Facebook
TwitterDaily utilization metrics for data.lacity.org and geohub.lacity.org. Updated monthly
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Explore our detailed website traffic dataset featuring key metrics like page views, session duration, bounce rate, traffic source, and conversion rates.
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
Global network traffic analytics Industry Overview
Technavio’s analysts have identified the increasing use of network traffic analytics solutions to be one of major factors driving market growth. With the rapidly changing IT infrastructure, security hackers can steal valuable information through various modes. With the increasing dependence on web applications and websites for day-to-day activities and financial transactions, the instances of theft have increased globally. Also, the emergence of social networking websites has aided the malicious attackers to extract valuable information from vulnerable users. The increasing consumer dependence on web applications and websites for day-to-day activities and financial transactions are further increasing the risks of theft. This encourages the organizations to adopt network traffic analytics solutions.
Want a bigger picture? Try a FREE sample of this report now!
See the complete table of contents and list of exhibits, as well as selected illustrations and example pages from this report.
Companies covered
The network traffic analytics market is fairly concentrated due to the presence of few established companies offering innovative and differentiated software and services. By offering a complete analysis of the competitiveness of the players in the network monitoring tools market offering varied software and services, this network traffic analytics industry analysis report will aid clients identify new growth opportunities and design new growth strategies.
The report offers a complete analysis of a number of companies including:
Allot
Cisco Systems
IBM
Juniper Networks
Microsoft
Symantec
Network traffic analytics market growth based on geographic regions
Americas
APAC
EMEA
With a complete study of the growth opportunities for the companies across regions such as the Americas, APAC, and EMEA, our industry research analysts have estimated that countries in the Americas will contribute significantly to the growth of the network monitoring tools market throughout the predicted period.
Network traffic analytics market growth based on end-user
Telecom
BFSI
Healthcare
Media and entertainment
According to our market research experts, the telecom end-user industry will be the major end-user of the network monitoring tools market throughout the forecast period. Factors such as increasing use of network traffic analytics solutions and increasing use of mobile devices at workplaces will contribute to the growth of the market shares of the telecom industry in the network traffic analytics market.
Key highlights of the global network traffic analytics market for the forecast years 2018-2022:
CAGR of the market during the forecast period 2018-2022
Detailed information on factors that will accelerate the growth of the network traffic analytics market during the next five years
Precise estimation of the global network traffic analytics market size and its contribution to the parent market
Accurate predictions on upcoming trends and changes in consumer behavior
Growth of the network traffic analytics industry across various geographies such as the Americas, APAC, and EMEA
A thorough analysis of the market’s competitive landscape and detailed information on several vendors
Comprehensive information about factors that will challenge the growth of network traffic analytics companies
Get more value with Technavio’s INSIGHTS subscription platform! Gain easy access to all of Technavio’s reports, along with on-demand services. Try the demo
This market research report analyzes the market outlook and provides a list of key trends, drivers, and challenges that are anticipated to impact the global network traffic analytics market and its stakeholders over the forecast years.
The global network traffic analytics market analysts at Technavio have also considered how the performance of other related markets in the vertical will impact the size of this market till 2022. Some of the markets most likely to influence the growth of the network traffic analytics market over the coming years are the Global Network as a Service Market and the Global Data Analytics Outsourcing Market.
Technavio’s collection of market research reports offer insights into the growth of markets across various industries. Additionally, we also provide customized reports based on the specific requirement of our clients.
