Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Rank, number of deaths, percentage of deaths, and age-specific mortality rates for the leading causes of death, by age group and sex, 2000 to most recent year.
Number of deaths and mortality rates, by age group, sex, and place of residence, 1991 to most recent year.
This dataset contains counts of deaths for California as a whole based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all deaths that occurred during the time period. Deaths involving injuries from external or environmental forces, such as accidents, homicide and suicide, often require additional investigation that tends to delay certification of the cause and manner of death. This can result in significant under-reporting of these deaths in provisional data.
The final data tables include both deaths that occurred in California regardless of the place of residence (by occurrence) and deaths to California residents (by residence), whereas the provisional data table only includes deaths that occurred in California regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by age, gender, race-ethnicity, and death place type. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.
The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Annual data on death registrations by single year of age for the UK (1974 onwards) and England and Wales (1963 onwards).
Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve. The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj. The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 . The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 . The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed. COVID-19 cases and associated deaths that have been reported among Connecticut residents, broken out by age group. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the daily COVID-19 update. Data are reported daily, with timestamps indicated in the daily briefings posted at: portal.ct.gov/coronavirus. Data are subject to future revision as reporting changes. Starting in July 2020, this dataset will be updated every weekday. Additional notes: A delay in the data pull schedule occurred on 06/23/2020. Data from 06/22/2020 was processed on 06/23/2020 at 3:30 PM. The normal data cycle resumed with the data for 06/23/2020. A network outage on 05/19/2020 resulted in a change in the data pull schedule. Data from 5/19/2020 was processed on 05/20/2020 at 12:00 PM. Data from 5/20/2020 was processed on 5/20/2020 8:30 PM. The normal data cycle resumed on 05/20/2020 with the 8:30 PM data pull. As a result of the network outage, the timestamp on the datasets on the Open Data Portal differ from the timestamp in DPH's daily PDF reports. Starting 5/10/2021, the date field will represent the date this data was updated on data.ct.gov. Previously the date the data was pulled by DPH was listed, which typically coincided with the date before the data was published on data.ct.gov. This change was made to standardize the COVID-19 data sets on data.ct.gov.
THIS DATASET WAS LAST UPDATED AT 2:10 AM EASTERN ON JUNE 29
2019 had the most mass killings since at least the 1970s, according to the Associated Press/USA TODAY/Northeastern University Mass Killings Database.
In all, there were 45 mass killings, defined as when four or more people are killed excluding the perpetrator. Of those, 33 were mass shootings . This summer was especially violent, with three high-profile public mass shootings occurring in the span of just four weeks, leaving 38 killed and 66 injured.
A total of 229 people died in mass killings in 2019.
The AP's analysis found that more than 50% of the incidents were family annihilations, which is similar to prior years. Although they are far less common, the 9 public mass shootings during the year were the most deadly type of mass murder, resulting in 73 people's deaths, not including the assailants.
One-third of the offenders died at the scene of the killing or soon after, half from suicides.
The Associated Press/USA TODAY/Northeastern University Mass Killings database tracks all U.S. homicides since 2006 involving four or more people killed (not including the offender) over a short period of time (24 hours) regardless of weapon, location, victim-offender relationship or motive. The database includes information on these and other characteristics concerning the incidents, offenders, and victims.
The AP/USA TODAY/Northeastern database represents the most complete tracking of mass murders by the above definition currently available. Other efforts, such as the Gun Violence Archive or Everytown for Gun Safety may include events that do not meet our criteria, but a review of these sites and others indicates that this database contains every event that matches the definition, including some not tracked by other organizations.
This data will be updated periodically and can be used as an ongoing resource to help cover these events.
To get basic counts of incidents of mass killings and mass shootings by year nationwide, use these queries:
To get these counts just for your state:
Mass murder is defined as the intentional killing of four or more victims by any means within a 24-hour period, excluding the deaths of unborn children and the offender(s). The standard of four or more dead was initially set by the FBI.
