Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The dataset contains information about web requests to a single website. It's a time series dataset, which means it tracks data over time, making it great for machine learning analysis.
Facebook
TwitterWeb traffic statistics for the several City-Parish websites, brla.gov, city.brla.gov, Red Stick Ready, GIS, Open Data etc. Information provided by Google Analytics.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset contains meticulously cleaned and structured web traffic data collected across multiple websites, including Amazon platforms and services like Amazon Prime, AWS, and AWS Support. It spans various traffic sources, user devices, key actions, and engagement metrics, making it a powerful resource for digital marketing analysis, customer behavior modeling, and time series forecasting.
Ideal for:
Web traffic analysis Conversion rate optimization Bounce rate analysis User segmentation Predictive modeling and machine learning 📌 Dataset Features: Rows: 2006 Columns: 18
Date Range: Starts from January 1st, 2019 (Exact end date can be inferred from the dataset)
🔍 Columns Overview: Country: Country of user origin
Timestamp: Full timestamp of the visit Device Category: Type of device (Desktop, Mobile, Tablet) Key Actions: User actions like Purchase, Sign Up, Subscribe Page Path: Visited page (e.g., /home, /contact) Source: Traffic source (e.g., organic search, social media) Avg Session Duration: Duration of session in seconds Bounce Rate: % of single-page sessions Conversions: Number of conversions New Users: Number of new users in session Page Views: Total page views Returning Users: Count of returning users Unique Page Views: Unique page views Average time on home page (min): Self-explanatory Website: Name of the specific Amazon service or domain Date, Time, Day: Parsed date and time information
📊 Potential Use Cases: Machine Learning: Predicting bounce rate, conversion likelihood, or segmenting user behavior. Business Intelligence: Dashboards for performance analysis by device, source, or day. Time Series Forecasting: Analyze traffic patterns over time. A/B Testing: Benchmarking traffic changes across page paths or traffic sources.
Facebook
TwitterUnlock the Potential of Your Web Traffic with Advanced Data Resolution
In the digital age, understanding and leveraging web traffic data is crucial for businesses aiming to thrive online. Our pioneering solution transforms anonymous website visits into valuable B2B and B2C contact data, offering unprecedented insights into your digital audience. By integrating our unique tag into your website, you unlock the capability to convert 25-50% of your anonymous traffic into actionable contact rows, directly deposited into an S3 bucket for your convenience. This process, known as "Web Traffic Data Resolution," is at the forefront of digital marketing and sales strategies, providing a competitive edge in understanding and engaging with your online visitors.
Comprehensive Web Traffic Data Resolution Our product stands out by offering a robust solution for "Web Traffic Data Resolution," a process that demystifies the identities behind your website traffic. By deploying a simple tag on your site, our technology goes to work, analyzing visitor behavior and leveraging proprietary data matching techniques to reveal the individuals and businesses behind the clicks. This innovative approach not only enhances your data collection but does so with respect for privacy and compliance standards, ensuring that your business gains insights ethically and responsibly.
Deep Dive into Web Traffic Data At the core of our solution is the sophisticated analysis of "Web Traffic Data." Our system meticulously collects and processes every interaction on your site, from page views to time spent on each section. This data, once anonymous and perhaps seen as abstract numbers, is transformed into a detailed ledger of potential leads and customer insights. By understanding who visits your site, their interests, and their contact information, your business is equipped to tailor marketing efforts, personalize customer experiences, and streamline sales processes like never before.
Benefits of Our Web Traffic Data Resolution Service Enhanced Lead Generation: By converting anonymous visitors into identifiable contact data, our service significantly expands your pool of potential leads. This direct enhancement of your lead generation efforts can dramatically increase conversion rates and ROI on marketing campaigns.
Targeted Marketing Campaigns: Armed with detailed B2B and B2C contact data, your marketing team can create highly targeted and personalized campaigns. This precision in marketing not only improves engagement rates but also ensures that your messaging resonates with the intended audience.
Improved Customer Insights: Gaining a deeper understanding of your web traffic enables your business to refine customer personas and tailor offerings to meet market demands. These insights are invaluable for product development, customer service improvement, and strategic planning.
Competitive Advantage: In a digital landscape where understanding your audience can make or break your business, our Web Traffic Data Resolution service provides a significant competitive edge. By accessing detailed contact data that others in your industry may overlook, you position your business as a leader in customer engagement and data-driven strategies.
