100+ datasets found
  1. d

    Website Analytics

    • catalog.data.gov
    • data.brla.gov
    • +3more
    Updated Sep 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.brla.gov (2025). Website Analytics [Dataset]. https://catalog.data.gov/dataset/website-analytics-89ba5
    Explore at:
    Dataset updated
    Sep 7, 2025
    Dataset provided by
    data.brla.gov
    Description

    Web traffic statistics for the several City-Parish websites, brla.gov, city.brla.gov, Red Stick Ready, GIS, Open Data etc. Information provided by Google Analytics.

  2. Share of U.S. mobile website traffic 2015-2023

    • statista.com
    Updated Jun 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Share of U.S. mobile website traffic 2015-2023 [Dataset]. https://www.statista.com/statistics/683082/share-of-website-traffic-coming-from-mobile-devices-usa/
    Explore at:
    Dataset updated
    Jun 24, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    As of the last quarter of 2023, ***** percent of web traffic in the United States originated from mobile devices, down from ***** percent in the fourth quarter of 2022. In comparison, over half of web traffic worldwide was generated via mobile in the last examined period.

  3. G

    Website traffic strategies by industry and size of enterprise

    • open.canada.ca
    • datasets.ai
    • +3more
    csv, html, xml
    Updated Jan 17, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2023). Website traffic strategies by industry and size of enterprise [Dataset]. https://open.canada.ca/data/en/dataset/a7882acc-a647-4fa6-a58b-6dae889de472
    Explore at:
    csv, xml, htmlAvailable download formats
    Dataset updated
    Jan 17, 2023
    Dataset provided by
    Statistics Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    Digital technology and Internet use, website traffic strategies, by North American Industry Classification System (NAICS) and size of enterprise for Canada from 2012 to 2013.

  4. Impact of AI on website traffic anticipated by digital marketers worldwide...

    • statista.com
    Updated Jul 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Impact of AI on website traffic anticipated by digital marketers worldwide 2023 [Dataset]. https://www.statista.com/statistics/1410386/impact-ai-website-traffic-worldwide/
    Explore at:
    Dataset updated
    Jul 3, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    Worldwide
    Description

    According to the results of a survey conducted worldwide in 2023, nearly **** of responding digital marketers believed artificial intelligence (AI) would have a positive impact on website search traffic in the next five years. Some ** percent stated AI would have a neutral effect, while ** percent agreed that the technology would negatively impact search traffic.

  5. Global website traffic distribution 2019, by source

    • statista.com
    Updated Nov 30, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2022). Global website traffic distribution 2019, by source [Dataset]. https://www.statista.com/statistics/1110433/distribution-worldwide-website-traffic/
    Explore at:
    Dataset updated
    Nov 30, 2022
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2019
    Area covered
    Worldwide
    Description

    As of 2019, direct traffic accounts for the largest percentage of website traffic worldwide, with a share of 55 percent. Additionally, search traffic accounts for 29 percent of worldwide website traffic.

  6. T

    Internet Traffic from Mobile Devices Statistics 2025

    • techkv.com
    Updated Jul 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TechKV (2025). Internet Traffic from Mobile Devices Statistics 2025 [Dataset]. https://techkv.com/mobile-internet-traffic-statistics/
    Explore at:
    Dataset updated
    Jul 31, 2025
    Dataset authored and provided by
    TechKV
    License

    https://techkv.com/privacy-policy/https://techkv.com/privacy-policy/

    Time period covered
    Jan 1, 2024 - Dec 31, 2025
    Area covered
    Global
    Description

    It’s not really surprising to know that most of the internet traffic comes from mobile devices. Yet, I wouldn’t have believed this 10 or 15 years back. Sure, mobile devices were becoming popular, but the adoption rates had a sudden jump in the past decade. A quick analysis of statistics...

  7. i

    Website Fingerprinting Dataset of Browsing Network Traffic for Desktop and...