This definition does not exclude cases based on method (e.g., shootings only), type or motivation (e.g., public only), victim-offender relationship (e.g., strangers only), or number of locations (e.g., one). The time frame of 24 hours was chosen to eliminate conflation with spree killers, who kill multiple victims in quick succession in different locations or incidents, and to satisfy the traditional requirement of occurring in a “single incident.”
Offenders who commit mass murder during a spree (before or after committing additional homicides) are included in the database, and all victims within seven days of the mass murder are included in the victim count. Negligent homicides related to driving under the influence or accidental fires are excluded due to the lack of offender intent. Only incidents occurring within the 50 states and Washington D.C. are considered.
Project researchers first identified potential incidents using the Federal Bureau of Investigation’s Supplementary Homicide Reports (SHR). Homicide incidents in the SHR were flagged as potential mass murder cases if four or more victims were reported on the same record, and the type of death was murder or non-negligent manslaughter.
Cases were subsequently verified utilizing media accounts, court documents, academic journal articles, books, and local law enforcement records obtained through Freedom of Information Act (FOIA) requests. Each data point was corroborated by multiple sources, which were compiled into a single document to assess the quality of information.
In case(s) of contradiction among sources, official law enforcement or court records were used, when available, followed by the most recent media or academic source.
Case information was subsequently compared with every other known mass murder database to ensure reliability and validity. Incidents listed in the SHR that could not be independently verified were excluded from the database.
Project researchers also conducted extensive searches for incidents not reported in the SHR during the time period, utilizing internet search engines, Lexis-Nexis, and Newspapers.com. Search terms include: [number] dead, [number] killed, [number] slain, [number] murdered, [number] homicide, mass murder, mass shooting, massacre, rampage, family killing, familicide, and arson murder. Offender, victim, and location names were also directly searched when available.
This project started at USA TODAY in 2012.
Contact AP Data Editor Justin Myers with questions, suggestions or comments about this dataset at jmyers@ap.org. The Northeastern University researcher working with AP and USA TODAY is Professor James Alan Fox, who can be reached at j.fox@northeastern.edu or 617-416-4400.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Provisional deaths registration data for single year of age and average age of death (median and mean) of persons whose death involved coronavirus (COVID-19), England and Wales. Includes deaths due to COVID-19 and breakdowns by sex.
Number of deaths and age-specific mortality rates for selected grouped causes, by age group and sex, 2000 to most recent year.
VITAL SIGNS INDICATOR Life Expectancy (EQ6)
FULL MEASURE NAME Life Expectancy
LAST UPDATED April 2017
DESCRIPTION Life expectancy refers to the average number of years a newborn is expected to live if mortality patterns remain the same. The measure reflects the mortality rate across a population for a point in time.
DATA SOURCE State of California, Department of Health: Death Records (1990-2013) No link
California Department of Finance: Population Estimates Annual Intercensal Population Estimates (1990-2010) Table P-2: County Population by Age (2010-2013) http://www.dof.ca.gov/Forecasting/Demographics/Estimates/
CONTACT INFORMATION vitalsigns.info@mtc.ca.gov
METHODOLOGY NOTES (across all datasets for this indicator) Life expectancy is commonly used as a measure of the health of a population. Life expectancy does not reflect how long any given individual is expected to live; rather, it is an artificial measure that captures an aspect of the mortality rates across a population. Vital Signs measures life expectancy at birth (as opposed to cohort life expectancy). A statistical model was used to estimate life expectancy for Bay Area counties and Zip codes based on current life tables which require both age and mortality data. A life table is a table which shows, for each age, the survivorship of a people from a certain population.