Facebook
TwitterIn the second quarter of 2025, mobile devices (excluding tablets) accounted for 62.54 percent of global website traffic. Since consistently maintaining a share of around 50 percent beginning in 2017, mobile usage surpassed this threshold in 2020 and has demonstrated steady growth in its dominance of global web access. Mobile traffic Due to low infrastructure and financial restraints, many emerging digital markets skipped the desktop internet phase entirely and moved straight onto mobile internet via smartphone and tablet devices. India is a prime example of a market with a significant mobile-first online population. Other countries with a significant share of mobile internet traffic include Nigeria, Ghana and Kenya. In most African markets, mobile accounts for more than half of the web traffic. By contrast, mobile only makes up around 45.49 percent of online traffic in the United States. Mobile usage The most popular mobile internet activities worldwide include watching movies or videos online, e-mail usage and accessing social media. Apps are a very popular way to watch video on the go and the most-downloaded entertainment apps in the Apple App Store are Netflix, Tencent Video and Amazon Prime Video.
Facebook
TwitterThe census count of vehicles on city streets is normally reported in the form of Average Daily Traffic (ADT) counts. These counts provide a good estimate for the actual number of vehicles on an average weekday at select street segments. Specific block segments are selected for a count because they are deemed as representative of a larger segment on the same roadway. ADT counts are used by transportation engineers, economists, real estate agents, planners, and others professionals for planning and operational analysis. The frequency for each count varies depending on City staff’s needs for analysis in any given area. This report covers the counts taken in our City during the past 12 years approximately.
Facebook
Twitterhttps://whoisdatacenter.com/terms-of-use/https://whoisdatacenter.com/terms-of-use/
Explore the historical Whois records related to free-web-traffic-report.com (Domain). Get insights into ownership history and changes over time.
Facebook
Twitterhttps://www.wiseguyreports.com/pages/privacy-policyhttps://www.wiseguyreports.com/pages/privacy-policy
| BASE YEAR | 2024 |
| HISTORICAL DATA | 2019 - 2023 |
| REGIONS COVERED | North America, Europe, APAC, South America, MEA |
| REPORT COVERAGE | Revenue Forecast, Competitive Landscape, Growth Factors, and Trends |
| MARKET SIZE 2024 | 2.48(USD Billion) |
| MARKET SIZE 2025 | 2.64(USD Billion) |
| MARKET SIZE 2035 | 5.0(USD Billion) |
| SEGMENTS COVERED | Traffic Generation Method, Target Audience, Industry Sector, Service Type, Regional |
| COUNTRIES COVERED | US, Canada, Germany, UK, France, Russia, Italy, Spain, Rest of Europe, China, India, Japan, South Korea, Malaysia, Thailand, Indonesia, Rest of APAC, Brazil, Mexico, Argentina, Rest of South America, GCC, South Africa, Rest of MEA |
| KEY MARKET DYNAMICS | Increasing online presence needs, Rise in digital marketing strategies, Growing e-commerce industry demand, Advancements in data analytics tools, High competition among businesses |
| MARKET FORECAST UNITS | USD Billion |
| KEY COMPANIES PROFILED | Wix, Facebook, Moz, Ahrefs, ClickFunnels, SEMrush, Ubersuggest, Crazy Egg, Microsoft, Yoast, Mailchimp, Amazon, Google, Adobe, Buffer, HubSpot, Squarespace |
| MARKET FORECAST PERIOD | 2025 - 2035 |
| KEY MARKET OPPORTUNITIES | Increased digital marketing budgets, Growing e-commerce platforms, Demand for SEO tools, Expansion of social media advertising, Rise in content marketing strategies |
| COMPOUND ANNUAL GROWTH RATE (CAGR) | 6.6% (2025 - 2035) |
Facebook
TwitterThis is a dynamic traffic map service with capabilities for visualizing traffic speeds relative to free-flow speeds as well as traffic incidents which can be visualized and identified. The traffic data is updated every five minutes. Traffic speeds are displayed as a percentage of free-flow speeds, which is frequently the speed limit or how fast cars tend to travel when unencumbered by other vehicles. The streets are color coded as follows: Green (fast): 85 - 100% of free flow speeds Yellow (moderate): 65 - 85% Orange (slow); 45 - 65% Red (stop and go): 0 - 45%Esri's historical, live, and predictive traffic feeds come directly from TomTom (www.tomtom.com). Historical traffic is based on the average of observed speeds over the past year. The live and predictive traffic data is updated every five minutes through traffic feeds. The color coded traffic map layer can be used to represent relative traffic speeds; this is a common type of a map for online services and is used to provide context for routing, navigation and field operations. The traffic map layer contains two sublayers: Traffic and Live Traffic. The Traffic sublayer (shown by default) leverages