94 datasets found
  1. b

    Corporate Website — Analytics — Top 100 search terms

    • data.brisbane.qld.gov.au
    csv, excel, json
    Updated Apr 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Corporate Website — Analytics — Top 100 search terms [Dataset]. https://data.brisbane.qld.gov.au/explore/dataset/corporate-website-analytics-top-100-search-terms/
    Explore at:
    json, csv, excelAvailable download formats
    Dataset updated
    Apr 17, 2025
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Monthly analytics reports for the Brisbane City Council website

    Information regarding the sessions for Brisbane City Council website during the month including search terms used.

  2. DataForSEO Labs API for keyword research and search analytics, real-time...

    • datarade.ai
    .json
    Updated Jun 4, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DataForSEO (2021). DataForSEO Labs API for keyword research and search analytics, real-time data for all Google locations and languages [Dataset]. https://datarade.ai/data-products/dataforseo-labs-api-for-keyword-research-and-search-analytics-dataforseo
    Explore at:
    .jsonAvailable download formats
    Dataset updated
    Jun 4, 2021
    Dataset provided by
    Authors
    DataForSEO
    Area covered
    Korea (Democratic People's Republic of), Azerbaijan, Tokelau, Mauritania, Micronesia (Federated States of), Armenia, Isle of Man, Kenya, Morocco, Cocos (Keeling) Islands
    Description

    DataForSEO Labs API offers three powerful keyword research algorithms and historical keyword data:

    • Related Keywords from the “searches related to” element of Google SERP. • Keyword Suggestions that match the specified seed keyword with additional words before, after, or within the seed key phrase. • Keyword Ideas that fall into the same category as specified seed keywords. • Historical Search Volume with current cost-per-click, and competition values.

    Based on in-market categories of Google Ads, you can get keyword ideas from the relevant Categories For Domain and discover relevant Keywords For Categories. You can also obtain Top Google Searches with AdWords and Bing Ads metrics, product categories, and Google SERP data.

    You will find well-rounded ways to scout the competitors:

    • Domain Whois Overview with ranking and traffic info from organic and paid search. • Ranked Keywords that any domain or URL has positions for in SERP. • SERP Competitors and the rankings they hold for the keywords you specify. • Competitors Domain with a full overview of its rankings and traffic from organic and paid search. • Domain Intersection keywords for which both specified domains rank within the same SERPs. • Subdomains for the target domain you specify along with the ranking distribution across organic and paid search. • Relevant Pages of the specified domain with rankings and traffic data. • Domain Rank Overview with ranking and traffic data from organic and paid search. • Historical Rank Overview with historical data on rankings and traffic of the specified domain from organic and paid search. • Page Intersection keywords for which the specified pages rank within the same SERP.

    All DataForSEO Labs API endpoints function in the Live mode. This means you will be provided with the results in response right after sending the necessary parameters with a POST request.

    The limit is 2000 API calls per minute, however, you can contact our support team if your project requires higher rates.

    We offer well-rounded API documentation, GUI for API usage control, comprehensive client libraries for different programming languages, free sandbox API testing, ad hoc integration, and deployment support.

    We have a pay-as-you-go pricing model. You simply add funds to your account and use them to get data. The account balance doesn't expire.

  3. Web Analytics Market By Solution (Search Engine Tracking And Ranking, Heat...

    • verifiedmarketresearch.com
    Updated Nov 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    VERIFIED MARKET RESEARCH (2024). Web Analytics Market By Solution (Search Engine Tracking And Ranking, Heat Map Analytics), By Application (Social Media Management, Display Advertising Optimization), By Vertical (Baking, Financial Services And Insurance (BFSI), Retail), And Region for 2026-2032 [Dataset]. https://www.verifiedmarketresearch.com/product/web-analytics-market/
    Explore at:
    Dataset updated
    Nov 15, 2024
    Dataset provided by
    Verified Market Researchhttps://www.verifiedmarketresearch.com/
    Authors
    VERIFIED MARKET RESEARCH
    License

    https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/

    Time period covered
    2026 - 2032
    Area covered
    Global
    Description

    Web Analytics Market was valued at USD 6.16 Billion in 2024 and is projected to reach USD 13.6 Billion by 2032, growing at a CAGR of 18.58% from 2026 to 2032.

    Web Analytics Market Drivers

    Data-Driven Decision Making: Businesses increasingly rely on data-driven insights to optimize their online strategies. Web analytics provides valuable data on website traffic, user behavior, and conversion rates, enabling data-driven decision-making.