Current life tables were created using death records and population estimates by age. The California Department of Public Health provided death records based on the California death certificate information. Records include age at death and residential Zip code. Single-year age population estimates at the regional- and county-level comes from the California Department of Finance population estimates and projections for ages 0-100+. Population estimates for ages 100 and over are aggregated to a single age interval. Using this data, death rates in a population within age groups for a given year are computed to form unabridged life tables (as opposed to abridged life tables). To calculate life expectancy, the probability of dying between the jth and (j+1)st birthday is assumed uniform after age 1. Special consideration is taken to account for infant mortality. For the Zip code-level life expectancy calculation, it is assumed that postal Zip codes share the same boundaries as Zip Code Census Tabulation Areas (ZCTAs). More information on the relationship between Zip codes and ZCTAs can be found at https://www.census.gov/geo/reference/zctas.html. Zip code-level data uses three years of mortality data to make robust estimates due to small sample size. Year 2013 Zip code life expectancy estimates reflects death records from 2011 through 2013. 2013 is the last year with available mortality data. Death records for Zip codes with zero population (like those associated with P.O. Boxes) were assigned to the nearest Zip code with population. Zip code population for 2000 estimates comes from the Decennial Census. Zip code population for 2013 estimates are from the American Community Survey (5-Year Average). The ACS provides Zip code population by age in five-year age intervals. Single-year age population estimates were calculated by distributing population within an age interval to single-year ages using the county distribution. Counties were assigned to Zip codes based on majority land-area.
Zip codes in the Bay Area vary in population from over 10,000 residents to less than 20 residents. Traditional life expectancy estimation (like the one used for the regional- and county-level Vital Signs estimates) cannot be used because they are highly inaccurate for small populations and may result in over/underestimation of life expectancy. To avoid inaccurate estimates, Zip codes with populations of less than 5,000 were aggregated with neighboring Zip codes until the merged areas had a population of more than 5,000. In this way, the original 305 Bay Area Zip codes were reduced to 218 Zip code areas for 2013 estimates. Next, a form of Bayesian random-effects analysis was used which established a prior distribution of the probability of death at each age using the regional distribution. This prior is used to shore up the life expectancy calculations where data were sparse.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Provisional counts of the number of deaths registered in England and Wales, by age, sex, region and Index of Multiple Deprivation (IMD), in the latest weeks for which data are available.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve.
The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj.
The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 .
The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 .
The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed.
COVID-19 cases and associated deaths that have been reported among Connecticut residents, broken down by race and ethnicity. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the COVID-19 update.
The following data show the number of COVID-19 cases and associated deaths per 100,000 population by race and ethnicity. Crude rates represent the total cases or deaths per 100,000 people. Age-adjusted rates consider the age of the person at diagnosis or death when estimating the rate and use a standardized population to provide a fair comparison between population groups with different age distributions. Age-adjustment is important in Connecticut as the median age of among the non-Hispanic white population is 47 years, whereas it is 34 years among non-Hispanic blacks, and 29 years among Hispanics. Because most non-Hispanic white residents who died were over 75 years of age, the age-adjusted rates are lower than the unadjusted rates. In contrast, Hispanic residents who died tend to be younger than 75 years of age which results in higher age-adjusted rates.
The population data used to calculate rates is based on the CT DPH population statistics for 2019, which is available online here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Population-Statistics. Prior to 5/10/2021, the population estimates from 2018 were used.
Rates are standardized to the 2000 US Millions Standard population (data available here: https://seer.cancer.gov/stdpopulations/). Standardization was done using 19 age groups (0, 1-4, 5-9, 10-14, ..., 80-84, 85 years and older). More information about direct standardization for age adjustment is available here: https://www.cdc.gov/nchs/data/statnt/statnt06rv.pdf
Categories are mutually exclusive. The category “multiracial” includes people who answered ‘yes’ to more than one race category. Counts may not add up to total case counts as data on race and ethnicity may be missing. Age adjusted rates calculated only for groups with more than 20 deaths. Abbreviation: NH=Non-Hispanic.
Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical examiner) using their best clinical judgment. Additionally, all COVID-19 deaths, including suspected or related, are required to be reported to OCME. On April 4, 2020, CT DPH and OCME released a joint memo to providers and facilities within Connecticut providing guidelines for certifying deaths due to COVID-19 that were consistent with the CDC’s guidelines and a reminder of the required reporting to OCME.25,26 As of July 1, 2021, OCME had reviewed every case reported and performed additional investigation on about one-third of reported deaths to better ascertain if COVID-19 did or did not cause or contribute to the death. Some of these investigations resulted in the OCME performing postmortem swabs for PCR testing on individuals whose deaths were suspected to be due to COVID-19, but antemortem diagnosis was unable to be made.31 The OCME issued or re-issued about 10% of COVID-19 death certificates and, when appropriate, removed COVID-19 from the death certificate. For standardization and tabulation of mortality statistics, written cause of death statements made by the certifiers on death certificates are sent to the National Center for Health Statistics (NCHS) at the CDC which assigns cause of death codes according to the International Causes of Disease 10th Revision (ICD-10) classification system.25,26 COVID-19 deaths in this report are defined as those for which the death certificate has an ICD-10 code of U07.1 as either a primary (underlying) or a contributing cause of death. More information on COVID-19 mortality can be found at the following link: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Mortality/Mortality-Statistics
Data are subject to future revision as reporting changes.
Starting in July 2020, this dataset will be updated every weekday.
Additional notes: A delay in the data pull schedule occurred on 06/23/2020. Data from 06/22/2020 was processed on 06/23/2020 at 3:30 PM. The normal data cycle resumed with the data for 06/23/2020.
A network outage on 05/19/2020 resulted in a change in the data pull schedule. Data from 5/19/2020 was processed on 05/20/2020 at 12:00 PM. Data from 5/20/2020 was processed on 5/20/2020 8:30 PM. The normal data cycle resumed on 05/20/2020 with the 8:30 PM data pull. As a result of the network outage, the timestamp on the datasets on the Open Data Portal differ from the timestamp in DPH's daily PDF reports.
Starting 5/10/2021, the date field will represent the date this data was updated on data.ct.gov. Previously the date the data was pulled by DPH was listed, which typically coincided with the date before the data was published on data.ct.gov. This change was made to standardize the COVID-19 data sets on data.ct.gov.
VITAL SIGNS INDICATOR Life Expectancy (EQ6)
FULL MEASURE NAME Life Expectancy
LAST UPDATED April 2017
DESCRIPTION Life expectancy refers to the average number of years a newborn is expected to live if mortality patterns remain the same. The measure reflects the mortality rate across a population for a point in time.
DATA SOURCE State of California, Department of Health: Death Records (1990-2013) No link
California Department of Finance: Population Estimates Annual Intercensal Population Estimates (1990-2010) Table P-2: County Population by Age (2010-2013) http://www.dof.ca.gov/Forecasting/Demographics/Estimates/
U.S. Census Bureau: Decennial Census ZCTA Population (2000-2010) http://factfinder.census.gov
U.S. Census Bureau: American Community Survey 5-Year Population Estimates (2013) http://factfinder.census.gov
CONTACT INFORMATION vitalsigns.info@mtc.ca.gov
METHODOLOGY NOTES (across all datasets for this indicator) Life expectancy is commonly used as a measure of the health of a population. Life expectancy does not reflect how long any given individual is expected to live; rather, it is an artificial measure that captures an aspect of the mortality rates across a population that can be compared across time and populations. More information about the determinants of life expectancy that may lead to differences in life expectancy between neighborhoods can be found in the Bay Area Regional Health Inequities Initiative (BARHII) Health Inequities in the Bay Area report at http://www.barhii.org/wp-content/uploads/2015/09/barhii_hiba.pdf. Vital Signs measures life expectancy at birth (as opposed to cohort life expectancy). A statistical model was used to estimate life expectancy for Bay Area counties and ZIP Codes based on current life tables which require both age and mortality data. A life table is a table which shows, for each age, the survivorship of a people from a certain population.
Current life tables were created using death records and population estimates by age. The California Department of Public Health provided death records based on the California death certificate information. Records include age at death and residential ZIP Code. Single-year age population estimates at the regional- and county-level comes from the California Department of Finance population estimates and projections for ages 0-100+. Population estimates for ages 100 and over are aggregated to a single age interval. Using this data, death rates in a population within age groups for a given year are computed to form unabridged life tables (as opposed to abridged life tables). To calculate life expectancy, the probability of dying between the jth and (j+1)st birthday is assumed uniform after age 1. Special consideration is taken to account for infant mortality.