historical, live and predictive traffic data; while the Live Traffic sublayer is calculated from just the live and predictive traffic data only. A color coded traffic map image can be requested for the current time and any time in the future. A map image for a future request might be used for planning purposes. The map layer also includes dynamic traffic incidents showing the location of accidents, construction, closures and other issues that could potentially impact the flow of traffic. Traffic incidents are commonly used to provide context for routing, navigation and field operations. Incidents are not features; they cannot be exported and stored for later use or additional analysis. The service works globally and can be used to visualize traffic speeds and incidents in many countries. Check the service coverage web map to determine availability in your area of interest. In the coverage map, the countries color coded in dark green support visualizing live traffic. The support for traffic incidents can be determined by identifying a country. For detailed information on this service, including a data coverage map, visit the directions and routing documentation and ArcGIS Help.
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
Web Analytics Market Size 2025-2029
The web analytics market size is forecast to increase by USD 3.63 billion, at a CAGR of 15.4% between 2024 and 2029.
The market is experiencing significant growth, driven by the rising preference for online shopping and the increasing adoption of cloud-based solutions. The shift towards e-commerce is fueling the demand for advanced web analytics tools that enable businesses to gain insights into customer behavior and optimize their digital strategies. Furthermore, cloud deployment models offer flexibility, scalability, and cost savings, making them an attractive option for businesses of all sizes. However, the market also faces challenges associated with compliance to data privacy and regulations. With the increasing amount of data being generated and collected, ensuring data security and privacy is becoming a major concern for businesses.
Regulatory compliance, such as GDPR and CCPA, adds complexity to the implementation and management of web analytics solutions. Companies must navigate these challenges effectively to maintain customer trust and avoid potential legal issues. To capitalize on market opportunities and address these challenges, businesses should invest in robust web analytics solutions that prioritize data security and privacy while providing actionable insights to inform strategic decision-making and enhance customer experiences.
What will be the Size of the Web Analytics Market during the forecast period?
Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
Request Free Sample
The market continues to evolve, with dynamic market activities unfolding across various sectors. Entities such as reporting dashboards, schema markup, conversion optimization, session duration, organic traffic, attribution modeling, conversion rate optimization, call to action, content calendar, SEO audits, website performance optimization, link building, page load speed, user behavior tracking, and more, play integral roles in this ever-changing landscape. Data visualization tools like Google Analytics and Adobe Analytics provide valuable insights into user engagement metrics, helping businesses optimize their content strategy, website design, and technical SEO. Goal tracking and keyword research enable marketers to measure the return on investment of their efforts and refine their content marketing and social media marketing strategies.
Mobile optimization, form optimization, and landing page optimization are crucial aspects of website performance optimization, ensuring a seamless user experience across devices and improving customer acquisition cost. Search console and page speed insights offer valuable insights into website traffic analysis and help businesses address technical issues that may impact user behavior. Continuous optimization efforts, such as multivariate testing, data segmentation, and data filtering, allow businesses to fine-tune their customer journey mapping and cohort analysis. Search engine optimization, both on-page and off-page, remains a critical component of digital marketing, with backlink analysis and page authority playing key roles in improving domain authority and organic traffic.
The ongoing integration of user behavior tracking, click-through rate, and bounce rate into marketing strategies enables businesses to gain a deeper understanding of their audience and optimize their customer experience accordingly. As market dynamics continue to evolve, the integration of these tools and techniques into comprehensive digital marketing strategies will remain essential for businesses looking to stay competitive in the digital landscape.
How is this Web Analytics Industry segmented?
