Excel spreadsheets by species (4 letter code is abbreviation for genus and species used in study, year 2010 or 2011 is year data collected, SH indicates data for Science Hub, date is date of file preparation). The data in a file are described in a read me file which is the first worksheet in each file. Each row in a species spreadsheet is for one plot (plant). The data themselves are in the data worksheet. One file includes a read me description of the column in the date set for chemical analysis. In this file one row is an herbicide treatment and sample for chemical analysis (if taken). This dataset is associated with the following publication: Olszyk , D., T. Pfleeger, T. Shiroyama, M. Blakely-Smith, E. Lee , and M. Plocher. Plant reproduction is altered by simulated herbicide drift toconstructed plant communities. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY. Society of Environmental Toxicology and Chemistry, Pensacola, FL, USA, 36(10): 2799-2813, (2017).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This article describes a free, open-source collection of templates for the popular Excel (2013, and later versions) spreadsheet program. These templates are spreadsheet files that allow easy and intuitive learning and the implementation of practical examples concerning descriptive statistics, random variables, confidence intervals, and hypothesis testing. Although they are designed to be used with Excel, they can also be employed with other free spreadsheet programs (changing some particular formulas). Moreover, we exploit some possibilities of the ActiveX controls of the Excel Developer Menu to perform interactive Gaussian density charts. Finally, it is important to note that they can be often embedded in a web page, so it is not necessary to employ Excel software for their use. These templates have been designed as a useful tool to teach basic statistics and to carry out data analysis even when the students are not familiar with Excel. Additionally, they can be used as a complement to other analytical software packages. They aim to assist students in learning statistics, within an intuitive working environment. Supplementary materials with the Excel templates are available online.
These data are coded for warming treatments, snow augmentation, and location from the Niwot Ridge (Colorado) site of ITEX. Included are data from 1993 (warming treatments started), 1995 (control plots added), and 1996. This dataset is in excel format and includes the species file. For more information, please see the readme file.
The ITEX experiment at Audkuluheidi was started in 1996 when control and OTC plots 1-5 were set up. In 1997 Control and OTC plots 6-10 were set up in the protected area (No Graze). Also in 1997, 10 control plots were set up in the adjacent grazed area (Graze). In 2000, all plots were sampled again. This dataset is in excel format. For more information, please see the readme file.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This repository contains a collection of data about 454 value chains from 23 rural European areas of 16 countries. This data is obtained through a semi-automatic workflow that transforms raw textual data from an unstructured MS Excel sheet into semantic knowledge graphs.In particular, the repository contains:MS Excel sheet containing different value chains details provided by MOuntain Valorisation through INterconnectedness and Green growth (MOVING) European project;454 CSV files containing events, titles, entities and coordinates of narratives of each value chain, obtained by pre-processing the MS Excel sheet454 Web Ontology Language (OWL) files. This collection of files is the result of the semi-automatic workflow, and is organized as a semantic knowledge graph of narratives, where each narrative is a sub-graph explaining one among the 454 value chains and its territory aspects. The knowledge graph is based on the Narrative Ontology, an ontology developed by Institute of Information Science and Technologies (ISTI-CNR) as an extension of CIDOC CRM, FRBRoo, and OWL Time.Two CSV files that compile all the possible available information extracted from 454 Web Ontology Language (OWL) files.GeoPackage files with the geographic coordinates related to the narratives.The HTML files that show all the different SPARQL and GeoSPARQL queries.The HTML files that show the story maps about the 454 value chains.An image showing how the various components of the dataset interact with each other.