    E-commerce Growth: The rapid growth of e-commerce has fueled the demand for web analytics tools to track online sales, customer behavior, and marketing campaign effectiveness.

    Mobile Dominance: The increasing use of mobile devices for internet browsing has made mobile analytics a crucial aspect of web analytics. Businesses need to understand how users interact with their websites and apps on mobile devices.

    analytics tools can be complex to implement and use, requiring technical expertise.

  4. O

    Corporate Website — Analytics — Top 100 search terms

    • data.qld.gov.au
    • researchdata.edu.au
    html
    Updated Jul 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Brisbane City Council (2025). Corporate Website — Analytics — Top 100 search terms [Dataset]. https://www.data.qld.gov.au/dataset/corporate-website-analytics-top-100-search-terms
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Jul 23, 2025
    Dataset authored and provided by
    Brisbane City Council
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is available on Brisbane City Council’s open data website – data.brisbane.qld.gov.au. The site provides additional features for viewing and interacting with the data and for downloading the data in various formats.

    Monthly analytics reports for the Brisbane City Council website

    Information regarding the sessions for Brisbane City Council website during the month including search terms used.

  5. Google Analytics Sample

    • kaggle.com
    zip
    Updated Sep 19, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Google BigQuery (2019). Google Analytics Sample [Dataset]. https://www.kaggle.com/bigquery/google-analytics-sample
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    Sep 19, 2019
    Dataset provided by
    BigQueryhttps://cloud.google.com/bigquery
    Googlehttp://google.com/
    Authors
    Google BigQuery
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    The Google Merchandise Store sells Google branded merchandise. The data is typical of what you would see for an ecommerce website.

    Content

    The sample dataset contains Google Analytics 360 data from the Google Merchandise Store, a real ecommerce store. The Google Merchandise Store sells Google branded merchandise. The data is typical of what you would see for an ecommerce website. It includes the following kinds of information:

    Traffic source data: information about where website visitors originate. This includes data about organic traffic, paid search traffic, display traffic, etc. Content data: information about the behavior of users on the site. This includes the URLs of pages that visitors look at, how they interact with content, etc. Transactional data: information about the transactions that occur on the Google Merchandise Store website.

    Fork this kernel to get started.

    Acknowledgements

    Data from: https://bigquery.cloud.google.com/table/bigquery-public-data:google_analytics_sample.ga_sessions_20170801

    Banner Photo by Edho Pratama from Unsplash.

    Inspiration

    What is the total number of transactions generated per device browser in July 2017?

    The real bounce rate is defined as the percentage of visits with a single pageview. What was the real bounce rate per traffic source?

    What was the average number of product pageviews for users who made a purchase in July 2017?

    What was the average number of product pageviews for users who did not make a purchase in July 2017?

    What was the average total transactions per user that made a purchase in July 2017?

    What is the average amount of money spent per session in July 2017?

    What is the sequence of pages viewed?

  6. d

    Open Data Portal Web Analytics Dashboard

    • catalog.data.gov
    • s.cnmilf.com
    Updated Jul 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.austintexas.gov (2024). Open Data Portal Web Analytics Dashboard [Dataset]. https://catalog.data.gov/dataset/open-data-portal-web-analytics-dashboard
    Explore at:
    Dataset updated
    Jul 25, 2024
    Dataset provided by
    data.austintexas.gov
    Description

    An interactive dashboard that showcases the City of Austin Open Data Portal (data.austintexas.gov) web traffic and search-term performance metrics. *City of Austin Open Data Terms of Use https://data.austintexas.gov/stories/s/ranj‐cccq