Seamless Integration and Accessibility: Our solution is designed for ease of use, requiring only the placement of a tag on your website to start gathering data. The contact rows generated are easily accessible in an S3 bucket, ensuring that you can integrate this data with your existing CRM systems and marketing tools without hassle.
How It Works: A Closer Look at the Process Our Web Traffic Data Resolution process is streamlined and user-friendly, designed to integrate seamlessly with your existing website infrastructure:
Tag Deployment: Implement our unique tag on your website with simple instructions. This tag is lightweight and does not impact your site's loading speed or user experience.
Data Collection and Analysis: As visitors navigate your site, our system collects web traffic data in real-time, analyzing behavior patterns, engagement metrics, and more.
Resolution and Transformation: Using advanced data matching algorithms, we resolve the collected web traffic data into identifiable B2B and B2C contact information.
Data Delivery: The resolved contact data is then securely transferred to an S3 bucket, where it is organized and ready for your access. This process occurs daily, ensuring you have the most up-to-date information at your fingertips.
Integration and Action: With the resolved data now in your possession, your business can take immediate action. From refining marketing strategies to enhancing customer experiences, the possibilities are endless.
Security and Privacy: Our Commitment Understanding the sensitivity of web traffic data and contact information, our solution is built with security and privacy at its core. We adhere to strict data protection regulat...
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The data set provided (traffic.csv) contains web traffic data ("events") from a few different pages ("links") over 7 days including various categorical dimensions about the geographic origin of that traffic as well as a page's content: isrc.
Facebook
TwitterCLARIN started to record the web traffic by Piwik on June 23rd in 2014.
Facebook
Twitterhttps://www.paradoxintelligence.com/termshttps://www.paradoxintelligence.com/terms
Website visitor analytics, engagement metrics, and competitive intelligence across public companies
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
General data recollected for the studio " Analysis of the Quantitative Impact of Social Networks on Web Traffic of Cybermedia in the 27 Countries of the European Union".
Four research questions are posed: what percentage of the total web traffic generated by cybermedia in the European Union comes from social networks? Is said percentage higher or lower than that provided through direct traffic and through the use of search engines via SEO positioning? Which social networks have a greater impact? And is there any degree of relationship between the specific weight of social networks in the web traffic of a cybermedia and circumstances such as the average duration of the user's visit, the number of page views or the bounce rate understood in its formal aspect of not performing any kind of interaction on the visited page beyond reading its content?
To answer these questions, we have first proceeded to a selection of the cybermedia with the highest web traffic of the 27 countries that are currently part of the European Union after the United Kingdom left on December 31, 2020. In each nation we have selected five media using a combination of the global web traffic metrics provided by the tools Alexa (https://www.alexa.com/), which ceased to be operational on May 1, 2022, and SimilarWeb (https:// www.similarweb.com/). We have not used local metrics by country since the results obtained with these first two tools were sufficiently significant and our objective is not to establish a ranking of cybermedia by nation but to examine the relevance of social networks in their web traffic.
In all cases, cybermedia whose property corresponds to a journalistic company have been selected, ruling out those belonging to telecommunications portals or service providers; in some cases they correspond to classic information companies (both newspapers and televisions) while in others they refer to digital natives, without this circumstance affecting the nature of the research proposed.
Below we have proceeded to examine the web traffic data of said cybermedia. The period corresponding to the months of October, November and December 2021 and January, February and March 2022 has been selected. We believe that this six-month stretch allows possible one-time variations to be overcome for a month, reinforcing the precision of the data obtained.
To secure this data, we have used the SimilarWeb tool, currently the most precise tool that exists when examining the web traffic of a portal, although it is limited to that coming from desktops and laptops, without taking into account those that come from mobile devices, currently impossible to determine with existing measurement tools on the market.
It includes:
Web traffic general data: average visit duration, pages per visit and bounce rate Web traffic origin by country Percentage of traffic generated from social media over total web traffic Distribution of web traffic generated from social networks Comparison of web traffic generated from social netwoks with direct and search procedures
Facebook
TwitterWeb traffic statistics for the top 2000 most visited pages on nyc.gov by month.
Facebook
TwitterA study released in March 2025 that looked at about 35,000 websites found that online search channels were responsible for almost ** percent of the traffic generated to these domains. By the time of this study, direct traffic corresponded to around **** percent of visits to the analyzed websites. Meanwhile, large language models (LLMs) like ChatGPT and Gemini corresponded to around *** percent of the verified traffic, representing a share just below e-mail platforms.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Explore our detailed website traffic dataset featuring key metrics like page views, session duration, bounce rate, traffic source, and conversion rates.