The web analytics industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Deployment
Cloud-based
On-premises
Application
Social media management
Targeting and behavioral analysis
Display advertising optimization
Multichannel campaign analysis
Online marketing
Component
Solutions
Services
Geography
North America
US
Canada
Europe
France
Germany
Italy
UK
APAC
China
India
Japan
South Korea
Rest of World (ROW)
.
By Deployment Insights
The cloud-based segment is estimated to witness significant growth during the forecast period.
In today's digital landscape, web analytics plays a pivotal role in driving business growth and optimizing online performance. Cloud-based deployment of web analytics is a game-changer, enabling on-demand access to computing resources for data analysis. This model streamlines business intelligence processes by collecting, integra
Facebook
TwitterIn November 2025, mobile devices excluding tablets accounted for over ***** percent of web page views worldwide. Meanwhile, over ***** percent of webpage views in Africa were generated via mobile. In contrast, just over half of web traffic in North America still took place via desktop connections, with mobile only accounting for ***** percent of total web traffic. While regional infrastructure remains an important factor in broadband vs. mobile coverage, most of the world has had their eyes on the recent 5G rollout across the globe, spearheaded by tech leaders China and the United States. The number of mobile 5G subscriptions worldwide is forecast to reach more than ***** billion by 2028. Social media: room for growth in Africa and southern Asia Overall, more than ** percent of the world’s mobile internet subscribers are also active on social media. A fast-growing market, with newcomers such as TikTok taking the world by storm, marketers have been cashing in on social media’s reach. Overall, social media penetration is highest in Europe and America, while in Africa and southern Asia, there is still room for growth. As of 2021, Facebook and Google-owned YouTube are the most popular social media platforms worldwide. Facebook and Instagram are most effective With nearly ***** billion users, it is no wonder that Facebook remains the social media avenue of choice for the majority of marketers across the world. Instagram, meanwhile, was the second most popular outlet. Both platforms are low-cost and support short-form content, known for its universal consumer appeal and answering to the most important benefits of using these kinds of platforms for business and advertising purposes.
Facebook
TwitterThis dataset contains traffic incident information from the Austin-Travis County traffic reports collected from the various Public Safety agencies through a data feed from the Combined Transportation, Emergency, and Communications Center (CTECC). For further context, see: - Active Incidents: Map and Context - https://data.austintexas.gov/stories/s/Austin-Travis-County-Traffic-Report-Page/9qfg-4swh/ - Data Trends and Analysis - https://data.austintexas.gov/stories/s/48n7-m3me The dataset is updated every 5 minutes with the latest snapshot of active traffic incidents.
Facebook
Twitterhttps://www.zionmarketresearch.com/privacy-policyhttps://www.zionmarketresearch.com/privacy-policy
The global Clickstream Analytics Market was valued at $615.37 Million in 2022, and is projected to $1,298.63 Million by 2030, growing at a CAGR of 11.26%.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Time Series: Time series is a set of observations recorded over regular interval of time, Time series can be beneficial in many fields like stock market prediction, weather forecasting. - Accounts for the fact that data points taken over time may have an internal structure (such as auto correlation, trend or seasonal variation) that should be accounted for.
Web traffic: Amount of data sent and received by visitors to a website. - Sites monitor the incoming and outgoing traffic to see which parts or pages of their site are popular and if there are any apparent trends, such as one specific page being viewed mostly by people in a particular country
Contains Page Views for 60k Wikipedia articles in 8 different languages taken on a daily basis for 2 years.
https://i.ibb.co/h1JCgpY/DSLC.png" alt="DSLC">
A Data Science Life Cycle can be used to create a project. Forecasting can be done for any interval provided sufficient dataset is available. Refer the Github link in the tasks to view the forecast done using ARIMA and Prophet. Further feel free to contribute. Several other models can be used including a neural network to improve the results by many folds.