  7. Google Analytics Sample

    • console.cloud.google.com
    Updated Jul 15, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    https://console.cloud.google.com/marketplace/browse?filter=partner:Obfuscated%20Google%20Analytics%20360%20data&hl=de&inv=1&invt=Ab2fng (2017). Google Analytics Sample [Dataset]. https://console.cloud.google.com/marketplace/product/obfuscated-ga360-data/obfuscated-ga360-data?hl=de
    Explore at:
    Dataset updated
    Jul 15, 2017
    Dataset provided by
    Googlehttp://google.com/
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    The dataset provides 12 months (August 2016 to August 2017) of obfuscated Google Analytics 360 data from the Google Merchandise Store , a real ecommerce store that sells Google-branded merchandise, in BigQuery. It’s a great way analyze business data and learn the benefits of using BigQuery to analyze Analytics 360 data Learn more about the data The data includes The data is typical of what an ecommerce website would see and includes the following information:Traffic source data: information about where website visitors originate, including data about organic traffic, paid search traffic, and display trafficContent data: information about the behavior of users on the site, such as URLs of pages that visitors look at, how they interact with content, etc. Transactional data: information about the transactions on the Google Merchandise Store website.Limitations: All users have view access to the dataset. This means you can query the dataset and generate reports but you cannot complete administrative tasks. Data for some fields is obfuscated such as fullVisitorId, or removed such as clientId, adWordsClickInfo and geoNetwork. “Not available in demo dataset” will be returned for STRING values and “null” will be returned for INTEGER values when querying the fields containing no data.This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery

  8. Z

    Network Traffic Analysis: Data and Code

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jun 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Honig, Joshua (2024). Network Traffic Analysis: Data and Code [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_11479410
    Explore at:
    Dataset updated
    Jun 12, 2024
    Dataset provided by
    Ferrell, Nathan
    Honig, Joshua
    Moran, Madeline
    Homan, Sophia
    Chan-Tin, Eric
    Soni, Shreena
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Code:

    Packet_Features_Generator.py & Features.py

    To run this code:

    pkt_features.py [-h] -i TXTFILE [-x X] [-y Y] [-z Z] [-ml] [-s S] -j

    -h, --help show this help message and exit -i TXTFILE input text file -x X Add first X number of total packets as features. -y Y Add first Y number of negative packets as features. -z Z Add first Z number of positive packets as features. -ml Output to text file all websites in the format of websiteNumber1,feature1,feature2,... -s S Generate samples using size s. -j

    Purpose:

    Turns a text file containing lists of incomeing and outgoing network packet sizes into separate website objects with associative features.

    Uses Features.py to calcualte the features.

    startMachineLearning.sh & machineLearning.py

    To run this code:

    bash startMachineLearning.sh

    This code then runs machineLearning.py in a tmux session with the nessisary file paths and flags

    Options (to be edited within this file):

    --evaluate-only to test 5 fold cross validation accuracy

    --test-scaling-normalization to test 6 different combinations of scalers and normalizers

    Note: once the best combination is determined, it should be added to the data_preprocessing function in machineLearning.py for future use

    --grid-search to test the best grid search hyperparameters - note: the possible hyperparameters must be added to train_model under 'if not evaluateOnly:' - once best hyperparameters are determined, add them to train_model under 'if evaluateOnly:'

    Purpose:

    Using the .ml file generated by Packet_Features_Generator.py & Features.py, this program trains a RandomForest Classifier on the provided data and provides results using cross validation. These results include the best scaling and normailzation options for each data set as well as the best grid search hyperparameters based on the provided ranges.

    Data

    Encrypted network traffic was collected on an isolated computer visiting different Wikipedia and New York Times articles, different Google search queres (collected in the form of their autocomplete results and their results page), and different actions taken on a Virtual Reality head set.

    Data for this experiment was stored and analyzed in the form of a txt file for each experiment which contains:

    First number is a classification number to denote what website, query, or vr action is taking place.

    The remaining numbers in each line denote:

    The size of a packet,

    and the direction it is traveling.

    negative numbers denote incoming packets

    positive numbers denote outgoing packets

    Figure 4 Data

    This data uses specific lines from the Virtual Reality.txt file.

    The action 'LongText Search' refers to a user searching for "Saint Basils Cathedral" with text in the Wander app.

    The action 'ShortText Search' refers to a user searching for "Mexico" with text in the Wander app.

    The .xlsx and .csv file are identical

    Each file includes (from right to left):

    The origional packet data,

    each line of data organized from smallest to largest packet size in order to calculate the mean and standard deviation of each packet capture,

    and the final Cumulative Distrubution Function (CDF) caluclation that generated the Figure 4 Graph.

  9. Web Analytics Market Analysis, Size, and Forecast 2025-2029: North America...

    • technavio.com
    Updated Apr 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Web Analytics Market Analysis, Size, and Forecast 2025-2029: North America (US and Canada), Europe (France, Germany, Italy, and UK), APAC (China, India, Japan, and South Korea), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/web-analytics-market-industry-analysis
    Explore at:
    Dataset updated
    Apr 15, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    Global, United States
    Description

    Snapshot img

    Web Analytics Market Size 2025-2029

    The web analytics market size is forecast to increase by USD 3.63 billion, at a CAGR of 15.4% between 2024 and 2029.