For the ZIP Code-level life expectancy calculation, it is assumed that postal ZIP Codes share the same boundaries as ZIP Code Census Tabulation Areas (ZCTAs). More information on the relationship between ZIP Codes and ZCTAs can be found at http://www.census.gov/geo/reference/zctas.html. ZIP Code-level data uses three years of mortality data to make robust estimates due to small sample size. Year 2013 ZIP Code life expectancy estimates reflects death records from 2011 through 2013. 2013 is the last year with available mortality data. Death records for ZIP Codes with zero population (like those associated with P.O. Boxes) were assigned to the nearest ZIP Code with population. ZIP Code population for 2000 estimates comes from the Decennial Census. ZIP Code population for 2013 estimates are from the American Community Survey (5-Year Average). ACS estimates are adjusted using Decennial Census data for more accurate population estimates. An adjustment factor was calculated using the ratio between the 2010 Decennial Census population estimates and the 2012 ACS 5-Year (with middle year 2010) population estimates. This adjustment factor is particularly important for ZCTAs with high homeless population (not living in group quarters) where the ACS may underestimate the ZCTA population and therefore underestimate the life expectancy. The ACS provides ZIP Code population by age in five-year age intervals. Single-year age population estimates were calculated by distributing population within an age interval to single-year ages using the county distribution. Counties were assigned to ZIP Codes based on majority land-area.
ZIP Codes in the Bay Area vary in population from over 10,000 residents to less than 20 residents. Traditional life expectancy estimation (like the one used for the regional- and county-level Vital Signs estimates) cannot be used because they are highly inaccurate for small populations and may result in over/underestimation of life expectancy. To avoid inaccurate estimates, ZIP Codes with populations of less than 5,000 were aggregated with neighboring ZIP Codes until the merged areas had a population of more than 5,000. ZIP Code 94103, representing Treasure Island, was dropped from the dataset due to its small population and having no bordering ZIP Codes. In this way, the original 305 Bay Area ZIP Codes were reduced to 217 ZIP Code areas for 2013 estimates. Next, a form of Bayesian random-effects analysis was used which established a prior distribution of the probability of death at each age using the regional distribution. This prior is used to shore up the life expectancy calculations where data were sparse.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Historical chart and dataset showing World death rate by year from 1950 to 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
IntroductionMany national and subnational governments need to routinely measure the completeness of death registration for monitoring and statistical purposes. Existing methods, such as death distribution and capture-recapture methods, have a number of limitations such as inaccuracy and complexity that prevent widespread application. This paper presents a novel empirical method to estimate completeness of death registration at the national and subnational level.MethodsRandom-effects models to predict the logit of death registration completeness were developed from 2,451 country-years in 110 countries from 1970–2015 using the Global Burden of Disease 2015 database. Predictors include the registered crude death rate, under-five mortality rate, population age structure and under-five death registration completeness. Models were developed separately for males, females and both sexes.FindingsAll variables are highly significant and reliably predict completeness of registration across a wide range of registered crude death rates (R-squared 0.85). Mean error is highest at medium levels of observed completeness. The models show quite close agreement between predicted and observed completeness for populations outside the dataset. There is high concordance with the Hybrid death distribution method in Brazilian states. Uncertainty in the under-five mortality rate, assessed using the dataset and in Colombian departmentos, has minimal impact on national level predicted completeness, but a larger effect at the subnational level.ConclusionsThe method demonstrates sufficient flexibility to predict a wide range of completeness levels at a given registered crude death rate. The method can be applied utilising data readily available at the subnational level, and can be used to assess completeness of deaths reported from health facilities, censuses and surveys. Its utility is diminished where the adult mortality rate is unusually high for a given under-five mortality rate. The method overcomes the considerable limitations of existing methods and has considerable potential for widespread application by national and subnational governments.
Number and percentage of deaths, by month and place of residence, 1991 to most recent year.
NOTE: This dataset has been retired and marked as historical-only.