Facebook
TwitterOur Web Data dataset includes such data points as company name, location, headcount, industry, and size, among others. It offers extensive fresh and historical data, including even companies that operate in stealth mode.
For lead generation
With millions of companies worldwide, Web Company Database helps you filter potential clients based on custom criteria and speed up the conversion process.
Use cases
For market and business analysis
Our Web Company Data provides information about millions of companies, allowing you to find your competitors and see their weaknesses and strengths.
Use cases
For Investors
We recommend B2B Web Data for investors to discover and evaluate businesses with the highest potential.
Gain strategic business insights, enhance decision-making, and maintain algorithms that signal investment opportunities with Coresignal’s global B2B Web Dataset.
Use cases
For sales prospecting
B2B Web Database saves time your employees would otherwise use to search for potential clients manually.
Use cases
Facebook
TwitterThe map layers in this service provide color-coded maps of the traffic conditions you can expect for the present time (the default). The map shows present traffic as a blend of live and typical information. Live speeds are used wherever available and are established from real-time sensor readings. Typical speeds come from a record of average speeds, which are collected over several weeks within the last year or so. Layers also show current incident locations where available. By changing the map time, the service can also provide past and future conditions. Live readings from sensors are saved for 12 hours, so setting the map time back within 12 hours allows you to see a actual recorded traffic speeds, supplemented with typical averages by default. You can choose to turn off the average speeds and see only the recorded live traffic speeds for any time within the 12-hour window. Predictive traffic conditions are shown for any time in the future.The color-coded traffic map layer can be used to represent relative traffic speeds; this is a common type of a map for online services and is used to provide context for routing, navigation, and field operations. A color-coded traffic map can be requested for the current time and any time in the future. A map for a future request might be used for planning purposes.The map also includes dynamic traffic incidents showing the location of accidents, construction, closures, and other issues that could potentially impact the flow of traffic. Traffic incidents are commonly used to provide context for routing, navigation and field operations. Incidents are not features; they cannot be exported and stored for later use or additional analysis.Data sourceEsri’s typical speed records and live and predictive traffic feeds come directly from HERE (www.HERE.com). HERE collects billions of GPS and cell phone probe records per month and, where available, uses sensor and toll-tag data to augment the probe data collected. An advanced algorithm compiles the data and computes accurate speeds. The real-time and predictive traffic data is updated every five minutes through traffic feeds.Data coverageThe service works globally and can be used to visualize traffic speeds and incidents in many countries. Check the service coverage web map to determine availability in your area of interest. Look at the coverage map to learn whether a country currently supports traffic. The support for traffic incidents can be determined by identifying a country. For detailed information on this service, visit the directions and routing documentation and the ArcGIS Help.SymbologyTraffic speeds are displayed as a percentage of free-flow speeds, which is frequently the speed limit or how fast cars tend to travel when unencumbered by other vehicles. The streets are color coded as follows:Green (fast): 85 - 100% of free flow speedsYellow (moderate): 65 - 85%Orange (slow); 45 - 65%Red (stop and go): 0 - 45%To view live traffic only—that is, excluding typical traffic conditions—enable the Live Traffic layer and disable the Traffic layer. (You can find these layers under World/Traffic > [region] > [region] Traffic). To view more comprehensive traffic information that includes live and typical conditions, disable the Live Traffic layer and enable the Traffic layer.ArcGIS Online organization subscriptionImportant Note:The World Traffic map service is available for users with an ArcGIS Online organizational subscription. To access this map service, you'll need to sign in with an account that is a member of an organizational subscription. If you don't have an organizational subscription, you can create a new account and then sign up for a 30-day trial of ArcGIS Online.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