    • ieee-dataport.org
    Updated Oct 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mohamad Amar Irsyad Mohd Aminuddin (2024). Website Fingerprinting Dataset of Browsing Network Traffic for Desktop and Mobile Webpages [Dataset]. https://ieee-dataport.org/documents/website-fingerprinting-dataset-browsing-network-traffic-desktop-and-mobile-webpages
    Explore at:
    Dataset updated
    Oct 21, 2024
    Authors
    Mohamad Amar Irsyad Mohd Aminuddin
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This is a dataset of Tor cell file extracted from browsing simulation using Tor Browser. The simulations cover both desktop and mobile webpages. The data collection process was using WFP-Collector tool (https://github.com/irsyadpage/WFP-Collector). All the neccessary configuration to perform the simulation as detailed in the tool repository.The webpage URL is selected by using the first 100 website based on: https://dataforseo.com/free-seo-stats/top-1000-websites.Each webpage URL is visited 90 times for each deskop and mobile browsing mode.

  8. Website traffic distribution of Shein 2024, by channel

    • statista.com
    Updated Jun 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Website traffic distribution of Shein 2024, by channel [Dataset]. https://www.statista.com/statistics/1514557/shein-website-traffic-by-channel/
    Explore at:
    Dataset updated
    Jun 23, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    May 2024
    Area covered
    Worldwide
    Description

    In terms of website traffic, Shein ranked ***** globally in May 2024, securing the leading spot in the fashion apparel category. Direct traffic accounted for **** percent of its web traffic, indicating the Chinese fast-fashion conglomerate's growing brand awareness among global consumers. Nonetheless, the traffic share of organic searches remained modest at **** percent, reflecting the necessity of enhancing keyword optimization.

  9. Share of global mobile website traffic 2015-2024

    • statista.com
    Updated Jan 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Share of global mobile website traffic 2015-2024 [Dataset]. https://www.statista.com/statistics/277125/share-of-website-traffic-coming-from-mobile-devices/
    Explore at:
    Dataset updated
    Jan 28, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    Mobile accounts for approximately half of web traffic worldwide. In the last quarter of 2024, mobile devices (excluding tablets) generated 62.54 percent of global website traffic. Mobiles and smartphones consistently hoovered around the 50 percent mark since the beginning of 2017, before surpassing it in 2020. Mobile traffic Due to low infrastructure and financial restraints, many emerging digital markets skipped the desktop internet phase entirely and moved straight onto mobile internet via smartphone and tablet devices. India is a prime example of a market with a significant mobile-first online population. Other countries with a significant share of mobile internet traffic include Nigeria, Ghana and Kenya. In most African markets, mobile accounts for more than half of the web traffic. By contrast, mobile only makes up around 45.49 percent of online traffic in the United States. Mobile usage The most popular mobile internet activities worldwide include watching movies or videos online, e-mail usage and accessing social media. Apps are a very popular way to watch video on the go and the most-downloaded entertainment apps in the Apple App Store are Netflix, Tencent Video and Amazon Prime Video.

  10. w

    Websites using Visitors Traffic Real Time Statistics

    • webtechsurvey.com
    csv
    Updated Jan 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WebTechSurvey (2025). Websites using Visitors Traffic Real Time Statistics [Dataset]. https://webtechsurvey.com/technology/visitors-traffic-real-time-statistics
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jan 15, 2025
    Dataset authored and provided by
    WebTechSurvey
    License

    https://webtechsurvey.com/termshttps://webtechsurvey.com/terms

    Time period covered
    2025
    Area covered
    Global
    Description

    A complete list of live websites using the Visitors Traffic Real Time Statistics technology, compiled through global website indexing conducted by WebTechSurvey.