    The market is experiencing significant growth, driven by the rising preference for online shopping and the increasing adoption of cloud-based solutions. The shift towards e-commerce is fueling the demand for advanced web analytics tools that enable businesses to gain insights into customer behavior and optimize their digital strategies. Furthermore, cloud deployment models offer flexibility, scalability, and cost savings, making them an attractive option for businesses of all sizes. However, the market also faces challenges associated with compliance to data privacy and regulations. With the increasing amount of data being generated and collected, ensuring data security and privacy is becoming a major concern for businesses.
    Regulatory compliance, such as GDPR and CCPA, adds complexity to the implementation and management of web analytics solutions. Companies must navigate these challenges effectively to maintain customer trust and avoid potential legal issues. To capitalize on market opportunities and address these challenges, businesses should invest in robust web analytics solutions that prioritize data security and privacy while providing actionable insights to inform strategic decision-making and enhance customer experiences.
    

    What will be the Size of the Web Analytics Market during the forecast period?

    Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
    Request Free Sample

    The market continues to evolve, with dynamic market activities unfolding across various sectors. Entities such as reporting dashboards, schema markup, conversion optimization, session duration, organic traffic, attribution modeling, conversion rate optimization, call to action, content calendar, SEO audits, website performance optimization, link building, page load speed, user behavior tracking, and more, play integral roles in this ever-changing landscape. Data visualization tools like Google Analytics and Adobe Analytics provide valuable insights into user engagement metrics, helping businesses optimize their content strategy, website design, and technical SEO. Goal tracking and keyword research enable marketers to measure the return on investment of their efforts and refine their content marketing and social media marketing strategies.

    Mobile optimization, form optimization, and landing page optimization are crucial aspects of website performance optimization, ensuring a seamless user experience across devices and improving customer acquisition cost. Search console and page speed insights offer valuable insights into website traffic analysis and help businesses address technical issues that may impact user behavior. Continuous optimization efforts, such as multivariate testing, data segmentation, and data filtering, allow businesses to fine-tune their customer journey mapping and cohort analysis. Search engine optimization, both on-page and off-page, remains a critical component of digital marketing, with backlink analysis and page authority playing key roles in improving domain authority and organic traffic.

    The ongoing integration of user behavior tracking, click-through rate, and bounce rate into marketing strategies enables businesses to gain a deeper understanding of their audience and optimize their customer experience accordingly. As market dynamics continue to evolve, the integration of these tools and techniques into comprehensive digital marketing strategies will remain essential for businesses looking to stay competitive in the digital landscape.

    How is this Web Analytics Industry segmented?

    The web analytics industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.

    Deployment
    
      Cloud-based
      On-premises
    
    
    Application
    
      Social media management
      Targeting and behavioral analysis
      Display advertising optimization
      Multichannel campaign analysis
      Online marketing
    
    
    Component
    
      Solutions
      Services
    
    
    Geography
    
      North America
    
        US
        Canada
    
    
      Europe
    
        France
        Germany
        Italy
        UK
    
    
      APAC
    
        China
        India
        Japan
        South Korea
    
    
      Rest of World (ROW)
    

    .

    By Deployment Insights

    The cloud-based segment is estimated to witness significant growth during the forecast period.

    In today's digital landscape, web analytics plays a pivotal role in driving business growth and optimizing online performance. Cloud-based deployment of web analytics is a game-changer, enabling on-demand access to computing resources for data analysis. This model streamlines business intelligence processes by collecting,

  10. O

    Site Analytics: Catalog Search Terms (ODP Dashboard)

    • data.austintexas.gov
    application/rdfxml +5
    Updated Jul 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Site Analytics: Catalog Search Terms (ODP Dashboard) [Dataset]. https://data.austintexas.gov/City-Government/Site-Analytics-Catalog-Search-Terms-ODP-Dashboard-/8sxf-t34r
    Explore at:
    json, csv, xml, application/rdfxml, tsv, application/rssxmlAvailable download formats
    Dataset updated
    Jul 24, 2025
    Description

    This asset is a filter (derived view of a dataset) based on the system dataset, 'Site Analytics: Catalog Search Terms' which is automatically generated by the City of Austin Open Data Portal (data.austintexas.gov). It provides data on the words and phrases entered by site users of in search bars that look through the data catalog for relevant information. Catalog searches using the Discovery API are not included.