SDCC Traffic Congestion Saturation Flow Data for January to June 2023. Traffic volumes, traffic saturation, and congestion data for sites across South Dublin County. Used by traffic management to control stage timings on junctions. It is recommended that this dataset is read in conjunction with the ‘Traffic Data Site Names SDCC’ dataset.A detailed description of each column heading can be referenced below;scn: Site Serial numberregion: A group of Nodes that are operated under SCOOT control at the same common cycle time. Normally these will be nodes between which co-ordination is desirable. Some of the nodes may be double cycling at half of the region cycle time.system: SCOOT STC UTC (UTC-MX)locn: Locationssite: Site numbersday: Days of the week Monday to Sunday. Abbreviations; MO,TU,WE,TH,FR,SA,SU.date: Reflects correct actual Date of when data was collected.start_time: NOTE - Please ignore the date displayed in this column. The actual data collection date is correctly displayed in the 'date' column. The date displayed here is the date of when report was run and extracted from the system, but correctly reflects start time of 15 minute intervals. end_time: End time of 15 minute intervals.flow: A representation of demand (flow) for each link built up over several minutes by the SCOOT model. SCOOT has two profiles:(1) Short – Raw data representing the actual values over the previous few minutes(2) Long – A smoothed average of values over a longer periodSCOOT will choose to use the appropriate profile depending on a number of factors.flow_pc: Same as above ref PC SCOOTcong: Congestion is directly measured from the detector. If the detector is placed beyond the normal end of queue in the street it is rarely covered by stationary traffic, except of course when congestion occurs. If any detector shows standing traffic for the whole of an interval this is recorded. The number of intervals of congestion in any cycle is also recorded.The percentage congestion is calculated from:No of congested intervals x 4 x 100 cycle time in seconds.This percentage of congestion is available to view and more importantly for the optimisers to take into account.cong_pc: Same as above ref PC SCOOTdsat: The ratio of the demand flow to the maximum possible discharge flow, i.e. it is the ratio of the demand to the discharge rate (Saturation Occupancy) multiplied by the duration of the effective green time. The Split optimiser will try to minimise the maximum degree of saturation on links approaching the node.
Facebook
Twitter
According to our latest research, the global Traffic School market size reached USD 5.2 billion in 2024, reflecting a robust expansion driven by increasing regulatory mandates and the growing emphasis on road safety education. The market is expected to grow at a CAGR of 6.8% during the forecast period, reaching a projected value of USD 9.6 billion by 2033. This growth is primarily attributed to the rising adoption of digital learning solutions and the integration of advanced technologies in traffic safety education, which are reshaping the landscape of traffic schools worldwide.
One of the most significant growth factors propelling the Traffic School market is the global increase in road traffic accidents and the corresponding emphasis on driver education. Governments across various regions are implementing stricter regulations and mandating traffic school attendance for drivers involved in violations, accidents, or those seeking insurance discounts. This regulatory push is complemented by a societal shift towards prioritizing road safety, leading to greater participation in driver improvement programs. Furthermore, the proliferation of mobile and web-based platforms has made traffic education more accessible, enabling a broader demographic to enroll in courses and comply with legal requirements efficiently.
Another key driver is the rapid digital transformation within the education sector, which has significantly impacted the Traffic School market. Online traffic schools, leveraging interactive content, gamification, and real-time feedback, have emerged as preferred choices for both learners and regulatory bodies. These platforms offer flexibility, convenience, and cost-effectiveness, making them particularly attractive for working professionals and younger drivers. The integration of artificial intelligence and data analytics further enhances learning outcomes by personalizing course material and tracking progress, which in turn improves the efficacy of driver education and increases market penetration.
The growing awareness among insurance companies regarding the benefits of educated drivers is also fueling market growth. Many insurers now offer substantial discounts to policyholders who complete certified traffic school programs, creating a financial incentive for drivers to participate. This trend is especially prominent in developed markets, where insurance premiums are high and consumers are increasingly seeking ways to reduce costs. Additionally, the expansion of traffic school offerings beyond traditional driver improvement to include specialized courses for commercial drivers, senior drivers, and teen drivers is broadening the market's scope and attracting new end-user segments.
