6 datasets found
  1. d

    Data from: Adaptive response of Siberian roe deer (Capreolus pygargus) to...

    • search.dataone.org
    • datadryad.org
    Updated Nov 29, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tae-Kyung Eom; Jae-Kang Lee; Dong-Ho Lee; Hyeongyu Ko; Shin-Jae Rhim (2023). Adaptive response of Siberian roe deer (Capreolus pygargus) to climate and altitude in the temperate forests of South Korea [Dataset]. http://doi.org/10.5061/dryad.mkkwh715x
    Explore at:
    Dataset updated
    Nov 29, 2023
    Dataset provided by
    Dryad Digital Repository
    Authors
    Tae-Kyung Eom; Jae-Kang Lee; Dong-Ho Lee; Hyeongyu Ko; Shin-Jae Rhim
    Time period covered
    Jan 1, 2023
    Area covered
    South Korea
    Description

    Understanding climatic effect on wildlife is essential to prediction and management of climate change’s impact on the ecosystem. The climatic effect can interact with other environmental factors. This study aimed to determine effects of climate and altitude on Siberian roe deer (Capreolus pygargus) activity in temperate forests of South Korea. We conducted camera trapping to investigate roe deer’s activity level from spring to fall. Logistic regressions were used to determine effects of diel period, temperature, rain, and altitude on the activity level. A negative relationship was noted between temperature and the activity level due to thermoregulatory costs. Roe deer activity exhibited nocturnal and crepuscular patterns during summer and the other seasons, respectively, possibly due to heat stress in summer. In addition, the effect of temperature differed between high- and low-altitude areas. In low-altitude areas, temperature affected negatively the activity level throughout the study..., The camera trapping method was used to observe temporal variations in roe deer capture (sampling days: September to October 2021 and April to August 2022). In the study area, a 5 × 6 grid design (interval = 600 m) was established, and one trail camera (Spec Ops Elite HP4; Browning Co., USA) was deployed corresponding to each cell of the grid. The study period was divided into five seasons, and further analyses were performed for each season: spring (15 April to 15 May, 960 trap-days), early summer (16 May to 30 June, 1380 trap-days), summer (1 July to 31 August, 1860 trap-days), early fall (September, 900 trap-days) and fall (October, 810 trap-days). The camera-plot altitudes were categorised into four classes: 600 (600–800 m asl, n = 3), 800 (800–1,000 m asl, n = 10), 1,000 (1,000–1,200 m asl, n = 11) and 1,200 (1,200–1,400 m asl, n = 6). We created a roedeer variable as presence/absence of observation per 2-h in each altitude class. In order to account for sampling effort depending on..., , This README file was generated on 2023-09-22 by Tae-Kyung Eom.

    GENERAL INFORMATION

    1. Title of Dataset: Adaptive response of Siberian roe deer (Capreolus pygargus) to climate and altitude in the temperate forests of South Korea
    2. Author Information A. Principal Investigator Contact Information Name: Tae-Kyung Eom Institution: Chung-Ang University Address: Ansung, South Korea Email: xorud147@naver.com

      B. Associate or Co-investigator Contact Information Name: Jae-Kang Lee Institution: Chung-Ang University Address: Ansung, South Korea

      Name: Dong-Ho Lee Institution: Chung-Ang University Address: Ansung, South Korea

      Name: Hyeongyu Ko Institution: Chung-Ang University Address: Ansung, South Korea

      Name: Shin-Jae Rhim Institution: Chung-Ang University Address: Ansung, South Korea

    3. Date of data collection (single date, range, approximate date): 2021-2022

    4. Geographic location of data collection: Mt. Gariwang, Pyeo...

  2. KIOST KIOST-ESM model output prepared for CMIP6 ScenarioMIP ssp245

    • wdc-climate.de
    Updated 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kim, YoungHo; Noh, Yign; Kim, Dongmin; Lee, Myong-In; Lee, Ho Jin; Kim, Sang Yeob; Kim, Daehyun (2019). KIOST KIOST-ESM model output prepared for CMIP6 ScenarioMIP ssp245 [Dataset]. http://doi.org/10.22033/ESGF/CMIP6.11244
    Explore at:
    Dataset updated
    2019
    Dataset provided by
    Earth System Grid
    World Data Center for Climate (WDCC) at DKRZ
    Authors
    Kim, YoungHo; Noh, Yign; Kim, Dongmin; Lee, Myong-In; Lee, Ho Jin; Kim, Sang Yeob; Kim, Daehyun
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets. These data include all datasets published for 'CMIP6.ScenarioMIP.KIOST.KIOST-ESM.ssp245' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'.