    Each row in the dataset indicates the number of catalog searches made using the search term from the specified user segment during the noted hour.

    Data are segmented into the following user types: • site member: users who have logged in and have been granted a role on the domain • community user: users who have logged in but do not have a role on the domain • anonymous: users who have not logged in to the domain

    Data are updated by a system process at least once a day, if there is new data to record.

    Data provided by: Tyler Technologies Creation date of data source: January 31, 2020

  11. g

    Web analytics of user searches on the Publications Office websites

    • gimi9.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Web analytics of user searches on the Publications Office websites [Dataset]. https://gimi9.com/dataset/eu_web-analytics-search-dataset/
    Explore at:
    Description

    🇪🇺 유럽연합

  12. d

    TagX Web Browsing clickstream Data - 300K Users North America, EU - GDPR -...

    • datarade.ai
    .json, .csv, .xls
    Updated Sep 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TagX (2024). TagX Web Browsing clickstream Data - 300K Users North America, EU - GDPR - CCPA Compliant [Dataset]. https://datarade.ai/data-products/tagx-web-browsing-clickstream-data-300k-users-north-america-tagx
    Explore at:
    .json, .csv, .xlsAvailable download formats
    Dataset updated
    Sep 16, 2024
    Dataset authored and provided by
    TagX
    Area covered
    Switzerland, Luxembourg, United States of America, Macedonia (the former Yugoslav Republic of), Japan, China, Ireland, Andorra, Finland, Holy See
    Description

    TagX Web Browsing Clickstream Data: Unveiling Digital Behavior Across North America and EU Unique Insights into Online User Behavior TagX Web Browsing clickstream Data offers an unparalleled window into the digital lives of 1 million users across North America and the European Union. This comprehensive dataset stands out in the market due to its breadth, depth, and stringent compliance with data protection regulations. What Makes Our Data Unique?

    Extensive Geographic Coverage: Spanning two major markets, our data provides a holistic view of web browsing patterns in developed economies. Large User Base: With 300K active users, our dataset offers statistically significant insights across various demographics and user segments. GDPR and CCPA Compliance: We prioritize user privacy and data protection, ensuring that our data collection and processing methods adhere to the strictest regulatory standards. Real-time Updates: Our clickstream data is continuously refreshed, providing up-to-the-minute insights into evolving online trends and user behaviors. Granular Data Points: We capture a wide array of metrics, including time spent on websites, click patterns, search queries, and user journey flows.

    Data Sourcing: Ethical and Transparent Our web browsing clickstream data is sourced through a network of partnered websites and applications. Users explicitly opt-in to data collection, ensuring transparency and consent. We employ advanced anonymization techniques to protect individual privacy while maintaining the integrity and value of the aggregated data. Key aspects of our data sourcing process include:

    Voluntary user participation through clear opt-in mechanisms Regular audits of data collection methods to ensure ongoing compliance Collaboration with privacy experts to implement best practices in data anonymization Continuous monitoring of regulatory landscapes to adapt our processes as needed

    Primary Use Cases and Verticals TagX Web Browsing clickstream Data serves a multitude of industries and use cases, including but not limited to:

    Digital Marketing and Advertising:

    Audience segmentation and targeting Campaign performance optimization Competitor analysis and benchmarking

    E-commerce and Retail:

    Customer journey mapping Product recommendation enhancements Cart abandonment analysis

    Media and Entertainment:

    Content consumption trends Audience engagement metrics Cross-platform user behavior analysis

    Financial Services:

    Risk assessment based on online behavior Fraud detection through anomaly identification Investment trend analysis

    Technology and Software:

    User experience optimization Feature adoption tracking Competitive intelligence

    Market Research and Consulting:

    Consumer behavior studies Industry trend analysis Digital transformation strategies

    Integration with Broader Data Offering TagX Web Browsing clickstream Data is a cornerstone of our comprehensive digital intelligence suite. It seamlessly integrates with our other data products to provide a 360-degree view of online user behavior:

    Social Media Engagement Data: Combine clickstream insights with social media interactions for a holistic understanding of digital footprints. Mobile App Usage Data: Cross-reference web browsing patterns with mobile app usage to map the complete digital journey. Purchase Intent Signals: Enrich clickstream data with purchase intent indicators to power predictive analytics and targeted marketing efforts. Demographic Overlays: Enhance web browsing data with demographic information for more precise audience segmentation and targeting.

