zipcode only) to prevent gross errors. The address string used to geocode is noted through the 'geocode_source' column.
    3. While this data is linked to demographic and socioeconomic data based on either the block group (tract for pdb_tract.csv), the impacts of a particular site's pollution may extend beyond these geographic regions.

    Acknowledgements

    I would like to thank the EPA and the Census Bureau for making such detailed information publicly available. For relevant academic work, please see Burwell-Naney et al. (2013) and references, both to and therein.

    Please let me know if you have any suggestions for improving the dataset!

  15. V

    American Hospital Directory Free National and State Statistics

    • data.virginia.gov
    html
    Updated Feb 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Other (2024). American Hospital Directory Free National and State Statistics [Dataset]. https://data.virginia.gov/dataset/american-hospital-directory-free-national-and-state-statistics
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Feb 3, 2024
    Dataset authored and provided by
    Other
    Description

    From the Web site: The American Hospital Directory® provides data, statistics, and analytics about more than 7,000 hospitals nationwide. AHD.com® hospital information includes both public and private sources such as Medicare claims data, hospital cost reports, and commercial licensors. AHD® is not affiliated with the American Hospital Association (AHA) and is not a source for AHA Data. Our data are evidence-based and derived from the most definitive sources.

  16. d

    Factori USA People Data | socio-demographic, location, interest and intent...

    • datarade.ai
    .json, .csv
    Updated Jul 23, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Factori (2022). Factori USA People Data | socio-demographic, location, interest and intent data | E-Commere |Mobile Apps | Online Services [Dataset]. https://datarade.ai/data-products/factori-usa-consumer-graph-data-socio-demographic-location-factori
    Explore at:
    .json, .csvAvailable download formats
    Dataset updated
    Jul 23, 2022
    Dataset authored and provided by
    Factori
    Area covered
    United States of America
    Description

    Our People data is gathered and aggregated via surveys, digital services, and public data sources. We use powerful profiling algorithms to collect and ingest only fresh and reliable data points.

    Our comprehensive data enrichment solution includes a variety of data sets that can help you address gaps in your customer data, gain a deeper understanding of your customers, and power superior client experiences.

    1. Geography - City, State, ZIP, County, CBSA, Census Tract, etc.
    2. Demographics - Gender, Age Group, Marital Status, Language etc.
    3. Financial - Income Range, Credit Rating Range, Credit Type, Net worth Range, etc
    4. Persona - Consumer type, Communication preferences, Family type, etc
    5. Interests - Content, Brands, Shopping, Hobbies, Lifestyle etc.
    6. Household - Number of Children, Number of Adults, IP Address, etc.
    7. Behaviours - Brand Affinity, App Usage, Web Browsing etc.
    8. Firmographics - Industry, Company, Occupation, Revenue, etc
    9. Retail Purchase - Store, Category, Brand, SKU, Quantity, Price etc.
    10. Auto - Car Make, Model, Type, Year, etc.
    11. Housing - Home type, Home value, Renter/Owner, Year Built etc.

    People Data Schema & Reach: Our data reach represents the total number of counts available within various categories and comprises attributes such as country location, MAU, DAU & Monthly Location Pings:

    Data Export Methodology: Since we collect data dynamically, we provide the most updated data and insights via a best-suited method on a suitable interval (daily/weekly/monthly).

    People Data Use Cases:

    360-Degree Customer View: Get a comprehensive image of customers by the means of internal and external data aggregation.

    Data Enrichment: Leverage Online to offline consumer profiles to build holistic audience segments to improve campaign targeting using user data enrichment

    Fraud Detection: Use multiple digital (web and mobile) identities to verify real users and detect anomalies or fraudulent activity.

    Advertising & Marketing: Understand audience demographics, interests, lifestyle, hobbies, and behaviors to build targeted marketing campaigns.

    Using Factori People Data you can solve use cases like:

    Acquisition Marketing Expand your reach to new users and customers using lookalike modeling with your first party audiences to extend to other potential consumers with similar traits and attributes.