  11. Z

    Network Traffic Analysis: Data and Code

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jun 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Homan, Sophia (2024). Network Traffic Analysis: Data and Code [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_11479410
    Explore at:
    Dataset updated
    Jun 12, 2024
    Dataset provided by
    Ferrell, Nathan
    Chan-Tin, Eric
    Homan, Sophia
    Soni, Shreena
    Moran, Madeline
    Honig, Joshua
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Code:

    Packet_Features_Generator.py & Features.py

    To run this code:

    pkt_features.py [-h] -i TXTFILE [-x X] [-y Y] [-z Z] [-ml] [-s S] -j

    -h, --help show this help message and exit -i TXTFILE input text file -x X Add first X number of total packets as features. -y Y Add first Y number of negative packets as features. -z Z Add first Z number of positive packets as features. -ml Output to text file all websites in the format of websiteNumber1,feature1,feature2,... -s S Generate samples using size s. -j

    Purpose:

    Turns a text file containing lists of incomeing and outgoing network packet sizes into separate website objects with associative features.

    Uses Features.py to calcualte the features.

    startMachineLearning.sh & machineLearning.py

    To run this code:

    bash startMachineLearning.sh

    This code then runs machineLearning.py in a tmux session with the nessisary file paths and flags

    Options (to be edited within this file):

    --evaluate-only to test 5 fold cross validation accuracy

    --test-scaling-normalization to test 6 different combinations of scalers and normalizers

    Note: once the best combination is determined, it should be added to the data_preprocessing function in machineLearning.py for future use

    --grid-search to test the best grid search hyperparameters - note: the possible hyperparameters must be added to train_model under 'if not evaluateOnly:' - once best hyperparameters are determined, add them to train_model under 'if evaluateOnly:'

    Purpose:

    Using the .ml file generated by Packet_Features_Generator.py & Features.py, this program trains a RandomForest Classifier on the provided data and provides results using cross validation. These results include the best scaling and normailzation options for each data set as well as the best grid search hyperparameters based on the provided ranges.

    Data

    Encrypted network traffic was collected on an isolated computer visiting different Wikipedia and New York Times articles, different Google search queres (collected in the form of their autocomplete results and their results page), and different actions taken on a Virtual Reality head set.

    Data for this experiment was stored and analyzed in the form of a txt file for each experiment which contains:

    First number is a classification number to denote what website, query, or vr action is taking place.

    The remaining numbers in each line denote:

    The size of a packet,

    and the direction it is traveling.

    negative numbers denote incoming packets

    positive numbers denote outgoing packets

    Figure 4 Data

    This data uses specific lines from the Virtual Reality.txt file.

    The action 'LongText Search' refers to a user searching for "Saint Basils Cathedral" with text in the Wander app.

    The action 'ShortText Search' refers to a user searching for "Mexico" with text in the Wander app.

    The .xlsx and .csv file are identical

    Each file includes (from right to left):

    The origional packet data,

    each line of data organized from smallest to largest packet size in order to calculate the mean and standard deviation of each packet capture,

    and the final Cumulative Distrubution Function (CDF) caluclation that generated the Figure 4 Graph.

  12. Network Traffic Dataset

    • kaggle.com
    Updated Oct 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ravikumar Gattu (2023). Network Traffic Dataset [Dataset]. https://www.kaggle.com/datasets/ravikumargattu/network-traffic-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 31, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Ravikumar Gattu
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    The data presented here was obtained in a Kali Machine from University of Cincinnati,Cincinnati,OHIO by carrying out packet captures for 1 hour during the evening on Oct 9th,2023 using Wireshark.This dataset consists of 394137 instances were obtained and stored in a CSV (Comma Separated Values) file.This large dataset could be used utilised for different machine learning applications for instance classification of Network traffic,Network performance monitoring,Network Security Management , Network Traffic Management ,network intrusion detection and anomaly detection.

    The dataset can be used for a variety of machine learning tasks, such as network intrusion detection, traffic classification, and anomaly detection.