    By leveraging these complementary datasets, businesses can unlock deeper insights and drive more impactful strategies across their digital initiatives. Data Quality and Scale We pride ourselves on delivering high-quality, reliable data at scale:

    Rigorous Data Cleaning: Advanced algorithms filter out bot traffic, VPNs, and other non-human interactions. Regular Quality Checks: Our data science team conducts ongoing audits to ensure data accuracy and consistency. Scalable Infrastructure: Our robust data processing pipeline can handle billions of daily events, ensuring comprehensive coverage. Historical Data Availability: Access up to 24 months of historical data for trend analysis and longitudinal studies. Customizable Data Feeds: Tailor the data delivery to your specific needs, from raw clickstream events to aggregated insights.

    Empowering Data-Driven Decision Making In today's digital-first world, understanding online user behavior is crucial for businesses across all sectors. TagX Web Browsing clickstream Data empowers organizations to make informed decisions, optimize their digital strategies, and stay ahead of the competition. Whether you're a marketer looking to refine your targeting, a product manager seeking to enhance user experience, or a researcher exploring digital trends, our cli...

  13. Global market share of leading desktop search engines 2015-2025

    • statista.com
    • ai-chatbox.pro
    Updated Apr 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Global market share of leading desktop search engines 2015-2025 [Dataset]. https://www.statista.com/statistics/216573/worldwide-market-share-of-search-engines/
    Explore at:
    Dataset updated
    Apr 28, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2015 - Mar 2025
    Area covered
    Worldwide
    Description

    As of March 2025, Google represented 79.1 percent of the global online search engine market on desktop devices. Despite being much ahead of its competitors, this represents the lowest share ever recorded by the search engine in these devices for over two decades. Meanwhile, its long-time competitor Bing accounted for 12.21 percent, as tools like Yahoo and Yandex held shares of over 2.9 percent each. Google and the global search market Ever since the introduction of Google Search in 1997, the company has dominated the search engine market, while the shares of all other tools has been rather lopsided. The majority of Google revenues are generated through advertising. Its parent corporation, Alphabet, was one of the biggest internet companies worldwide as of 2024, with a market capitalization of 2.02 trillion U.S. dollars. The company has also expanded its services to mail, productivity tools, enterprise products, mobile devices, and other ventures. As a result, Google earned one of the highest tech company revenues in 2024 with roughly 348.16 billion U.S. dollars. Search engine usage in different countries Google is the most frequently used search engine worldwide. But in some countries, its alternatives are leading or competing with it to some extent. As of the last quarter of 2023, more than 63 percent of internet users in Russia used Yandex, whereas Google users represented little over 33 percent. Meanwhile, Baidu was the most used search engine in China, despite a strong decrease in the percentage of internet users in the country accessing it. In other countries, like Japan and Mexico, people tend to use Yahoo along with Google. By the end of 2024, nearly half of the respondents in Japan said that they had used Yahoo in the past four weeks. In the same year, over 21 percent of users in Mexico said they used Yahoo.

  14. Search Engines in the US - Market Research Report (2015-2030)

    • ibisworld.com
    Updated Oct 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IBISWorld (2024). Search Engines in the US - Market Research Report (2015-2030) [Dataset]. https://www.ibisworld.com/united-states/market-research-reports/search-engines-industry/
    Explore at:
    Dataset updated
    Oct 15, 2024
    Dataset authored and provided by
    IBISWorld
    License

    https://www.ibisworld.com/about/termsofuse/https://www.ibisworld.com/about/termsofuse/

    Time period covered
    2014 - 2029
    Area covered
    United States
    Description