    The KIOST Earth System Model v2 climate model, released in 2018, includes the following components: atmos: GFDL-AM2.0 (cubed sphere (C48); 192 x 96 longitude/latitude; 32 vertical levels; top level 2 hPa), atmosChem: Simple carbon aerosol model (emission type), land: NCAR-CLM4, landIce: NCAR-CLM4, ocean: GFDL-MOM5.0 (tripolar - nominal 1.0 deg; 360 x 200 longitude/latitude; 52 levels; top grid cell 0-2 m; NK mixed layer scheme), ocnBgchem: TOPAZ2, seaIce: GFDL-SIS. The model was run by the Korea Institute of Ocean Science and Technology, Busan 49111, Republic of Korea (KIOST) in native nominal resolutions: atmos: 250 km, atmosChem: 250 km, land: 250 km, landIce: 250 km, ocean: 100 km, ocnBgchem: 100 km, seaIce: 100 km.

    Project: These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6).

    CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ).

    The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. - Project website: https://pcmdi.llnl.gov/CMIP6.

  3. NIMS-KMA UKESM1.0-LL model output prepared for CMIP6 ScenarioMIP ssp370

    • wdc-climate.de
    Updated 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shim, Sungbo; Lim, Yoon-Jin; Byun, Young-Hwa; Seo, Jeongbyn; Kwon, Sanghun; Kim, Byeong-Hyeon (2021). NIMS-KMA UKESM1.0-LL model output prepared for CMIP6 ScenarioMIP ssp370 [Dataset]. http://doi.org/10.22033/ESGF/CMIP6.8438
    Explore at:
    Dataset updated
    2021
    Dataset provided by
    Earth System Grid
    World Data Center for Climate (WDCC) at DKRZ
    Authors
    Shim, Sungbo; Lim, Yoon-Jin; Byun, Young-Hwa; Seo, Jeongbyn; Kwon, Sanghun; Kim, Byeong-Hyeon
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets. These data include all datasets published for 'CMIP6.ScenarioMIP.NIMS-KMA.UKESM1-0-LL.ssp370' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'.

    The UKESM1.0-N96ORCA1 climate model, released in 2018, includes the following components: aerosol: UKCA-GLOMAP-mode, atmos: MetUM-HadGEM3-GA7.1 (N96; 192 x 144 longitude/latitude; 85 levels; top level 85 km), atmosChem: UKCA-StratTrop, land: JULES-ES-1.0, ocean: NEMO-HadGEM3-GO6.0 (eORCA1 tripolar primarily 1 deg with meridional refinement down to 1/3 degree in the tropics; 360 x 330 longitude/latitude; 75 levels; top grid cell 0-1 m), ocnBgchem: MEDUSA2, seaIce: CICE-HadGEM3-GSI8 (eORCA1 tripolar primarily 1 deg; 360 x 330 longitude/latitude). The model was run by the National Institute of Meteorological Sciences/Korea Meteorological Administration, Climate Research Division, Seoho-bukro 33, Seogwipo-si, Jejudo 63568, Republic of Korea (NIMS-KMA) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, atmosChem: 250 km, land: 250 km, ocean: 100 km, ocnBgchem: 100 km, seaIce: 100 km.

    Project: These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6).

    CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ).

    The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. - Project website: https://pcmdi.llnl.gov/CMIP6.

  4. Data from: NIMS-KMA UKESM1.0-LL model output prepared for CMIP6 CMIP...

    • wdc-climate.de
    Updated 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Byun, Young-Hwa (2020). NIMS-KMA UKESM1.0-LL model output prepared for CMIP6 CMIP historical [Dataset]. http://doi.org/10.22033/ESGF/CMIP6.8379
    Explore at:
    Dataset updated
    2020
    Dataset provided by
    Earth System Grid
    World Data Center for Climate (WDCC) at DKRZ
    Authors
    Byun, Young-Hwa
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets. These data include all datasets published for 'CMIP6.CMIP.NIMS-KMA.UKESM1-0-LL.historical' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'.