    Content :

    This network traffic dataset consists of 7 features.Each instance contains the information of source and destination IP addresses, The majority of the properties are numeric in nature, however there are also nominal and date kinds due to the Timestamp.

    The network traffic flow statistics (No. Time Source Destination Protocol Length Info) were obtained using Wireshark (https://www.wireshark.org/).

    Dataset Columns:

    No : Number of Instance. Timestamp : Timestamp of instance of network traffic Source IP: IP address of Source Destination IP: IP address of Destination Portocol: Protocol used by the instance Length: Length of Instance Info: Information of Traffic Instance

    Acknowledgements :

    I would like thank University of Cincinnati for giving the infrastructure for generation of network traffic data set.

    Ravikumar Gattu , Susmitha Choppadandi

    Inspiration : This dataset goes beyond the majority of network traffic classification datasets, which only identify the type of application (WWW, DNS, ICMP,ARP,RARP) that an IP flow contains. Instead, it generates machine learning models that can identify specific applications (like Tiktok,Wikipedia,Instagram,Youtube,Websites,Blogs etc.) from IP flow statistics (there are currently 25 applications in total).

    **Dataset License: ** CC0: Public Domain

    Dataset Usages : This dataset can be used for different machine learning applications in the field of cybersecurity such as classification of Network traffic,Network performance monitoring,Network Security Management , Network Traffic Management ,network intrusion detection and anomaly detection.

    ML techniques benefits from this Dataset :

    This dataset is highly useful because it consists of 394137 instances of network traffic data obtained by using the 25 applications on a public,private and Enterprise networks.Also,the dataset consists of very important features that can be used for most of the applications of Machine learning in cybersecurity.Here are few of the potential machine learning applications that could be benefited from this dataset are :

    1. Network Performance Monitoring : This large network traffic data set can be utilised for analysing the network traffic to identifying the network patterns in the network .This help in designing the network security algorithms for minimise the network probelms.

    2. Anamoly Detection : Large network traffic dataset can be utilised training the machine learning models for finding the irregularitues in the traffic which could help identify the cyber attacks.

    3.Network Intrusion Detection : This large dataset could be utilised for machine algorithms training and designing the models for detection of the traffic issues,Malicious traffic network attacks and DOS attacks as well.

  13. Total global visitor traffic to Google.com 2024

    • statista.com
    Updated Jan 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Total global visitor traffic to Google.com 2024 [Dataset]. https://www.statista.com/statistics/268252/web-visitor-traffic-to-googlecom/
    Explore at:
    Dataset updated
    Jan 22, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Oct 2023 - Mar 2024
    Area covered
    Worldwide
    Description

    In March 2024, search platform Google.com generated approximately 85.5 billion visits, down from 87 billion platform visits in October 2023. Google is a global search platform and one of the biggest online companies worldwide.

  14. e

    Visitors Statistics MFSR - Website traffic statistics by device (daily)

    • data.europa.eu
    Updated Aug 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ministerstvo financií SR (2024). Visitors Statistics MFSR - Website traffic statistics by device (daily) [Dataset]. https://data.europa.eu/data/datasets/https-opendata-mfsr-sk-opendata-catalog-statistika-navstevnosti-mfsr-statistika-navstevnosti-webu-podla-zariadenia-denne?locale=en
    Explore at:
    Dataset updated
    Aug 28, 2024
    Dataset authored and provided by
    Ministerstvo financií SR
    Description

    Visitors Statistics MFSR - Website traffic statistics by device (daily)

  15. d

    NYC.gov Web Analytics

    • catalog.data.gov
    • data.cityofnewyork.us
    • +4more
    Updated Sep 30, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofnewyork.us (2022). NYC.gov Web Analytics [Dataset]. https://catalog.data.gov/dataset/nyc-gov-web-analytics
    Explore at:
    Dataset updated
    Sep 30, 2022
    Dataset provided by
    data.cityofnewyork.us
    Area covered
    New York
    Description

    Web traffic statistics for the top 2000 most visited pages on nyc.gov by month.