Facebook
TwitterData dictionary: Page_Title: Title of webpage used for pages of the website www.cityofrochester.gov Pageviews: Total number of pages viewed over the course of the calendar year listed in the year column. Repeated views of a single page are counted. Unique_Pageviews: Unique Pageviews - The number of sessions during which a specified page was viewed at least once. A unique pageview is counted for each URL and page title combination. Avg_Time: Average amount of time users spent looking at a specified page or screen. Entrances: The number of times visitors entered the website through a specified page.Bounce_Rate: " A bounce is a single-page session on your site. In Google Analytics, a bounce is calculated specifically as a session that triggers only a single request to the Google Analytics server, such as when a user opens a single page on your site and then exits without triggering any other requests to the Google Analytics server during that session. Bounce rate is single-page sessions on a page divided by all sessions that started with that page, or the percentage of all sessions on your site in which users viewed only a single page and triggered only a single request to the Google Analytics server. These single-page sessions have a session duration of 0 seconds since there are no subsequent hits after the first one that would let Google Analytics calculate the length of the session. "Exit_Rate: The number of exits from a page divided by the number of pageviews for the page. This is inclusive of sessions that started on different pages, as well as “bounce” sessions that start and end on the same page. For all pageviews to the page, Exit Rate is the percentage that were the last in the session. Year: Calendar year over which the data was collected. Data reflects the counts for each metric from January 1st through December 31st.
Facebook
TwitterUnlock the Power of Behavioural Data with GDPR-Compliant Clickstream Insights.
Swash clickstream data offers a comprehensive and GDPR-compliant dataset sourced from users worldwide, encompassing both desktop and mobile browsing behaviour. Here's an in-depth look at what sets us apart and how our data can benefit your organisation.
User-Centric Approach: Unlike traditional data collection methods, we take a user-centric approach by rewarding users for the data they willingly provide. This unique methodology ensures transparent data collection practices, encourages user participation, and establishes trust between data providers and consumers.
Wide Coverage and Varied Categories: Our clickstream data covers diverse categories, including search, shopping, and URL visits. Whether you are interested in understanding user preferences in e-commerce, analysing search behaviour across different industries, or tracking website visits, our data provides a rich and multi-dimensional view of user activities.
GDPR Compliance and Privacy: We prioritise data privacy and strictly adhere to GDPR guidelines. Our data collection methods are fully compliant, ensuring the protection of user identities and personal information. You can confidently leverage our clickstream data without compromising privacy or facing regulatory challenges.
Market Intelligence and Consumer Behaviuor: Gain deep insights into market intelligence and consumer behaviour using our clickstream data. Understand trends, preferences, and user behaviour patterns by analysing the comprehensive user-level, time-stamped raw or processed data feed. Uncover valuable information about user journeys, search funnels, and paths to purchase to enhance your marketing strategies and drive business growth.
High-Frequency Updates and Consistency: We provide high-frequency updates and consistent user participation, offering both historical data and ongoing daily delivery. This ensures you have access to up-to-date insights and a continuous data feed for comprehensive analysis. Our reliable and consistent data empowers you to make accurate and timely decisions.
Custom Reporting and Analysis: We understand that every organisation has unique requirements. That's why we offer customisable reporting options, allowing you to tailor the analysis and reporting of clickstream data to your specific needs. Whether you need detailed metrics, visualisations, or in-depth analytics, we provide the flexibility to meet your reporting requirements.
Data Quality and Credibility: We take data quality seriously. Our data sourcing practices are designed to ensure responsible and reliable data collection. We implement rigorous data cleaning, validation, and verification processes, guaranteeing the accuracy and reliability of our clickstream data. You can confidently rely on our data to drive your decision-making processes.