Regionally, North America continues to dominate the Traffic School market, accounting for the largest share due to stringent traffic laws, high vehicle ownership rates, and a well-established insurance industry. However, the Asia Pacific region is witnessing the fastest growth, driven by rapid urbanization, rising disposable incomes, and increasing government initiatives aimed at reducing road fatalities. Europe also presents significant opportunities, particularly with the growing emphasis on sustainable mobility and road safety campaigns. Overall, the market's regional dynamics are shaped by a combination of regulatory frameworks, technological adoption, and cultural attitudes towards driver education.
The Course Type segment of the Traffic School market is categorized into Online Traffic School, Classroom-Based Traffic School, and Hybrid Traffic School. Online traffic schools have experienced a remarkable surge in popularity, primarily due to their inherent flexibility and accessibility. With the advent of e-learning technologies, learners can now access high-quality educational content from the comfort of their homes, at their own pace, and on a variety of devices. This mode of delivery has proven especially ben
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The map layers in this service provide color-coded maps of the traffic conditions you can expect for the present time (the default). The map shows present traffic as a blend of live and typical information. Live speeds are used wherever available and are established from real-time sensor readings. Typical speeds come from a record of average speeds, which are collected over several weeks within the last year or so. Layers also show current incident locations where available. By changing the map time, the service can also provide past and future conditions. Live readings from sensors are saved for 12 hours, so setting the map time back within 12 hours allows you to see a actual recorded traffic speeds, supplemented with typical averages by default. You can choose to turn off the average speeds and see only the recorded live traffic speeds for any time within the 12-hour window. Predictive traffic conditions are shown for any time in the future.The color-coded traffic map layer can be used to represent relative traffic speeds; this is a common type of a map for online services and is used to provide context for routing, navigation, and field operations. A color-coded traffic map can be requested for the current time and any time in the future. A map for a future request might be used for planning purposes.The map also includes dynamic traffic incidents showing the location of accidents, construction, closures, and other issues that could potentially impact the flow of traffic. Traffic incidents are commonly used to provide context for routing, navigation and field operations. Incidents are not features; they cannot be exported and stored for later use or additional analysis.Data sourceEsri’s typical speed records and live and predictive traffic feeds come directly from HERE (www.HERE.com). HERE collects billions of GPS and cell phone probe records per month and, where available, uses sensor and toll-tag data to augment the probe data collected. An advanced algorithm compiles the data and computes accurate speeds. The real-time and predictive traffic data is updated every five minutes through traffic feeds.Data coverageThe service works globally and can be used to visualize traffic speeds and incidents in many countries. Check the service coverage web map to determine availability in your area of interest. Look at the coverage map to learn whether a country currently supports traffic. The support for traffic incidents can be determined by identifying a country. For detailed information on this service, visit the directions and routing documentation and the ArcGIS Help.SymbologyTraffic speeds are displayed as a percentage of free-flow speeds, which is frequently the speed limit or how fast cars tend to travel when unencumbered by other vehicles. The streets are color coded as follows:Green (fast): 85 - 100% of free flow speedsYellow (moderate): 65 - 85%Orange (slow); 45 - 65%Red (stop and go): 0 - 45%To view live traffic only—that is, excluding typical traffic conditions—enable the Live Traffic layer and disable the Traffic layer. (You can find these layers under World/Traffic > [region] > [region] Traffic). To view more comprehensive traffic information that includes live and typical conditions, disable the Live Traffic layer and enable the Traffic layer.