    Search engines, which collect, organize and display knowledge of the internet, are the backbone of the information age and have helped popularize the ad-supported attention economy that prevails throughout the internet. From 2019 to 2024, spending on internet advertising has maintained strong momentum as consumer demand for internet access continued to surge, driven by the adoption of LTE, 5G and unlimited mobile data plans. Despite COVID-19 depressing total advertising expenditure, digital advertising continued to grow as consumers practically lived online while stay-at-home orders were in place. As a result, search engine revenue from advertising is slated to mount at a CAGR of 10.4% to $287.5 billion, including an anticipated hike of 8.4% in 2024, with profit at 18.7%. The search engine industry is fundamentally differentiated from the rest of the economy by its advertising sales framework, market aggregation and high interconnection with other industries. While search is a consumer product, search revenue comes from a platform's desirability to advertisers, not users. Search platforms must balance providing the best search experience while integrating as many advertisements as possible. This difficult balance is challenging to achieve because advertising dollars tend to scale best on the leading search platform, increasing aggregation forces for search providers. The market leaders in search, Google and Microsoft, have met this balance by using advertising revenue to grow a suite of services designed to collect extensive behavior information on and off the search website. This data then targets ads to hyper-specific markets, funding the search business model. As the number of hours spent on the internet continues to mount, search engine revenue is poised to climb at a CAGR of 7.1% to $404.9 billion through the end of 2029. Advertisers will rely increasingly on search engine marketing due to its cost-effectiveness and efficiency advantages over traditional media. With proper analytics software installed, marketers can track which terms, advertisements and websites are the most effective, enabling incremental real-time tweaks and improvements in advertising campaigns. Artificial intelligence has promised to change the purpose of search from navigation to finding answers, which will change the structure of the internet, just as search engine providers have done many times before.

  15. Leading websites worldwide 2024, by monthly visits

    • statista.com
    • ai-chatbox.pro
    • +19more
    Updated Mar 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Leading websites worldwide 2024, by monthly visits [Dataset]. https://www.statista.com/statistics/1201880/most-visited-websites-worldwide/
    Explore at:
    Dataset updated
    Mar 24, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Nov 2024
    Area covered
    Worldwide
    Description

    In November 2024, Google.com was the most popular website worldwide with 136 billion average monthly visits. The online platform has held the top spot as the most popular website since June 2010, when it pulled ahead of Yahoo into first place. Second-ranked YouTube generated more than 72.8 billion monthly visits in the measured period. The internet leaders: search, social, and e-commerce Social networks, search engines, and e-commerce websites shape the online experience as we know it. While Google leads the global online search market by far, YouTube and Facebook have become the world’s most popular websites for user generated content, solidifying Alphabet’s and Meta’s leadership over the online landscape. Meanwhile, websites such as Amazon and eBay generate millions in profits from the sale and distribution of goods, making the e-market sector an integral part of the global retail scene. What is next for online content? Powering social media and websites like Reddit and Wikipedia, user-generated content keeps moving the internet’s engines. However, the rise of generative artificial intelligence will bring significant changes to how online content is produced and handled. ChatGPT is already transforming how online search is performed, and news of Google's 2024 deal for licensing Reddit content to train large language models (LLMs) signal that the internet is likely to go through a new revolution. While AI's impact on the online market might bring both opportunities and challenges, effective content management will remain crucial for profitability on the web.

  16. Google Trends and Wikipedia Page Views

    • zenodo.org
    • explore.openaire.eu
    application/gzip
    Updated Jan 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mitsuo Yoshida; Mitsuo Yoshida (2020). Google Trends and Wikipedia Page Views [Dataset]. http://doi.org/10.5281/zenodo.14539
    Explore at:
    application/gzipAvailable download formats
    Dataset updated
    Jan 24, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Mitsuo Yoshida; Mitsuo Yoshida
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Abstract (our paper)

    The frequency of a web search keyword generally reflects the degree of public interest in a particular subject matter. Search logs are therefore useful resources for trend analysis. However, access to search logs is typically restricted to search engine providers. In this paper, we investigate whether search frequency can be estimated from a different resource such as Wikipedia page views of open data. We found frequently searched keywords to have remarkably high correlations with Wikipedia page views. This suggests that Wikipedia page views can be an effective tool for determining popular global web search trends.

    Data

    personal-name.txt.gz:
    The first column is the Wikipedia article id, the second column is the search keyword, the third column is the Wikipedia article title, and the fourth column is the total of page views from 2008 to 2014.

    personal-name_data_google-trends.txt.gz, personal-name_data_wikipedia.txt.gz:
    The first column is the period to be collected, the second column is the source (Google or Wikipedia), the third column is the Wikipedia article id, the fourth column is the search keyword, the fifth column is the date, and the sixth column is the value of search trend or page view.