Facebook
Twitterhttps://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The global web analytics market, valued at $5529.7 million in 2025, is poised for substantial growth. While the provided CAGR is missing, considering the rapid advancements in digital technologies and the increasing reliance on data-driven decision-making across industries, a conservative estimate would place the Compound Annual Growth Rate (CAGR) between 15% and 20% for the forecast period 2025-2033. This growth is fueled by several key drivers: the rising adoption of cloud-based analytics solutions, the increasing demand for real-time data insights, and the growing need for personalized customer experiences. Furthermore, the expansion of e-commerce and the proliferation of mobile devices are significantly contributing to the market's expansion. Emerging trends such as artificial intelligence (AI) and machine learning (ML) integration within web analytics platforms are further enhancing analytical capabilities and driving market growth. While challenges like data privacy concerns and the complexity of integrating diverse data sources exist, the overall market outlook remains positive, suggesting a significant increase in market value by 2033. The competitive landscape is dynamic, with a mix of established players like Adobe, Google, and IBM alongside agile startups like Heap and Mouseflow. These companies offer a range of solutions catering to different business sizes and needs, from basic website traffic analysis to sophisticated predictive analytics. The market is witnessing a shift towards more user-friendly and visually appealing dashboards, making web analytics accessible to a broader range of users beyond dedicated data scientists. This democratization of data, coupled with ongoing technological advancements, promises to further accelerate market growth and consolidate the position of web analytics as a critical component of successful digital strategies across all sectors.
Facebook
TwitterDaily utilization metrics for data.lacity.org and geohub.lacity.org. Updated monthly
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Time Series: Time series is a set of observations recorded over regular interval of time, Time series can be beneficial in many fields like stock market prediction, weather forecasting. - Accounts for the fact that data points taken over time may have an internal structure (such as auto correlation, trend or seasonal variation) that should be accounted for.
Web traffic: Amount of data sent and received by visitors to a website. - Sites monitor the incoming and outgoing traffic to see which parts or pages of their site are popular and if there are any apparent trends, such as one specific page being viewed mostly by people in a particular country
Contains Page Views for 60k Wikipedia articles in 8 different languages taken on a daily basis for 2 years.
https://i.ibb.co/h1JCgpY/DSLC.png" alt="DSLC">
A Data Science Life Cycle can be used to create a project. Forecasting can be done for any interval provided sufficient dataset is available. Refer the Github link in the tasks to view the forecast done using ARIMA and Prophet. Further feel free to contribute. Several other models can be used including a neural network to improve the results by many folds.
Facebook
TwitterIn November 2025, mobile devices excluding tablets accounted for over ***** percent of web page views worldwide. Meanwhile, over ***** percent of webpage views in Africa were generated via mobile. In contrast, just over half of web traffic in North America still took place via desktop connections, with mobile only accounting for ***** percent of total web traffic. While regional infrastructure remains an important factor in broadband vs. mobile coverage, most of the world has had their eyes on the recent 5G rollout across the globe, spearheaded by tech leaders China and the United States. The number of mobile 5G subscriptions worldwide is forecast to reach more than ***** billion by 2028. Social media: room for growth in Africa and southern Asia Overall, more than ** percent of the world’s mobile internet subscribers are also active on social media. A fast-growing market, with newcomers such as TikTok taking the world by storm, marketers have been cashing in on social media’s reach. Overall, social media penetration is highest in Europe and America, while in Africa and southern Asia, there is still room for growth. As of 2021, Facebook and Google-owned YouTube are the most popular social media platforms worldwide. Facebook and Instagram are most effective With nearly ***** billion users, it is no wonder that Facebook remains the social media avenue of choice for the majority of marketers across the world. Instagram, meanwhile, was the second most popular outlet. Both platforms are low-cost and support short-form content, known for its universal consumer appeal and answering to the most important benefits of using these kinds of platforms for business and advertising purposes.
Facebook
Twitterhttps://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
According to our latest research, the global Inline Sandbox for Web Traffic market size reached USD 2.1 billion in 2024, driven by the escalating sophistication of cyber threats and the rapid digital transformation across industries. The market is expected to register a robust CAGR of 13.7% from 2025 to 2033, resulting in a projected market value of USD 6.7 billion by 2033. This growth is underpinned by the increasing demand for advanced threat detection solutions, particularly as organizations worldwide prioritize securing their digital assets and maintaining regulatory compliance.
Several key factors are fueling the expansion of the Inline Sandbox for Web Traffic market. Firstly, the proliferation of sophisticated cyberattacks, including zero-day exploits and advanced persistent threats, has heightened the need for proactive security measures. Inline sandboxing technologies offer real-time, dynamic analysis of web traffic, enabling organizations to detect and neutralize threats before they infiltrate critical systems. This capability is particularly valuable in sectors such as BFSI, healthcare, and government, where the cost of a security breach can be catastrophic. Moreover, the widespread adoption of cloud computing and remote work has expanded the attack surface, necessitating more robust and scalable web traffic security solutions.