The USDA Agricultural Research Service (ARS) recently established SCINet , which consists of a shared high performance computing resource, Ceres, and the dedicated high-speed Internet2 network used to access Ceres. Current and potential SCINet users are using and generating very large datasets so SCINet needs to be provisioned with adequate data storage for their active computing. It is not designed to hold data beyond active research phases. At the same time, the National Agricultural Library has been developing the Ag Data Commons, a research data catalog and repository designed for public data release and professional data curation. Ag Data Commons needs to anticipate the size and nature of data it will be tasked with handling. The ARS Web-enabled Databases Working Group, organized under the SCINet initiative, conducted a study to establish baseline data storage needs and practices, and to make projections that could inform future infrastructure design, purchases, and policies. The SCINet Web-enabled Databases Working Group helped develop the survey which is the basis for an internal report. While the report was for internal use, the survey and resulting data may be generally useful and are being released publicly. From October 24 to November 8, 2016 we administered a 17-question survey (Appendix A) by emailing a Survey Monkey link to all ARS Research Leaders, intending to cover data storage needs of all 1,675 SY (Category 1 and Category 4) scientists. We designed the survey to accommodate either individual researcher responses or group responses. Research Leaders could decide, based on their unit's practices or their management preferences, whether to delegate response to a data management expert in their unit, to all members of their unit, or to themselves collate responses from their unit before reporting in the survey. Larger storage ranges cover vastly different amounts of data so the implications here could be significant depending on whether the true amount is at the lower or higher end of the range. Therefore, we requested more detail from "Big Data users," those 47 respondents who indicated they had more than 10 to 100 TB or over 100 TB total current data (Q5). All other respondents are called "Small Data users." Because not all of these follow-up requests were successful, we used actual follow-up responses to estimate likely responses for those who did not respond. We defined active data as data that would be used within the next six months. All other data would be considered inactive, or archival. To calculate per person storage needs we used the high end of the reported range divided by 1 for an individual response, or by G, the number of individuals in a group response. For Big Data users we used the actual reported values or estimated likely values. Resources in this dataset:Resource Title: Appendix A: ARS data storage survey questions. File Name: Appendix A.pdfResource Description: The full list of questions asked with the possible responses. The survey was not administered using this PDF but the PDF was generated directly from the administered survey using the Print option under Design Survey. Asterisked questions were required. A list of Research Units and their associated codes was provided in a drop down not shown here. Resource Software Recommended: Adobe Acrobat,url: https://get.adobe.com/reader/ Resource Title: CSV of Responses from ARS Researcher Data Storage Survey. File Name: Machine-readable survey response data.csvResource Description: CSV file includes raw responses from the administered survey, as downloaded unfiltered from Survey Monkey, including incomplete responses. Also includes additional classification and calculations to support analysis. Individual email addresses and IP addresses have been removed. This information is that same data as in the Excel spreadsheet (also provided).Resource Title: Responses from ARS Researcher Data Storage Survey. File Name: Data Storage Survey Data for public release.xlsxResource Description: MS Excel worksheet that Includes raw responses from the administered survey, as downloaded unfiltered from Survey Monkey, including incomplete responses. Also includes additional classification and calculations to support analysis. Individual email addresses and IP addresses have been removed.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel
This dataset contains the valuation template the researcher can use to retrieve real-time Excel stock price and stock price in Google Sheets. The dataset is provided by Finsheet, the leading financial data provider for spreadsheet users. To get more financial data, visit the website and explore their function. For instance, if a researcher would like to get the last 30 years of income statement for Meta Platform Inc, the syntax would be =FS_EquityFullFinancials("FB", "ic", "FY", 30) In addition, this syntax will return the latest stock price for Caterpillar Inc right in your spreadsheet. =FS_Latest("CAT") If you need assistance with any of the function, feel free to reach out to their customer support team. To get starter, install their Excel and Google Sheets add-on.
This dataset contains cover community data from the US TOOL2 site, Alaska in 1995. This dataset is in excel format. For more information, please see the readme file.
Spreadsheet used to calculate Highway Site characteristics (Drainage area, slope and impervious fraction) for the Stochastic Empirical Loading Dilution Model (SELDM) . The spreadsheet was used in conjunction with the SELDM simulations used in the publication: Stonewall, A.J., and Granato, G.E., 2018, Assessing potential effects of highway and urban runoff on receiving streams in total maximum daily load watersheds in Oregon using the Stochastic Empirical Loading and Dilution Model: U.S. Geological Survey Scientific Investigations Report 2019-5053, 116 p., https://doi.org/10.3133/sir20195053.
The U.S. Geological Survey (USGS), in cooperation with Connecticut Department of Transportation, completed a study to improve flood-frequency estimates in Connecticut. This companion data release is a Microsoft Excel workbook for: (1) computing flood discharges for the 50- to 0.2-percent annual exceedance probabilities from peak-flow regression equations, and (2) computing additional prediction intervals, not available through the USGS StreamStats web application. The current StreamStats application (version 4) only computes the 90-percent prediction interval for stream sites in Connecticut. The Excel workbook can be used to compute the 70-, 80-, 90-, 95-, and 99-percent prediction intervals. The prediction interval provides upper and lower limits of the estimated flood discharge with a certain probability, or level of confidence in the accuracy of the estimate. The standard error of prediction for the Connecticut peak-flow regression equations ranged from 26.3 to 45.0 percent (Ahearn and Hodgkins, 2020). The Excel workbook consists of four worksheets. The worksheets provide an overview of how the application works; input and output tables of the explanatory variables and flood discharges, and graphical display of the results; and the computational formulas used to estimate the flood discharges and prediction intervals.
This dataset contains the species data from the US TOOL2 site Cover Experiment. This data was gathered in Alaska in 1995. This dataset is in excel format. For more information, please see the readme file.