    The UKESM1.0-N96ORCA1 climate model, released in 2018, includes the following components: aerosol: UKCA-GLOMAP-mode, atmos: MetUM-HadGEM3-GA7.1 (N96; 192 x 144 longitude/latitude; 85 levels; top level 85 km), atmosChem: UKCA-StratTrop, land: JULES-ES-1.0, ocean: NEMO-HadGEM3-GO6.0 (eORCA1 tripolar primarily 1 deg with meridional refinement down to 1/3 degree in the tropics; 360 x 330 longitude/latitude; 75 levels; top grid cell 0-1 m), ocnBgchem: MEDUSA2, seaIce: CICE-HadGEM3-GSI8 (eORCA1 tripolar primarily 1 deg; 360 x 330 longitude/latitude). The model was run by the National Institute of Meteorological Sciences/Korea Meteorological Administration, Climate Research Division, Seoho-bukro 33, Seogwipo-si, Jejudo 63568, Republic of Korea (NIMS-KMA) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, atmosChem: 250 km, land: 250 km, ocean: 100 km, ocnBgchem: 100 km, seaIce: 100 km.

    Project: These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6).

    CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ).

    The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. - Project website: https://pcmdi.llnl.gov/CMIP6.

  5. NIMS-KMA UKESM1.0-LL model output prepared for CMIP6 ScenarioMIP ssp585

    • wdc-climate.de
    Updated 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shim, Sungbo; Lim, Yoon-Jin; Byun, Young-Hwa; Seo, Jeongbyn; Kwon, Sanghun; Kim, Byeong-Hyeon (2021). NIMS-KMA UKESM1.0-LL model output prepared for CMIP6 ScenarioMIP ssp585 [Dataset]. http://doi.org/10.22033/ESGF/CMIP6.8457
    Explore at:
    Dataset updated
    2021
    Dataset provided by
    Earth System Grid
    World Data Center for Climate (WDCC) at DKRZ
    Authors
    Shim, Sungbo; Lim, Yoon-Jin; Byun, Young-Hwa; Seo, Jeongbyn; Kwon, Sanghun; Kim, Byeong-Hyeon
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets. These data include all datasets published for 'CMIP6.ScenarioMIP.NIMS-KMA.UKESM1-0-LL.ssp585' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'.

    The UKESM1.0-N96ORCA1 climate model, released in 2018, includes the following components: aerosol: UKCA-GLOMAP-mode, atmos: MetUM-HadGEM3-GA7.1 (N96; 192 x 144 longitude/latitude; 85 levels; top level 85 km), atmosChem: UKCA-StratTrop, land: JULES-ES-1.0, ocean: NEMO-HadGEM3-GO6.0 (eORCA1 tripolar primarily 1 deg with meridional refinement down to 1/3 degree in the tropics; 360 x 330 longitude/latitude; 75 levels; top grid cell 0-1 m), ocnBgchem: MEDUSA2, seaIce: CICE-HadGEM3-GSI8 (eORCA1 tripolar primarily 1 deg; 360 x 330 longitude/latitude). The model was run by the National Institute of Meteorological Sciences/Korea Meteorological Administration, Climate Research Division, Seoho-bukro 33, Seogwipo-si, Jejudo 63568, Republic of Korea (NIMS-KMA) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, atmosChem: 250 km, land: 250 km, ocean: 100 km, ocnBgchem: 100 km, seaIce: 100 km.

    Project: These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6).

    CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ).

    The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. - Project website: https://pcmdi.llnl.gov/CMIP6.

  6. Data from: NIMS-KMA KACE1.0-G model output prepared for CMIP6 CMIP piControl...

    • wdc-climate.de
    Updated 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Byun, Young-Hwa; Lim, Yoon-Jin; Sung, Hyun Min; Kim, Jisun; Sun, Minah; Kim, Byeong-Hyeon (2019). NIMS-KMA KACE1.0-G model output prepared for CMIP6 CMIP piControl [Dataset]. http://doi.org/10.22033/ESGF/CMIP6.8425
    Explore at:
    Dataset updated
    2019
    Dataset provided by
    Earth System Grid
    World Data Center for Climate (WDCC) at DKRZ
    Authors
    Byun, Young-Hwa; Lim, Yoon-Jin; Sung, Hyun Min; Kim, Jisun; Sun, Minah; Kim, Byeong-Hyeon
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets. These data include all datasets published for 'CMIP6.CMIP.NIMS-KMA.KACE-1-0-G.piControl' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'.