    Lookalike Modeling

    Build lookalike audience segments using your first party audiences as a seed to extend your reach for running marketing campaigns to acquire new users or customers

    And also, CRM Data Enrichment, Consumer Data Enrichment B2B Data Enrichment B2C Data Enrichment Customer Acquisition Audience Segmentation 360-Degree Customer View Consumer Profiling Consumer Behaviour Data

    Here's the schema of People Data: person_id first_name last_name age gender linkedin_url twitter_url facebook_url city state address zip zip4 country delivery_point_bar_code carrier_route walk_seuqence_code fips_state_code fips_country_code country_name latitude longtiude address_type metropolitan_statistical_area core_based+statistical_area census_tract census_block_group census_block primary_address pre_address streer post_address address_suffix address_secondline address_abrev census_median_home_value home_market_value property_build+year property_with_ac property_with_pool property_with_water property_with_sewer general_home_value property_fuel_type year month household_id Census_median_household_income household_size marital_status length+of_residence number_of_kids pre_school_kids single_parents working_women_in_house_hold homeowner children adults generations net_worth education_level occupation education_history credit_lines credit_card_user newly_issued_credit_card_user credit_range_new
    credit_cards loan_to_value mortgage_loan2_amount mortgage_loan_type
    mortgage_loan2_type mortgage_lender_code
    mortgage_loan2_render_code
    mortgage_lender mortgage_loan2_lender
    mortgage_loan2_ratetype mortgage_rate
    mortgage_loan2_rate donor investor interest buyer hobby personal_email work_email devices phone employee_title employee_department employee_job_function skills recent_job_change company_id company_name company_description technologies_used office_address office_city office_country office_state office_zip5 office_zip4 office_carrier_route office_latitude office_longitude office_cbsa_code
    office_census_block_group
    office_census_tract office_county_code
    company_phone
    company_credit_score
    company_csa_code
    company_dpbc
    company_franchiseflag
    company_facebookurl company_linkedinurl company_twitterurl
    company_website company_fortune_rank
    company_government_type company_headquarters_branch company_home_business
    company_industry
    company_num_pcs_used
    company_num_employees
    company_firm_individual company_msa company_msa_name
    company_naics_code
    company_naics_description
    company_naics_code2 company_naics_description2
    company_sic_code2
    company_sic_code2_description
    company_sic...

  17. d

    Customs Online Simple Application (Certificate-Free) Statistics Form

    • data.gov.tw
    csv
    Updated Jun 13, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Customs Administration (2016). Customs Online Simple Application (Certificate-Free) Statistics Form [Dataset]. https://data.gov.tw/en/datasets/32062
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 13, 2016
    Dataset authored and provided by
    Customs Administration
    License

    https://data.gov.tw/licensehttps://data.gov.tw/license

    Description

    Provide customs online simple application (no certificate) statistical table

  18. w

    Global Dating Web Site Market Research Report: By User Demographics (Age,...

    • wiseguyreports.com
    Updated Oct 12, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Global Dating Web Site Market Research Report: By User Demographics (Age, Gender, Sexual Orientation, Relationship Status), By Subscription Model (Free, Freemium, Premium, One-Time Payment), By Platform Type (Web-Based, Mobile App-Based, Desktop Application), By Target Audience (General Dating, Niche Dating, Casual Dating, Serious Relationships) and By Regional (North America, Europe, South America, Asia Pacific, Middle East and Africa) - Forecast to 2035 [Dataset]. https://www.wiseguyreports.com/reports/dating-web-site-market
    Explore at:
    Dataset updated
    Oct 12, 2025
    License

    https://www.wiseguyreports.com/pages/privacy-policyhttps://www.wiseguyreports.com/pages/privacy-policy