    Publication

    This data set was created for our study. If you make use of this data set, please cite:
    Mitsuo Yoshida, Yuki Arase, Takaaki Tsunoda, Mikio Yamamoto. Wikipedia Page View Reflects Web Search Trend. Proceedings of the 2015 ACM Web Science Conference (WebSci '15). no.65, pp.1-2, 2015.
    http://dx.doi.org/10.1145/2786451.2786495
    http://arxiv.org/abs/1509.02218 (author-created version)

    Note

    The raw data of Wikipedia page views is available in the following page.
    http://dumps.wikimedia.org/other/pagecounts-raw/

  17. Empirical Analysis of Ranking Models for an Adaptable Dataset Search:...

    • figshare.com
    zip
    Updated Jun 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Angelo Batista Neves Júnior; Luiz André Portes Paes Leme; Marco Antonio Casanova (2023). Empirical Analysis of Ranking Models for an Adaptable Dataset Search: complementary material [Dataset]. http://doi.org/10.6084/m9.figshare.5620651.v4
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Angelo Batista Neves Júnior; Luiz André Portes Paes Leme; Marco Antonio Casanova
    License

    https://www.gnu.org/licenses/gpl-3.0.htmlhttps://www.gnu.org/licenses/gpl-3.0.html

    Description

    This repository contains performance measures of dataset ranking models.- Usage: from Results/src run Python results m1 m2 ...such that mi can be omitted, or be any element of the list of model labels ['bayesian-12C', 'bayesian-5L', 'bayesian-5L12C', 'cos-12C', 'cos-5L', 'cos-5L5C', 'j48-12C', 'j48-5L', 'j48-5L5C', 'jrip-12C', 'jrip-5L', 'jrip-5L5C', 'sn-12C', 'sn-5L', 'sn-5L12C']. Results of selected models will be plotted in a 2D line plot. If no model is provided all models will be listed.

  18. J

    Job Search Site Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Feb 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). Job Search Site Report [Dataset]. https://www.archivemarketresearch.com/reports/job-search-site-45026
    Explore at:
    pdf, doc, pptAvailable download formats
    Dataset updated
    Feb 23, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global job search site market is projected to reach a valuation of million by 2033, exhibiting a CAGR of XX% during the forecast period of 2025-2033. The market growth is attributed to the increasing adoption of cloud-based and web-based job search platforms, rising demand for skilled professionals, and the growing popularity of remote work. The market is segmented based on type (cloud-based, web-based) and application (large enterprises, SMEs, individuals). Cloud-based job search platforms are gaining traction due to their scalability, flexibility, and cost-effectiveness. Large enterprises are the primary users of these platforms, as they offer features such as candidate management, automated screening, and data analytics. Individuals are also increasingly using job search platforms to find suitable job opportunities, leading to the growth of the SME and individual segments. Key players in the market include LinkedIn, Indeed, ZipRecruiter, Hired, Monster, and Glassdoor. Regional analysis reveals that North America and Europe dominate the market due to the presence of a large number of job seekers and employers. Asia Pacific is expected to witness significant growth in the coming years, driven by the rising adoption of online recruitment and job search platforms in developing countries like India and China.

  19. Most visited websites via organic search worldwide 2020

    • statista.com
    Updated Jun 23, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). Most visited websites via organic search worldwide 2020 [Dataset]. https://www.statista.com/statistics/270830/most-popular-websites-worldwide/
    Explore at:
    Dataset updated
    Jun 23, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    May 2020
    Area covered
    Worldwide
    Description

    In May 2020, YouTube generated over 5.3 billion global visits via organic search traffic. Second-ranked Wikipedia accumulated less than half of that, claiming 2.2 billion organic search visits. Social network Facebook rounded off the top properties with more than a billion organic search visits during the measured period.

  20. Total global visitor traffic to Google.com 2024

    • statista.com
    • ai-chatbox.pro
    Updated Jan 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Total global visitor traffic to Google.com 2024 [Dataset]. https://www.statista.com/statistics/268252/web-visitor-traffic-to-googlecom/
    Explore at:
    Dataset updated
    Jan 22, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Oct 2023 - Mar 2024
    Area covered
    Worldwide
    Description

    In March 2024, search platform Google.com generated approximately 85.5 billion visits, down from 87 billion platform visits in October 2023. Google is a global search platform and one of the biggest online companies worldwide.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2025). Corporate Website — Analytics — Top 100 search terms [Dataset]. https://data.brisbane.qld.gov.au/explore/dataset/corporate-website-analytics-top-100-search-terms/

Corporate Website — Analytics — Top 100 search terms

Explore at:
json, csv, excelAvailable download formats
Dataset updated
Apr 17, 2025
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Monthly analytics reports for the Brisbane City Council website

Information regarding the sessions for Brisbane City Council website during the month including search terms used.

Search
Clear search
Close search
Google apps
Main menu