    The KACE1.0-GLOMAP climate model, released in 2018, includes the following components: aerosol: UKCA-GLOMAP-mode, atmos: MetUM-HadGEM3-GA7.1 (N96; 192 x 144 longitude/latitude; 85 levels; top level 85 km), land: JULES-HadGEM3-GL7.1, ocean: MOM4p1 (tripolar primarily 1deg; 360 x 200 longitude/latitude; 50 levels; top grid cell 0-10 m), seaIce: CICE-HadGEM3-GSI8 (tripolar primarily 1deg; 360 x 200 longitude/latitude). The model was run by the National Institute of Meteorological Sciences/Korea Meteorological Administration, Climate Research Division, Seoho-bukro 33, Seogwipo-si, Jejudo 63568, Republic of Korea (NIMS-KMA) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, land: 250 km, ocean: 100 km, seaIce: 100 km.

    Project: These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6).

    CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ).

    The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. - Project website: https://pcmdi.llnl.gov/CMIP6.

  7. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Tae-Kyung Eom; Jae-Kang Lee; Dong-Ho Lee; Hyeongyu Ko; Shin-Jae Rhim (2023). Adaptive response of Siberian roe deer (Capreolus pygargus) to climate and altitude in the temperate forests of South Korea [Dataset]. http://doi.org/10.5061/dryad.mkkwh715x

Data from: Adaptive response of Siberian roe deer (Capreolus pygargus) to climate and altitude in the temperate forests of South Korea

Related Article
Explore at:
Dataset updated
Nov 29, 2023
Dataset provided by
Dryad Digital Repository
Authors
Tae-Kyung Eom; Jae-Kang Lee; Dong-Ho Lee; Hyeongyu Ko; Shin-Jae Rhim
Time period covered
Jan 1, 2023
Area covered
South Korea
Description

Understanding climatic effect on wildlife is essential to prediction and management of climate change’s impact on the ecosystem. The climatic effect can interact with other environmental factors. This study aimed to determine effects of climate and altitude on Siberian roe deer (Capreolus pygargus) activity in temperate forests of South Korea. We conducted camera trapping to investigate roe deer’s activity level from spring to fall. Logistic regressions were used to determine effects of diel period, temperature, rain, and altitude on the activity level. A negative relationship was noted between temperature and the activity level due to thermoregulatory costs. Roe deer activity exhibited nocturnal and crepuscular patterns during summer and the other seasons, respectively, possibly due to heat stress in summer. In addition, the effect of temperature differed between high- and low-altitude areas. In low-altitude areas, temperature affected negatively the activity level throughout the study..., The camera trapping method was used to observe temporal variations in roe deer capture (sampling days: September to October 2021 and April to August 2022). In the study area, a 5 × 6 grid design (interval = 600 m) was established, and one trail camera (Spec Ops Elite HP4; Browning Co., USA) was deployed corresponding to each cell of the grid. The study period was divided into five seasons, and further analyses were performed for each season: spring (15 April to 15 May, 960 trap-days), early summer (16 May to 30 June, 1380 trap-days), summer (1 July to 31 August, 1860 trap-days), early fall (September, 900 trap-days) and fall (October, 810 trap-days). The camera-plot altitudes were categorised into four classes: 600 (600–800 m asl, n = 3), 800 (800–1,000 m asl, n = 10), 1,000 (1,000–1,200 m asl, n = 11) and 1,200 (1,200–1,400 m asl, n = 6). We created a roedeer variable as presence/absence of observation per 2-h in each altitude class. In order to account for sampling effort depending on..., , This README file was generated on 2023-09-22 by Tae-Kyung Eom.

GENERAL INFORMATION

  1. Title of Dataset: Adaptive response of Siberian roe deer (Capreolus pygargus) to climate and altitude in the temperate forests of South Korea
  2. Author Information A. Principal Investigator Contact Information Name: Tae-Kyung Eom Institution: Chung-Ang University Address: Ansung, South Korea Email: xorud147@naver.com

    B. Associate or Co-investigator Contact Information Name: Jae-Kang Lee Institution: Chung-Ang University Address: Ansung, South Korea

    Name: Dong-Ho Lee Institution: Chung-Ang University Address: Ansung, South Korea

    Name: Hyeongyu Ko Institution: Chung-Ang University Address: Ansung, South Korea

    Name: Shin-Jae Rhim Institution: Chung-Ang University Address: Ansung, South Korea

  3. Date of data collection (single date, range, approximate date): 2021-2022

  4. Geographic location of data collection: Mt. Gariwang, Pyeo...

Search
Clear search
Close search
Google apps
Main menu