  16. r

    Amazon Daily Traffic Statistics 2025

    • redstagfulfillment.com
    html
    Updated Jun 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Red Stag Fulfillment (2025). Amazon Daily Traffic Statistics 2025 [Dataset]. https://redstagfulfillment.com/average-selling-lifespan-of-amazon-marketplace-listing/
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Jun 15, 2025
    Dataset authored and provided by
    Red Stag Fulfillment
    Time period covered
    May 2025
    Area covered
    Global
    Variables measured
    Bounce rate, Pages per visit, Session duration, Daily website visits, Monthly traffic volume, Traffic source distribution, Geographic visitor distribution, Mobile vs desktop traffic split
    Description

    Comprehensive analysis of Amazon's daily website traffic including visitor counts, traffic sources, mobile vs desktop usage, and seasonal patterns based on May 2025 data.

  17. d

    Mainland Affairs Council Official Website Traffic Statistics

    • data.gov.tw
    csv
    Updated Jun 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mainland Affairs Council, EY (2025). Mainland Affairs Council Official Website Traffic Statistics [Dataset]. https://data.gov.tw/en/datasets/58834
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 2, 2025
    Dataset authored and provided by
    Mainland Affairs Council, EY
    License

    https://data.gov.tw/licensehttps://data.gov.tw/license

    Description

    The association's press release (in Chinese and English) and traffic statistics for the Hong Kong and Macau offices, with a total of 4 items.

  18. Zalando: website traffic on desktop and mobile across all domains 2023

    • statista.com
    Updated Jun 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Zalando: website traffic on desktop and mobile across all domains 2023 [Dataset]. https://www.statista.com/statistics/1175856/zalando-website-traffic-all-domains/
    Explore at:
    Dataset updated
    Jun 24, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jul 2023 - Dec 2023
    Area covered
    Europe
    Description

    Desktop and mobile website traffic data showed that Germany domain of Zalando had by far the highest number of visitors compared to all other European countries. Between July 2023 and December 2023, zalando.de recorded more nearly *** million visits. The Polish web domain followed in the ranking, as the total visits amounted to **** million.

  19. Popular online marketplace websites New Zealand 2025, by website traffic

    • statista.com
    Updated Jul 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Popular online marketplace websites New Zealand 2025, by website traffic [Dataset]. https://www.statista.com/statistics/1610184/new-zealand-top-online-marketplace-websites-by-website-traffic/
    Explore at:
    Dataset updated
    Jul 10, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Feb 2025
    Area covered
    New Zealand
    Description

    Across popular online marketplace websites, local marketplace trademe.co.nz registered the highest number of site visits at around ***** million visits in New Zealand in February 2025. Chinese marketplace aliexpress.com took second place, recording approximately **** million site visits in New Zealand that same month.

  20. Social referrals to health and beauty e-commerce sites worldwide Q2 2024, by...

    • statista.com
    Updated Jul 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Social referrals to health and beauty e-commerce sites worldwide Q2 2024, by device [Dataset]. https://www.statista.com/statistics/1417055/global-beauty-websites-social-traffic-by-device/
    Explore at:
    Dataset updated
    Jul 9, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    In the second quarter of 2024, the share of visits to health and beauty e-commerce websites from social media referrals varied depending on the type of device used. Tablets had the highest traffic share of ** percent, while desktops only had about *** percent of visits.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
data.brla.gov (2025). Website Analytics [Dataset]. https://catalog.data.gov/dataset/website-analytics-89ba5

Website Analytics

Explore at:
Dataset updated
Sep 7, 2025
Dataset provided by
data.brla.gov
Description

Web traffic statistics for the several City-Parish websites, brla.gov, city.brla.gov, Red Stick Ready, GIS, Open Data etc. Information provided by Google Analytics.

Search
Clear search
Close search
Google apps
Main menu