This data release (version 5.0, February 2022) consists of a Microsoft® Access database and Microsoft® Excel workbook that contain water-level data and other hydrologic information for wells on and near the Nevada Test Site (currently the Nevada National Security Site). The three worksheets in the Microsoft® Excel workbook also are provided as individual comma-separated values (CSV) files. The data release supports U.S. Geological Survey Data Series 533 (https://pubs.usgs.gov/ds/533/). The Microsoft® Access database contains water levels measured from 930 wells in and near areas of underground nuclear testing at the Nevada Test Site. The water-level measurements were collected from 1941 to 2021. All water levels in the Microsoft® Access database are stored in the USGS National Water Information System (NWIS) database available at https://waterdata.usgs.gov/nv/nwis. The Microsoft® Access database also provides information for each well (well construction, borehole lithology, units contributing water to the well, and general site remarks) and water-level measurement (measurement source, status, method, accuracy, and specific water-level remarks). Additionally, the database provides hydrograph descriptions (hereinafter hydrograph narratives) that document the water-level history and describe and interpret the water-level hydrograph for each well. Multiple condition flags were assigned to each water‑level measurement to describe the hydrologic conditions at the time of measurement. The condition flags describe the general quality (accuracy), temporal variability, regional significance, and hydrologic conditions of the measurements. The Microsoft® Excel workbook contains hydrographs and locations for the 930 wells, which are interactively presented in the workbook as an interface to the Microsoft® Access database. This workbook is designed to be an easy-to-use tool to obtain the water-level history for any well in the study area. Water-level data can be restricted to certain wells, dates, or hydrologic conditions by using the Microsoft® Excel built-in AutoFilter. Additional information provided in the workbook includes selected well-site information, water-level information, contributing units, the hydrograph narratives, and hyperlinks to the NWISWeb (http://waterdata.usgs.gov/nv/nwis/) site home page for each well. Information presented in the workbook for all water levels in the database also includes measurement source, status, method, accuracy, remarks, and hydrologic condition flags. Interpretations for individual water-level measurements and for the period of record for the wells have been incorporated into the water-level remarks, flags, or hydrograph narratives.
https://whoisdatacenter.com/terms-of-use/https://whoisdatacenter.com/terms-of-use/
Explore historical ownership and registration records by performing a reverse Whois lookup for the email address high-speed-internet-excel.com@wix-domains.com..
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Escaped vs. unescaped text import into excel.
This dataset includes flux data from the MNT site near Ivotuk gathered during the 1998 summer field season. Surface energy and trace gas exchange measurements were made at each of the Ivotuk sites using the eddy covariance technique. The MAT site was operated continuously over the growing season whilst the remaining sites were characterized by a single tower that was moved from site to site. The MAT site is therefore used as a reference. This dataset is available in both ASCII and EXCEL formats - For data browsing, we suggest ordering the EXCEL version and using EXCEL to plot the data. NOTE: This dataset contains the data in EXCEL format.
Ahoy, data enthusiasts! Join us for a hands-on workshop where you will hoist your sails and navigate through the Statistics Canada website, uncovering hidden treasures in the form of data tables. With the wind at your back, you’ll master the art of downloading these invaluable Stats Can datasets while braving the occasional squall of data cleaning challenges using Excel with your trusty captains Vivek and Lucia at the helm.
This dataset includes flux data from the Heath Site area in the Council region gathered during the 2000 summer field season in Excel format.
This Excel template is an example taken from the GEO web site (http://www.ncbi.nlm.nih.gov/geo/info/spreadsheet.html#GAtemplates) which has been modified to conform to the SysMO JERM (Just Enough Results Model). Using templates helps with searching and comparing data as well as making it easier to submit data to public repositories for publications.
This dataset includes community data from a Carex-meadow in Latnjajaure, Sweden, from 1994 and 1998 with a warming treatment (OTC). These plots were used to study the effect of warming on phenology, reproduction and growth of Carex bigelowii. This dataset is in excel format. For more information, see the readme file.
This template is for recording gene expression data from the NimbleGen platform. This template was taken from the GEO website (http://www.ncbi.nlm.nih.gov/geo/info/spreadsheet.html) and modified to conform to the SysMO-JERM (Just enough Results Model) for transcriptomics. Using these templates will mean easier submission to GEO/ArrayExpress and greater consistency of data in SEEK.
Excel spreadsheets by species (4 letter code is abbreviation for genus and species used in study, year 2010 or 2011 is year data collected, SH indicates data for Science Hub, date is date of file preparation). The data in a file are described in a read me file which is the first worksheet in each file. Each row in a species spreadsheet is for one plot (plant). The data themselves are in the data worksheet. One file includes a read me description of the column in the date set for chemical analysis. In this file one row is an herbicide treatment and sample for chemical analysis (if taken). This dataset is associated with the following publication: Olszyk , D., T. Pfleeger, T. Shiroyama, M. Blakely-Smith, E. Lee , and M. Plocher. Plant reproduction is altered by simulated herbicide drift toconstructed plant communities. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY. Society of Environmental Toxicology and Chemistry, Pensacola, FL, USA, 36(10): 2799-2813, (2017).