Another significant growth driver is the increasing regulatory scrutiny and compliance requirements faced by organizations across various industries. Regulations such as GDPR, HIPAA, and PCI DSS mandate stringent data protection and threat management protocols, compelling enterprises to invest in advanced security technologies. Inline sandboxing solutions not only help meet these compliance standards but also provide detailed forensic analysis and reporting capabilities, which are essential for audit trails and incident response. As a result, organizations are prioritizing the integration of sandboxing technologies into their broader security architectures, further accelerating market growth.
The evolution of artificial intelligence and machine learning has also played a pivotal role in enhancing the effectiveness of inline sandboxing solutions. Modern sandboxes leverage AI-driven analytics to identify and classify malicious behaviors with greater accuracy and speed, reducing false positives and improving overall threat detection rates. This technological advancement has made sandboxing solutions more accessible and attractive to small and medium-sized enterprises (SMEs), which traditionally lacked the resources to deploy such advanced security tools. The democratization of these technologies is expected to drive widespread adoption, particularly in emerging markets where digital transformation initiatives are gaining momentum.
From a regional perspective, North America continues to dominate the Inline Sandbox for Web Traffic market, accounting for the largest share in 2024 due to its mature cybersecurity ecosystem, high adoption of digital technologies, and stringent regulatory environment. However, the Asia Pacific region is witnessing the fastest growth, propelled by increasing investments in cybersecurity infrastructure, a surge in cyberattacks, and rapid digitalization across industries. Europe also remains a key market, supported by robust data protection regulations and a strong focus on privacy and security. Meanwhile, Latin America and the Middle East & Africa are gradually emerging as promising markets, driven by growing awareness and government-led cybersecurity initiatives.
The Component segment of the Inline Sandbox for Web Traffic market is categorized into software, hardware, and services. The software segment holds a dominant position, primarily due to the continuous development of advanced sandboxing solutions that integrate seamlessly with existing security infrastructures. Modern software platforms are equipped with AI and machine learning capabilities, enabling real-time threat detection and automated response to evolving cyber threats. These platforms offer scalability and flexibility, allowing organizations to tailor their security measures according to specific needs. Additionally, software-based solutions are often updated more frequently, ensuring that organizations remain protected against the latest threats.
Hardw
Facebook
TwitterThe Permission Agent Clickstream and Web Browsing Data Sample provides a rich, privacy-safe view into real human browsing behavior collected through the Permission Agent platform. This dataset captures the way verified users navigate, discover, and interact with digital content across a wide range of global domains, offering marketers, researchers, and AI developers high-quality behavioral data rooted in explicit consent.
Each record represents an anonymized user session, collected from real users who have installed the Permission Agent browser extension and opted in to share their data in exchange for rewards. These users come from diverse regions worldwide, reflecting natural browsing behavior across major web properties and long-tail sites. The dataset includes masked identifiers, referrer paths, full page URLs, timestamped navigation sequences, and hosting application context to provide a complete picture of session flow and site engagement.
Permission operates on a consent-based data exchange model, ensuring that every datapoint is shared transparently and ethically. Users are compensated with ASK tokens for the amount and quality of data they contribute, creating a verified human signal that eliminates the need for synthetic or inferred web traffic models. This results in cleaner, more accurate data that captures genuine browsing intent and engagement.
All data is anonymized at the point of collection, with strict compliance to global privacy frameworks including GDPR and CCPA. Sensitive or personally identifiable information is never stored or transmitted. IPs are masked, URLs are processed for relevance, and each record contains enough context for meaningful pattern recognition without compromising user privacy.
Beyond baseline data collection, we have custom data available upon request and can collect any data needed from social post data to account verifications with our agent automations.
Use cases for this dataset include:
Training AI models that rely on real-world navigation behavior or search intent.
Building behavioral profiles for privacy-respectful personalization and audience segmentation.
Analyzing web discovery paths, dwell times, and engagement funnels for digital research.
Benchmarking web usage trends across geographies and categories.
Facebook
TwitterComprehensive dataset analyzing Amazon's daily website visits, traffic patterns, seasonal trends, and comparative analysis with other ecommerce platforms based on May 2025 data.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The dataset contains information about web requests to a single website. It's a time series dataset, which means it tracks data over time, making it great for machine learning analysis.