Weekly rates of COVID-19 cases, hospitalizations, and deaths among people living in Chicago by vaccination status and age.
Rates for fully vaccinated and unvaccinated begin the week ending April 3, 2021 when COVID-19 vaccines became widely available in Chicago. Rates for boosted begin the week ending October 23, 2021 after booster shots were recommended by the Centers for Disease Control and Prevention (CDC) for adults 65+ years old and adults in certain populations and high risk occupational and institutional settings who received Pfizer or Moderna for their primary series or anyone who received the Johnson & Johnson vaccine.
Chicago residency is based on home address, as reported in the Illinois Comprehensive Automated Immunization Registry Exchange (I-CARE) and Illinois National Electronic Disease Surveillance System (I-NEDSS).
Outcomes: • Cases: People with a positive molecular (PCR) or antigen COVID-19 test result from an FDA-authorized COVID-19 test that was reported into I-NEDSS. A person can become re-infected with SARS-CoV-2 over time and so may be counted more than once in this dataset. Cases are counted by week the test specimen was collected. • Hospitalizations: COVID-19 cases who are hospitalized due to a documented COVID-19 related illness or who are admitted for any reason within 14 days of a positive SARS-CoV-2 test. Hospitalizations are counted by week of hospital admission. • Deaths: COVID-19 cases who died from COVID-19-related health complications as determined by vital records or a public health investigation. Deaths are counted by week of death.
Vaccination status: • Fully vaccinated: Completion of primary series of a U.S. Food and Drug Administration (FDA)-authorized or approved COVID-19 vaccine at least 14 days prior to a positive test (with no other positive tests in the previous 45 days). • Boosted: Fully vaccinated with an additional or booster dose of any FDA-authorized or approved COVID-19 vaccine received at least 14 days prior to a positive test (with no other positive tests in the previous 45 days). • Unvaccinated: No evidence of having received a dose of an FDA-authorized or approved vaccine prior to a positive test.
CLARIFYING NOTE: Those who started but did not complete all recommended doses of an FDA-authorized or approved vaccine prior to a positive test (i.e., partially vaccinated) are excluded from this dataset.
Incidence rates for fully vaccinated but not boosted people (Vaccinated columns) are calculated as total fully vaccinated but not boosted with outcome divided by cumulative fully vaccinated but not boosted at the end of each week. Incidence rates for boosted (Boosted columns) are calculated as total boosted with outcome divided by cumulative boosted at the end of each week. Incidence rates for unvaccinated (Unvaccinated columns) are calculated as total unvaccinated with outcome divided by total population minus cumulative boosted, fully, and partially vaccinated at the end of each week. All rates are multiplied by 100,000.
Incidence rate ratios (IRRs) are calculated by dividing the weekly incidence rates among unvaccinated people by those among fully vaccinated but not boosted and boosted people.
Overall age-adjusted incidence rates and IRRs are standardized using the 2000 U.S. Census standard population.
Population totals are from U.S. Census Bureau American Community Survey 1-year estimates for 2019.
All data are provisional and subject to change. Information is updated as additional details are received and it is, in fact, very common for recent dates to be incomplete and to be updated as time goes on. This dataset reflects data known to CDPH at the time when the dataset is updated each week.
Numbers in this dataset may differ from other public sources due to when data are reported and how City of Chicago boundaries are defined.
For all datasets related to COVID-19, see https://data.cityofchicago.org/browse?limitTo=datasets&sortBy=alpha&tags=covid-19.