    Time period covered
    Oct 25, 2025
    Area covered
    Global
    Description
    BASE YEAR2024
    HISTORICAL DATA2019 - 2023
    REGIONS COVEREDNorth America, Europe, APAC, South America, MEA
    REPORT COVERAGERevenue Forecast, Competitive Landscape, Growth Factors, and Trends
    MARKET SIZE 20243.94(USD Billion)
    MARKET SIZE 20254.21(USD Billion)
    MARKET SIZE 20358.0(USD Billion)
    SEGMENTS COVEREDUser Demographics, Subscription Model, Platform Type, Target Audience, Regional
    COUNTRIES COVEREDUS, Canada, Germany, UK, France, Russia, Italy, Spain, Rest of Europe, China, India, Japan, South Korea, Malaysia, Thailand, Indonesia, Rest of APAC, Brazil, Mexico, Argentina, Rest of South America, GCC, South Africa, Rest of MEA
    KEY MARKET DYNAMICSincreasing smartphone penetration, growing online social interactions, diverse dating preferences, emergence of niche platforms, emphasis on security and privacy
    MARKET FORECAST UNITSUSD Billion
    KEY COMPANIES PROFILEDLoveScout24, Zoosk, Guardian Soulmates, eHarmony, Bumble, Plenty of Fish, Match Group, AsianDating, Happn, Coffee Meets Bagel, BlackPeopleMeet, OkCupid, Grindr, Tinder, Spark Networks
    MARKET FORECAST PERIOD2025 - 2035
    KEY MARKET OPPORTUNITIESMobile app development enhancement, Niche dating platforms emergence, Artificial intelligence matchmaking integration, Virtual reality dating experiences, Expansion in emerging markets
    COMPOUND ANNUAL GROWTH RATE (CAGR) 6.7% (2025 - 2035)
  19. w

    WordPress community statistics

    • wpshout.com
    Updated Apr 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    VertiStudio (2024). WordPress community statistics [Dataset]. https://wpshout.com/wordpress-statistics/
    Explore at:
    Dataset updated
    Apr 18, 2024
    Dataset authored and provided by
    VertiStudio
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The total number of WordCamps to ever take place is growing rapidly – currently at more than 1091 organized in total all over the globe, held in 373 cities, 65 countries, on 6 continents.

  20. d

    AdPreference Location Data | Global Location Data | 70 Billion Daily Events...

    • datarade.ai
    Updated Sep 16, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AdPreference (2025). AdPreference Location Data | Global Location Data | 70 Billion Daily Events | Real-Time | Audience, Geographic, Mobility and Web Traffic [Dataset]. https://datarade.ai/data-products/adpreference-location-data-global-70-billion-daily-events-adpreference
    Explore at:
    .json, .csv, .parquet, .geojsonAvailable download formats
    Dataset updated
    Sep 16, 2025
    Dataset authored and provided by
    AdPreference
    Area covered
    Canada
    Description

    We provide location data across the web with 30+ enriched attributes, including demographics, devices, web activity, intent and location insights. We help marketers, agencies, and platforms build precise location audience segments, optimize location targeting, attribute locations, and understand cross-device journeys. Our continuously updated location datasets deliver real-time location insights that power smarter location-based campaigns and future-ready strategies.

    Leverage our location data solutions for the following use cases: - Location Data Validation & Model Building - Cultural & Seasonal Campaign Insights - Targeted, Data-Driven Location Advertising - Travel & Location-Based Targeting - Trial & Partnership Transparency

    With AdPreference, expect the following key benefits through our partnership: - Augment Location Data Attributes - Enrich CRM - Personalize Location Audiences - Fraud Prevention - Location Audience Curation

    Access the largest and most customizable location data segments with AdPreference today. Supercharge your needs with unique and enriched location data not found anywhere else.

    For more information, please visit https://www.adpreference.co/

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
data.brla.gov (2025). Website Analytics [Dataset]. https://catalog.data.gov/dataset/website-analytics-89ba5

Website Analytics

Explore at:
Dataset updated
Nov 29, 2025
Dataset provided by
data.brla.gov
Description

Web traffic statistics for the several City-Parish websites, brla.gov, city.brla.gov, Red Stick Ready, GIS, Open Data etc. Information provided by Google Analytics.

Search
Clear search
Close search
Google apps
Main menu