Facebook
TwitterIn August 2025, Google.com was the most visited website worldwide, with an average of 98.2 billion monthly visits. The platform has maintained its leading position since June 2010, when it surpassed Yahoo to take first place. YouTube ranked second during the same period, recording over 48 billion monthly visits. The internet leaders: search, social, and e-commerce Social networks, search engines, and e-commerce websites shape the online experience as we know it. While Google leads the global online search market by far, YouTube and Facebook have become the world’s most popular websites for user generated content, solidifying Alphabet’s and Meta’s leadership over the online landscape. Meanwhile, websites such as Amazon and eBay generate millions in profits from the sale and distribution of goods, making the e-market sector an integral part of the global retail scene. What is next for online content? Powering social media and websites like Reddit and Wikipedia, user-generated content keeps moving the internet’s engines. However, the rise of generative artificial intelligence will bring significant changes to how online content is produced and handled. ChatGPT is already transforming how online search is performed, and news of Google's 2024 deal for licensing Reddit content to train large language models (LLMs) signal that the internet is likely to go through a new revolution. While AI's impact on the online market might bring both opportunities and challenges, effective content management will remain crucial for profitability on the web.
Facebook
Twitter
According to our latest research, the global market size for Edge Computing for Video Analytics at Sites reached USD 2.85 billion in 2024, driven by the surging demand for real-time insights and the proliferation of IoT-enabled video surveillance systems. The market is expected to grow at a robust CAGR of 22.7% from 2025 to 2033, reaching a forecasted market size of USD 23.16 billion by 2033. This remarkable expansion is primarily fueled by the need for low-latency data processing, enhanced security, and the increasing integration of artificial intelligence in video analytics at the edge.
One of the most significant growth factors propelling the Edge Computing for Video Analytics at Sites market is the exponential rise in video data generated by surveillance cameras and IoT devices across various industries. Traditional cloud-based analytics often struggle to process such massive volumes of data in real time due to bandwidth and latency limitations. Edge computing addresses these constraints by enabling data processing closer to the data source, thereby reducing response times and network congestion. This capability is particularly critical for applications such as security surveillance, traffic management, and industrial monitoring, where instant decision-making is essential. Furthermore, the adoption of high-resolution cameras and advanced sensors is accelerating the need for edge-based video analytics solutions, ensuring that organizations can derive actionable insights with minimal delay.
Another major driver is the ongoing digital transformation across sectors like retail, transportation, and manufacturing, where organizations are leveraging edge computing to enhance operational efficiency and customer experiences. In retail, for example, edge video analytics is used for in-store behavior analysis, loss prevention, and queue management, all of which require real-time processing. Similarly, in transportation, edge analytics facilitates traffic flow optimization and incident detection, contributing to safer and more efficient urban environments. The integration of AI and machine learning algorithms at the edge further amplifies the value proposition, enabling more sophisticated analytics such as facial recognition, anomaly detection, and predictive maintenance. These advancements are encouraging enterprises to invest heavily in edge infrastructure, fueling market growth.
The regulatory landscape and growing emphasis on data privacy are also playing a pivotal role in shaping the market. With stringent data protection laws being enforced globally, organizations are increasingly wary of transmitting sensitive video data to centralized clouds. Edge computing offers a compelling solution by processing and analyzing data locally, thus minimizing the risk of data breaches and ensuring compliance with privacy regulations. This is particularly relevant in sectors such as BFSI, government, and healthcare, where confidentiality and regulatory compliance are paramount. Additionally, the ability of edge solutions to operate with limited or intermittent connectivity makes them ideal for remote or distributed sites, further expanding the addressable market.
From a regional perspective, North America currently leads the Edge Computing for Video Analytics at Sites market, owing to its advanced IT infrastructure, high adoption rates of smart surveillance systems, and significant investments in smart city initiatives. However, the Asia Pacific region is expected to witness the highest growth rate during the forecast period, driven by rapid urbanization, increasing security concerns, and substantial government initiatives aimed at deploying intelligent video analytics solutions. Europe also represents a significant market, with strong demand from transportation, manufacturing, and energy sectors. The Middle East & Africa and Latin America, while smaller in comparison, are showing increasing adoption, particularly in the context of critical infrastructure protection and urban development projects.
Facebook
TwitterDaily utilization metrics for data.lacity.org and geohub.lacity.org. Updated monthly