Data Source: Illinois' National Electronic Disease Surveillance System (I-NEDSS), Illinois Comprehensive Automated Immunization Registry Exchange (I-CARE), U.S. Census Bureau American Community Survey
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Mean, median and modal ages at death in the UK and its constituent countries, 2001 to 2003 and 2016 to 2018.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Age-standardised rate of mortality from oral cancer (ICD-10 codes C00-C14) in persons of all ages and sexes per 100,000 population.RationaleOver the last decade in the UK (between 2003-2005 and 2012-2014), oral cancer mortality rates have increased by 20% for males and 19% for females1Five year survival rates are 56%. Most oral cancers are triggered by tobacco and alcohol, which together account for 75% of cases2. Cigarette smoking is associated with an increased risk of the more common forms of oral cancer. The risk among cigarette smokers is estimated to be 10 times that for non-smokers. More intense use of tobacco increases the risk, while ceasing to smoke for 10 years or more reduces it to almost the same as that of non-smokers3. Oral cancer mortality rates can be used in conjunction with registration data to inform service planning as well as comparing survival rates across areas of England to assess the impact of public health prevention policies such as smoking cessation.References:(1) Cancer Research Campaign. Cancer Statistics: Oral – UK. London: CRC, 2000.(2) Blot WJ, McLaughlin JK, Winn DM et al. Smoking and drinking in relation to oral and pharyngeal cancer. Cancer Res 1988; 48: 3282-7. (3) La Vecchia C, Tavani A, Franceschi S et al. Epidemiology and prevention of oral cancer. Oral Oncology 1997; 33: 302-12.Definition of numeratorAll cancer mortality for lip, oral cavity and pharynx (ICD-10 C00-C14) in the respective calendar years aggregated into quinary age bands (0-4, 5-9,…, 85-89, 90+). This does not include secondary cancers or recurrences. Data are reported according to the calendar year in which the cancer was diagnosed.Counts of deaths for years up to and including 2019 have been adjusted where needed to take account of the MUSE ICD-10 coding change introduced in 2020. Detailed guidance on the MUSE implementation is available at: https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/articles/causeofdeathcodinginmortalitystatisticssoftwarechanges/january2020Counts of deaths for years up to and including 2013 have been double adjusted by applying comparability ratios from both the IRIS coding change and the MUSE coding change where needed to take account of both the MUSE ICD-10 coding change and the IRIS ICD-10 coding change introduced in 2014. The detailed guidance on the IRIS implementation is available at: https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/bulletins/impactoftheimplementationofirissoftwareforicd10causeofdeathcodingonmortalitystatisticsenglandandwales/2014-08-08Counts of deaths for years up to and including 2010 have been triple adjusted by applying comparability ratios from the 2011 coding change, the IRIS coding change and the MUSE coding change where needed to take account of the MUSE ICD-10 coding change, the IRIS ICD-10 coding change and the ICD-10 coding change introduced in 2011. The detailed guidance on the 2011 implementation is available at https://webarchive.nationalarchives.gov.uk/ukgwa/20160108084125/http://www.ons.gov.uk/ons/guide-method/classifications/international-standard-classifications/icd-10-for-mortality/comparability-ratios/index.htmlDefinition of denominatorPopulation-years (aggregated populations for the three years) for people of all ages, aggregated into quinary age bands (0-4, 5-9, …, 85-89, 90+)
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Age-standardised mortality rates for deaths involving coronavirus (COVID-19), non-COVID-19 deaths and all deaths by vaccination status, broken down by age group.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Analyze Fatality Trends: Explore the dataset and track the trends in fatalities over time. Identify any significant changes, spikes, or declines in the number of fatalities. Demographic Analysis:Conduct a demographic analysis by examining the age, gender, and citizenship of the individuals killed. Determine if there are any notable patterns or disparities in the data. Geospatial Analysis: Utilize the event location, district, and region information to perform geospatial analysis. Visualize the distribution of fatalities on a map and identify areas that have experienced higher levels of violence. Hostilities Participation Analysis:Investigate the extent of individuals' participation in hostilities before their deaths. Analyze the relationship between participation and the circumstances surrounding each fatality. Injury Analysis: Examine the types of injuries inflicted on individuals. Identify the most common types of injuries and assess their severity. Weapons Used: Analyze the ammunition and means by which the individuals were killed. Determine the most frequently used weapons or methods and evaluate their impact. Victim Profiles: Create profiles of the victims based on the available data such as age, gender, citizenship, and place of residence. Identify common characteristics among the victims.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Rank, number of deaths, percentage of deaths, and age-specific mortality rates for the leading causes of death, by age group and sex, 2000 to most recent year.